Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundcmpsurinjALT Structured version   Visualization version   GIF version

Theorem fundcmpsurinjALT 47357
Description: Alternate proof of fundcmpsurinj 47354, based on fundcmpsurinjimaid 47356: Every function 𝐹:𝐴𝐵 can be decomposed into a surjective and an injective function. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by AV, 13-Mar-2024.)
Assertion
Ref Expression
fundcmpsurinjALT ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑝(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)))
Distinct variable groups:   𝐴,𝑔,,𝑝   𝐵,𝑔,,𝑝   𝑔,𝐹,,𝑝
Allowed substitution hints:   𝑉(𝑔,,𝑝)

Proof of Theorem fundcmpsurinjALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mptexg 7223 . . . 4 (𝐴𝑉 → (𝑦𝐴 ↦ (𝐹𝑦)) ∈ V)
21adantl 481 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → (𝑦𝐴 ↦ (𝐹𝑦)) ∈ V)
3 ffun 6719 . . . . 5 (𝐹:𝐴𝐵 → Fun 𝐹)
4 funimaexg 6633 . . . . 5 ((Fun 𝐹𝐴𝑉) → (𝐹𝐴) ∈ V)
53, 4sylan 580 . . . 4 ((𝐹:𝐴𝐵𝐴𝑉) → (𝐹𝐴) ∈ V)
65resiexd 7218 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → ( I ↾ (𝐹𝐴)) ∈ V)
72, 6, 53jca 1128 . 2 ((𝐹:𝐴𝐵𝐴𝑉) → ((𝑦𝐴 ↦ (𝐹𝑦)) ∈ V ∧ ( I ↾ (𝐹𝐴)) ∈ V ∧ (𝐹𝐴) ∈ V))
8 eqid 2734 . . . 4 (𝐹𝐴) = (𝐹𝐴)
9 eqid 2734 . . . 4 (𝑦𝐴 ↦ (𝐹𝑦)) = (𝑦𝐴 ↦ (𝐹𝑦))
10 eqid 2734 . . . 4 ( I ↾ (𝐹𝐴)) = ( I ↾ (𝐹𝐴))
118, 9, 10fundcmpsurinjimaid 47356 . . 3 (𝐹:𝐴𝐵 → ((𝑦𝐴 ↦ (𝐹𝑦)):𝐴onto→(𝐹𝐴) ∧ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵𝐹 = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦)))))
1211adantr 480 . 2 ((𝐹:𝐴𝐵𝐴𝑉) → ((𝑦𝐴 ↦ (𝐹𝑦)):𝐴onto→(𝐹𝐴) ∧ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵𝐹 = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦)))))
13 simp1 1136 . . . . 5 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → 𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)))
14 eqidd 2735 . . . . 5 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → 𝐴 = 𝐴)
15 simp3 1138 . . . . 5 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → 𝑝 = (𝐹𝐴))
1613, 14, 15foeq123d 6821 . . . 4 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → (𝑔:𝐴onto𝑝 ↔ (𝑦𝐴 ↦ (𝐹𝑦)):𝐴onto→(𝐹𝐴)))
17 simpl 482 . . . . . 6 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → = ( I ↾ (𝐹𝐴)))
18 simpr 484 . . . . . 6 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → 𝑝 = (𝐹𝐴))
19 eqidd 2735 . . . . . 6 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → 𝐵 = 𝐵)
2017, 18, 19f1eq123d 6820 . . . . 5 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → (:𝑝1-1𝐵 ↔ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵))
21203adant1 1130 . . . 4 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → (:𝑝1-1𝐵 ↔ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵))
22 simpl 482 . . . . . . . 8 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑔 = (𝑦𝐴 ↦ (𝐹𝑦))) → = ( I ↾ (𝐹𝐴)))
23 simpr 484 . . . . . . . 8 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑔 = (𝑦𝐴 ↦ (𝐹𝑦))) → 𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)))
2422, 23coeq12d 5855 . . . . . . 7 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑔 = (𝑦𝐴 ↦ (𝐹𝑦))) → (𝑔) = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦))))
2524ancoms 458 . . . . . 6 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴))) → (𝑔) = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦))))
26253adant3 1132 . . . . 5 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → (𝑔) = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦))))
2726eqeq2d 2745 . . . 4 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → (𝐹 = (𝑔) ↔ 𝐹 = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦)))))
2816, 21, 273anbi123d 1437 . . 3 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → ((𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)) ↔ ((𝑦𝐴 ↦ (𝐹𝑦)):𝐴onto→(𝐹𝐴) ∧ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵𝐹 = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦))))))
2928spc3egv 3586 . 2 (((𝑦𝐴 ↦ (𝐹𝑦)) ∈ V ∧ ( I ↾ (𝐹𝐴)) ∈ V ∧ (𝐹𝐴) ∈ V) → (((𝑦𝐴 ↦ (𝐹𝑦)):𝐴onto→(𝐹𝐴) ∧ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵𝐹 = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦)))) → ∃𝑔𝑝(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔))))
307, 12, 29sylc 65 1 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑝(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  Vcvv 3463  cmpt 5205   I cid 5557  cres 5667  cima 5668  ccom 5669  Fun wfun 6535  wf 6537  1-1wf1 6538  ontowfo 6539  cfv 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator