Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundcmpsurinjALT Structured version   Visualization version   GIF version

Theorem fundcmpsurinjALT 47365
Description: Alternate proof of fundcmpsurinj 47362, based on fundcmpsurinjimaid 47364: Every function 𝐹:𝐴𝐵 can be decomposed into a surjective and an injective function. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by AV, 13-Mar-2024.)
Assertion
Ref Expression
fundcmpsurinjALT ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑝(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)))
Distinct variable groups:   𝐴,𝑔,,𝑝   𝐵,𝑔,,𝑝   𝑔,𝐹,,𝑝
Allowed substitution hints:   𝑉(𝑔,,𝑝)

Proof of Theorem fundcmpsurinjALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mptexg 7248 . . . 4 (𝐴𝑉 → (𝑦𝐴 ↦ (𝐹𝑦)) ∈ V)
21adantl 481 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → (𝑦𝐴 ↦ (𝐹𝑦)) ∈ V)
3 ffun 6747 . . . . 5 (𝐹:𝐴𝐵 → Fun 𝐹)
4 funimaexg 6661 . . . . 5 ((Fun 𝐹𝐴𝑉) → (𝐹𝐴) ∈ V)
53, 4sylan 580 . . . 4 ((𝐹:𝐴𝐵𝐴𝑉) → (𝐹𝐴) ∈ V)
65resiexd 7243 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → ( I ↾ (𝐹𝐴)) ∈ V)
72, 6, 53jca 1129 . 2 ((𝐹:𝐴𝐵𝐴𝑉) → ((𝑦𝐴 ↦ (𝐹𝑦)) ∈ V ∧ ( I ↾ (𝐹𝐴)) ∈ V ∧ (𝐹𝐴) ∈ V))
8 eqid 2737 . . . 4 (𝐹𝐴) = (𝐹𝐴)
9 eqid 2737 . . . 4 (𝑦𝐴 ↦ (𝐹𝑦)) = (𝑦𝐴 ↦ (𝐹𝑦))
10 eqid 2737 . . . 4 ( I ↾ (𝐹𝐴)) = ( I ↾ (𝐹𝐴))
118, 9, 10fundcmpsurinjimaid 47364 . . 3 (𝐹:𝐴𝐵 → ((𝑦𝐴 ↦ (𝐹𝑦)):𝐴onto→(𝐹𝐴) ∧ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵𝐹 = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦)))))
1211adantr 480 . 2 ((𝐹:𝐴𝐵𝐴𝑉) → ((𝑦𝐴 ↦ (𝐹𝑦)):𝐴onto→(𝐹𝐴) ∧ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵𝐹 = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦)))))
13 simp1 1137 . . . . 5 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → 𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)))
14 eqidd 2738 . . . . 5 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → 𝐴 = 𝐴)
15 simp3 1139 . . . . 5 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → 𝑝 = (𝐹𝐴))
1613, 14, 15foeq123d 6849 . . . 4 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → (𝑔:𝐴onto𝑝 ↔ (𝑦𝐴 ↦ (𝐹𝑦)):𝐴onto→(𝐹𝐴)))
17 simpl 482 . . . . . 6 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → = ( I ↾ (𝐹𝐴)))
18 simpr 484 . . . . . 6 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → 𝑝 = (𝐹𝐴))
19 eqidd 2738 . . . . . 6 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → 𝐵 = 𝐵)
2017, 18, 19f1eq123d 6848 . . . . 5 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → (:𝑝1-1𝐵 ↔ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵))
21203adant1 1131 . . . 4 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → (:𝑝1-1𝐵 ↔ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵))
22 simpl 482 . . . . . . . 8 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑔 = (𝑦𝐴 ↦ (𝐹𝑦))) → = ( I ↾ (𝐹𝐴)))
23 simpr 484 . . . . . . . 8 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑔 = (𝑦𝐴 ↦ (𝐹𝑦))) → 𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)))
2422, 23coeq12d 5882 . . . . . . 7 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑔 = (𝑦𝐴 ↦ (𝐹𝑦))) → (𝑔) = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦))))
2524ancoms 458 . . . . . 6 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴))) → (𝑔) = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦))))
26253adant3 1133 . . . . 5 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → (𝑔) = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦))))
2726eqeq2d 2748 . . . 4 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → (𝐹 = (𝑔) ↔ 𝐹 = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦)))))
2816, 21, 273anbi123d 1437 . . 3 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → ((𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)) ↔ ((𝑦𝐴 ↦ (𝐹𝑦)):𝐴onto→(𝐹𝐴) ∧ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵𝐹 = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦))))))
2928spc3egv 3606 . 2 (((𝑦𝐴 ↦ (𝐹𝑦)) ∈ V ∧ ( I ↾ (𝐹𝐴)) ∈ V ∧ (𝐹𝐴) ∈ V) → (((𝑦𝐴 ↦ (𝐹𝑦)):𝐴onto→(𝐹𝐴) ∧ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵𝐹 = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦)))) → ∃𝑔𝑝(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔))))
307, 12, 29sylc 65 1 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑝(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1539  wex 1778  wcel 2108  Vcvv 3481  cmpt 5234   I cid 5586  cres 5695  cima 5696  ccom 5697  Fun wfun 6563  wf 6565  1-1wf1 6566  ontowfo 6567  cfv 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator