Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundcmpsurinjALT Structured version   Visualization version   GIF version

Theorem fundcmpsurinjALT 44816
Description: Alternate proof of fundcmpsurinj 44813, based on fundcmpsurinjimaid 44815: Every function 𝐹:𝐴𝐵 can be decomposed into a surjective and an injective function. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by AV, 13-Mar-2024.)
Assertion
Ref Expression
fundcmpsurinjALT ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑝(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)))
Distinct variable groups:   𝐴,𝑔,,𝑝   𝐵,𝑔,,𝑝   𝑔,𝐹,,𝑝
Allowed substitution hints:   𝑉(𝑔,,𝑝)

Proof of Theorem fundcmpsurinjALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mptexg 7091 . . . 4 (𝐴𝑉 → (𝑦𝐴 ↦ (𝐹𝑦)) ∈ V)
21adantl 481 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → (𝑦𝐴 ↦ (𝐹𝑦)) ∈ V)
3 ffun 6599 . . . . 5 (𝐹:𝐴𝐵 → Fun 𝐹)
4 funimaexg 6516 . . . . 5 ((Fun 𝐹𝐴𝑉) → (𝐹𝐴) ∈ V)
53, 4sylan 579 . . . 4 ((𝐹:𝐴𝐵𝐴𝑉) → (𝐹𝐴) ∈ V)
65resiexd 7086 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → ( I ↾ (𝐹𝐴)) ∈ V)
72, 6, 53jca 1126 . 2 ((𝐹:𝐴𝐵𝐴𝑉) → ((𝑦𝐴 ↦ (𝐹𝑦)) ∈ V ∧ ( I ↾ (𝐹𝐴)) ∈ V ∧ (𝐹𝐴) ∈ V))
8 eqid 2739 . . . 4 (𝐹𝐴) = (𝐹𝐴)
9 eqid 2739 . . . 4 (𝑦𝐴 ↦ (𝐹𝑦)) = (𝑦𝐴 ↦ (𝐹𝑦))
10 eqid 2739 . . . 4 ( I ↾ (𝐹𝐴)) = ( I ↾ (𝐹𝐴))
118, 9, 10fundcmpsurinjimaid 44815 . . 3 (𝐹:𝐴𝐵 → ((𝑦𝐴 ↦ (𝐹𝑦)):𝐴onto→(𝐹𝐴) ∧ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵𝐹 = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦)))))
1211adantr 480 . 2 ((𝐹:𝐴𝐵𝐴𝑉) → ((𝑦𝐴 ↦ (𝐹𝑦)):𝐴onto→(𝐹𝐴) ∧ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵𝐹 = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦)))))
13 simp1 1134 . . . . 5 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → 𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)))
14 eqidd 2740 . . . . 5 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → 𝐴 = 𝐴)
15 simp3 1136 . . . . 5 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → 𝑝 = (𝐹𝐴))
1613, 14, 15foeq123d 6705 . . . 4 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → (𝑔:𝐴onto𝑝 ↔ (𝑦𝐴 ↦ (𝐹𝑦)):𝐴onto→(𝐹𝐴)))
17 simpl 482 . . . . . 6 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → = ( I ↾ (𝐹𝐴)))
18 simpr 484 . . . . . 6 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → 𝑝 = (𝐹𝐴))
19 eqidd 2740 . . . . . 6 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → 𝐵 = 𝐵)
2017, 18, 19f1eq123d 6704 . . . . 5 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → (:𝑝1-1𝐵 ↔ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵))
21203adant1 1128 . . . 4 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → (:𝑝1-1𝐵 ↔ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵))
22 simpl 482 . . . . . . . 8 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑔 = (𝑦𝐴 ↦ (𝐹𝑦))) → = ( I ↾ (𝐹𝐴)))
23 simpr 484 . . . . . . . 8 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑔 = (𝑦𝐴 ↦ (𝐹𝑦))) → 𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)))
2422, 23coeq12d 5770 . . . . . . 7 (( = ( I ↾ (𝐹𝐴)) ∧ 𝑔 = (𝑦𝐴 ↦ (𝐹𝑦))) → (𝑔) = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦))))
2524ancoms 458 . . . . . 6 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴))) → (𝑔) = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦))))
26253adant3 1130 . . . . 5 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → (𝑔) = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦))))
2726eqeq2d 2750 . . . 4 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → (𝐹 = (𝑔) ↔ 𝐹 = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦)))))
2816, 21, 273anbi123d 1434 . . 3 ((𝑔 = (𝑦𝐴 ↦ (𝐹𝑦)) ∧ = ( I ↾ (𝐹𝐴)) ∧ 𝑝 = (𝐹𝐴)) → ((𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)) ↔ ((𝑦𝐴 ↦ (𝐹𝑦)):𝐴onto→(𝐹𝐴) ∧ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵𝐹 = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦))))))
2928spc3egv 3540 . 2 (((𝑦𝐴 ↦ (𝐹𝑦)) ∈ V ∧ ( I ↾ (𝐹𝐴)) ∈ V ∧ (𝐹𝐴) ∈ V) → (((𝑦𝐴 ↦ (𝐹𝑦)):𝐴onto→(𝐹𝐴) ∧ ( I ↾ (𝐹𝐴)):(𝐹𝐴)–1-1𝐵𝐹 = (( I ↾ (𝐹𝐴)) ∘ (𝑦𝐴 ↦ (𝐹𝑦)))) → ∃𝑔𝑝(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔))))
307, 12, 29sylc 65 1 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑝(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wex 1785  wcel 2109  Vcvv 3430  cmpt 5161   I cid 5487  cres 5590  cima 5591  ccom 5592  Fun wfun 6424  wf 6426  1-1wf1 6427  ontowfo 6428  cfv 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator