Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundcmpsurinjALT Structured version   Visualization version   GIF version

Theorem fundcmpsurinjALT 47413
Description: Alternate proof of fundcmpsurinj 47410, based on fundcmpsurinjimaid 47412: Every function 𝐹:𝐴𝐵 can be decomposed into a surjective and an injective function. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by AV, 13-Mar-2024.)
Assertion
Ref Expression
fundcmpsurinjALT ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑝(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)))
Distinct variable groups:   𝐴,𝑔,,𝑝   𝐵,𝑔,,𝑝   𝑔,𝐹,,𝑝
Allowed substitution hints:   𝑉(𝑔,,𝑝)

Proof of Theorem fundcmpsurinjALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mptexg 7195 . . . 4 (𝐴𝑉 → (𝑦𝐴 ↦ (𝐹𝑦)) ∈ V)
21adantl 481 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → (𝑦𝐴 ↦ (𝐹𝑦)) ∈ V)
3 ffun 6691 . . . . 5 (𝐹:𝐴𝐵 → Fun 𝐹)
4 funimaexg 6603 . . . . 5 ((Fun 𝐹𝐴𝑉) → (𝐹𝐴) ∈ V)
53, 4sylan 580 . . . 4 ((𝐹:𝐴𝐵𝐴𝑉) → (𝐹𝐴) ∈ V)
65resiexd 7190 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → ( I ↾ (𝐹𝐴)) ∈ V)
72, 6, 53jca 1128 . 2 ((𝐹:𝐴𝐵𝐴𝑉) → ((𝑦𝐴 ↦ (𝐹𝑦)) ∈ V ∧ ( I ↾ (𝐹𝐴)) ∈ V ∧ (𝐹𝐴) ∈ V))
8 eqid 2729 . . . 4 (𝐹𝐴) = (𝐹𝐴)
9 eqid 2729 . . . 4 (𝑦𝐴 ↦ (𝐹𝑦)) = (𝑦𝐴 ↦ (𝐹𝑦))
10 eqid 2729 . . . 4 ( I ↾ (𝐹𝐴)) = ( I ↾ (𝐹𝐴))
118, 9, 10fundcmpsurinjimaid 47412 . . 3 (𝐹:𝐴𝐵 → ((𝑦𝐴 ↦ (𝐹𝑦)):𝐴onto→(𝐹𝐴) ∧ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵𝐹 = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦)))))
1211adantr 480 . 2 ((𝐹:𝐴𝐵𝐴𝑉) → ((𝑦𝐴 ↦ (𝐹𝑦)):𝐴onto→(𝐹𝐴) ∧ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵𝐹 = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦)))))
13 simp1 1136 . . . . 5 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → 𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)))
14 eqidd 2730 . . . . 5 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → 𝐴 = 𝐴)
15 simp3 1138 . . . . 5 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → 𝑝 = (𝐹𝐴))
1613, 14, 15foeq123d 6793 . . . 4 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → (𝑔:𝐴onto𝑝 ↔ (𝑦𝐴 ↦ (𝐹𝑦)):𝐴onto→(𝐹𝐴)))
17 simpl 482 . . . . . 6 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → = ( I ↾ (𝐹𝐴)))
18 simpr 484 . . . . . 6 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → 𝑝 = (𝐹𝐴))
19 eqidd 2730 . . . . . 6 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → 𝐵 = 𝐵)
2017, 18, 19f1eq123d 6792 . . . . 5 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → (:𝑝1-1𝐵 ↔ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵))
21203adant1 1130 . . . 4 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → (:𝑝1-1𝐵 ↔ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵))
22 simpl 482 . . . . . . . 8 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑔 = (𝑦𝐴 ↦ (𝐹𝑦))) → = ( I ↾ (𝐹𝐴)))
23 simpr 484 . . . . . . . 8 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑔 = (𝑦𝐴 ↦ (𝐹𝑦))) → 𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)))
2422, 23coeq12d 5828 . . . . . . 7 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑔 = (𝑦𝐴 ↦ (𝐹𝑦))) → (𝑔) = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦))))
2524ancoms 458 . . . . . 6 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴))) → (𝑔) = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦))))
26253adant3 1132 . . . . 5 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → (𝑔) = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦))))
2726eqeq2d 2740 . . . 4 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → (𝐹 = (𝑔) ↔ 𝐹 = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦)))))
2816, 21, 273anbi123d 1438 . . 3 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → ((𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)) ↔ ((𝑦𝐴 ↦ (𝐹𝑦)):𝐴onto→(𝐹𝐴) ∧ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵𝐹 = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦))))))
2928spc3egv 3569 . 2 (((𝑦𝐴 ↦ (𝐹𝑦)) ∈ V ∧ ( I ↾ (𝐹𝐴)) ∈ V ∧ (𝐹𝐴) ∈ V) → (((𝑦𝐴 ↦ (𝐹𝑦)):𝐴onto→(𝐹𝐴) ∧ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵𝐹 = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦)))) → ∃𝑔𝑝(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔))))
307, 12, 29sylc 65 1 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑝(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447  cmpt 5188   I cid 5532  cres 5640  cima 5641  ccom 5642  Fun wfun 6505  wf 6507  1-1wf1 6508  ontowfo 6509  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator