Step | Hyp | Ref
| Expression |
1 | | mptexg 7091 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ∈ V) |
2 | 1 | adantl 481 |
. . 3
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ∈ V) |
3 | | ffun 6599 |
. . . . 5
⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) |
4 | | funimaexg 6516 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐴 ∈ 𝑉) → (𝐹 “ 𝐴) ∈ V) |
5 | 3, 4 | sylan 579 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → (𝐹 “ 𝐴) ∈ V) |
6 | 5 | resiexd 7086 |
. . 3
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ( I ↾ (𝐹 “ 𝐴)) ∈ V) |
7 | 2, 6, 5 | 3jca 1126 |
. 2
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ((𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ∈ V ∧ ( I ↾ (𝐹 “ 𝐴)) ∈ V ∧ (𝐹 “ 𝐴) ∈ V)) |
8 | | eqid 2739 |
. . . 4
⊢ (𝐹 “ 𝐴) = (𝐹 “ 𝐴) |
9 | | eqid 2739 |
. . . 4
⊢ (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) |
10 | | eqid 2739 |
. . . 4
⊢ ( I
↾ (𝐹 “ 𝐴)) = ( I ↾ (𝐹 “ 𝐴)) |
11 | 8, 9, 10 | fundcmpsurinjimaid 44815 |
. . 3
⊢ (𝐹:𝐴⟶𝐵 → ((𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)):𝐴–onto→(𝐹 “ 𝐴) ∧ ( I ↾ (𝐹 “ 𝐴)):(𝐹 “ 𝐴)–1-1→𝐵 ∧ 𝐹 = (( I ↾ (𝐹 “ 𝐴)) ∘ (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))))) |
12 | 11 | adantr 480 |
. 2
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ((𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)):𝐴–onto→(𝐹 “ 𝐴) ∧ ( I ↾ (𝐹 “ 𝐴)):(𝐹 “ 𝐴)–1-1→𝐵 ∧ 𝐹 = (( I ↾ (𝐹 “ 𝐴)) ∘ (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))))) |
13 | | simp1 1134 |
. . . . 5
⊢ ((𝑔 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ∧ ℎ = ( I ↾ (𝐹 “ 𝐴)) ∧ 𝑝 = (𝐹 “ 𝐴)) → 𝑔 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) |
14 | | eqidd 2740 |
. . . . 5
⊢ ((𝑔 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ∧ ℎ = ( I ↾ (𝐹 “ 𝐴)) ∧ 𝑝 = (𝐹 “ 𝐴)) → 𝐴 = 𝐴) |
15 | | simp3 1136 |
. . . . 5
⊢ ((𝑔 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ∧ ℎ = ( I ↾ (𝐹 “ 𝐴)) ∧ 𝑝 = (𝐹 “ 𝐴)) → 𝑝 = (𝐹 “ 𝐴)) |
16 | 13, 14, 15 | foeq123d 6705 |
. . . 4
⊢ ((𝑔 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ∧ ℎ = ( I ↾ (𝐹 “ 𝐴)) ∧ 𝑝 = (𝐹 “ 𝐴)) → (𝑔:𝐴–onto→𝑝 ↔ (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)):𝐴–onto→(𝐹 “ 𝐴))) |
17 | | simpl 482 |
. . . . . 6
⊢ ((ℎ = ( I ↾ (𝐹 “ 𝐴)) ∧ 𝑝 = (𝐹 “ 𝐴)) → ℎ = ( I ↾ (𝐹 “ 𝐴))) |
18 | | simpr 484 |
. . . . . 6
⊢ ((ℎ = ( I ↾ (𝐹 “ 𝐴)) ∧ 𝑝 = (𝐹 “ 𝐴)) → 𝑝 = (𝐹 “ 𝐴)) |
19 | | eqidd 2740 |
. . . . . 6
⊢ ((ℎ = ( I ↾ (𝐹 “ 𝐴)) ∧ 𝑝 = (𝐹 “ 𝐴)) → 𝐵 = 𝐵) |
20 | 17, 18, 19 | f1eq123d 6704 |
. . . . 5
⊢ ((ℎ = ( I ↾ (𝐹 “ 𝐴)) ∧ 𝑝 = (𝐹 “ 𝐴)) → (ℎ:𝑝–1-1→𝐵 ↔ ( I ↾ (𝐹 “ 𝐴)):(𝐹 “ 𝐴)–1-1→𝐵)) |
21 | 20 | 3adant1 1128 |
. . . 4
⊢ ((𝑔 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ∧ ℎ = ( I ↾ (𝐹 “ 𝐴)) ∧ 𝑝 = (𝐹 “ 𝐴)) → (ℎ:𝑝–1-1→𝐵 ↔ ( I ↾ (𝐹 “ 𝐴)):(𝐹 “ 𝐴)–1-1→𝐵)) |
22 | | simpl 482 |
. . . . . . . 8
⊢ ((ℎ = ( I ↾ (𝐹 “ 𝐴)) ∧ 𝑔 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) → ℎ = ( I ↾ (𝐹 “ 𝐴))) |
23 | | simpr 484 |
. . . . . . . 8
⊢ ((ℎ = ( I ↾ (𝐹 “ 𝐴)) ∧ 𝑔 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) → 𝑔 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) |
24 | 22, 23 | coeq12d 5770 |
. . . . . . 7
⊢ ((ℎ = ( I ↾ (𝐹 “ 𝐴)) ∧ 𝑔 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) → (ℎ ∘ 𝑔) = (( I ↾ (𝐹 “ 𝐴)) ∘ (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)))) |
25 | 24 | ancoms 458 |
. . . . . 6
⊢ ((𝑔 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ∧ ℎ = ( I ↾ (𝐹 “ 𝐴))) → (ℎ ∘ 𝑔) = (( I ↾ (𝐹 “ 𝐴)) ∘ (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)))) |
26 | 25 | 3adant3 1130 |
. . . . 5
⊢ ((𝑔 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ∧ ℎ = ( I ↾ (𝐹 “ 𝐴)) ∧ 𝑝 = (𝐹 “ 𝐴)) → (ℎ ∘ 𝑔) = (( I ↾ (𝐹 “ 𝐴)) ∘ (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)))) |
27 | 26 | eqeq2d 2750 |
. . . 4
⊢ ((𝑔 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ∧ ℎ = ( I ↾ (𝐹 “ 𝐴)) ∧ 𝑝 = (𝐹 “ 𝐴)) → (𝐹 = (ℎ ∘ 𝑔) ↔ 𝐹 = (( I ↾ (𝐹 “ 𝐴)) ∘ (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))))) |
28 | 16, 21, 27 | 3anbi123d 1434 |
. . 3
⊢ ((𝑔 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ∧ ℎ = ( I ↾ (𝐹 “ 𝐴)) ∧ 𝑝 = (𝐹 “ 𝐴)) → ((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔)) ↔ ((𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)):𝐴–onto→(𝐹 “ 𝐴) ∧ ( I ↾ (𝐹 “ 𝐴)):(𝐹 “ 𝐴)–1-1→𝐵 ∧ 𝐹 = (( I ↾ (𝐹 “ 𝐴)) ∘ (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)))))) |
29 | 28 | spc3egv 3540 |
. 2
⊢ (((𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ∈ V ∧ ( I ↾ (𝐹 “ 𝐴)) ∈ V ∧ (𝐹 “ 𝐴) ∈ V) → (((𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)):𝐴–onto→(𝐹 “ 𝐴) ∧ ( I ↾ (𝐹 “ 𝐴)):(𝐹 “ 𝐴)–1-1→𝐵 ∧ 𝐹 = (( I ↾ (𝐹 “ 𝐴)) ∘ (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)))) → ∃𝑔∃ℎ∃𝑝(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔)))) |
30 | 7, 12, 29 | sylc 65 |
1
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑝(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) |