Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem36 Structured version   Visualization version   GIF version

Theorem stoweidlem36 43206
Description: This lemma is used to prove the existence of a function pt as in Lemma 1 of [BrosowskiDeutsh] p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function p in the subalgebra, such that pt ( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. Z is used for t0 , S is used for t e. T - U , h is used for pt . G is used for (ht)^2 and the final h is a normalized version of G ( divided by its norm, see the variable N ). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem36.1 𝑄
stoweidlem36.2 𝑡𝐻
stoweidlem36.3 𝑡𝐹
stoweidlem36.4 𝑡𝐺
stoweidlem36.5 𝑡𝜑
stoweidlem36.6 𝐾 = (topGen‘ran (,))
stoweidlem36.7 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem36.8 𝑇 = 𝐽
stoweidlem36.9 𝐺 = (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐹𝑡)))
stoweidlem36.10 𝑁 = sup(ran 𝐺, ℝ, < )
stoweidlem36.11 𝐻 = (𝑡𝑇 ↦ ((𝐺𝑡) / 𝑁))
stoweidlem36.12 (𝜑𝐽 ∈ Comp)
stoweidlem36.13 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
stoweidlem36.14 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem36.15 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem36.16 (𝜑𝑆𝑇)
stoweidlem36.17 (𝜑𝑍𝑇)
stoweidlem36.18 (𝜑𝐹𝐴)
stoweidlem36.19 (𝜑 → (𝐹𝑆) ≠ (𝐹𝑍))
stoweidlem36.20 (𝜑 → (𝐹𝑍) = 0)
Assertion
Ref Expression
stoweidlem36 (𝜑 → ∃(𝑄 ∧ 0 < (𝑆)))
Distinct variable groups:   𝑓,𝑔,𝑡,𝑇   𝐴,𝑓,𝑔   𝑓,𝐹,𝑔   𝑓,𝐺,𝑔   𝜑,𝑓,𝑔   𝑔,𝑁,𝑡   𝑡,,𝑆   𝐴,   ,𝐻   𝑇,   ,𝑍,𝑡   𝑥,𝑡,𝑁   𝑥,𝐴   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡)   𝑄(𝑥,𝑡,𝑓,𝑔,)   𝑆(𝑥,𝑓,𝑔)   𝐹(𝑥,𝑡,)   𝐺(𝑥,𝑡,)   𝐻(𝑥,𝑡,𝑓,𝑔)   𝐽(𝑥,𝑡,𝑓,𝑔,)   𝐾(𝑥,𝑡,𝑓,𝑔,)   𝑁(𝑓,)   𝑍(𝑥,𝑓,𝑔)

Proof of Theorem stoweidlem36
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem36.11 . . . . . 6 𝐻 = (𝑡𝑇 ↦ ((𝐺𝑡) / 𝑁))
2 stoweidlem36.5 . . . . . . 7 𝑡𝜑
3 stoweidlem36.6 . . . . . . . . . . . 12 𝐾 = (topGen‘ran (,))
4 stoweidlem36.8 . . . . . . . . . . . 12 𝑇 = 𝐽
5 eqid 2734 . . . . . . . . . . . 12 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
6 stoweidlem36.13 . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
7 stoweidlem36.9 . . . . . . . . . . . . . 14 𝐺 = (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐹𝑡)))
8 stoweidlem36.18 . . . . . . . . . . . . . . 15 (𝜑𝐹𝐴)
9 stoweidlem36.3 . . . . . . . . . . . . . . . . 17 𝑡𝐹
109nfeq2 2917 . . . . . . . . . . . . . . . 16 𝑡 𝑓 = 𝐹
119nfeq2 2917 . . . . . . . . . . . . . . . 16 𝑡 𝑔 = 𝐹
12 stoweidlem36.14 . . . . . . . . . . . . . . . 16 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
1310, 11, 12stoweidlem6 43176 . . . . . . . . . . . . . . 15 ((𝜑𝐹𝐴𝐹𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐹𝑡))) ∈ 𝐴)
148, 8, 13mpd3an23 1465 . . . . . . . . . . . . . 14 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐹𝑡))) ∈ 𝐴)
157, 14eqeltrid 2838 . . . . . . . . . . . . 13 (𝜑𝐺𝐴)
166, 15sseldd 3892 . . . . . . . . . . . 12 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
173, 4, 5, 16fcnre 42193 . . . . . . . . . . 11 (𝜑𝐺:𝑇⟶ℝ)
1817ffvelrnda 6893 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (𝐺𝑡) ∈ ℝ)
1918recnd 10844 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐺𝑡) ∈ ℂ)
20 stoweidlem36.10 . . . . . . . . . . . 12 𝑁 = sup(ran 𝐺, ℝ, < )
21 stoweidlem36.12 . . . . . . . . . . . . . 14 (𝜑𝐽 ∈ Comp)
22 stoweidlem36.16 . . . . . . . . . . . . . . 15 (𝜑𝑆𝑇)
2322ne0d 4240 . . . . . . . . . . . . . 14 (𝜑𝑇 ≠ ∅)
244, 3, 21, 16, 23cncmpmax 42200 . . . . . . . . . . . . 13 (𝜑 → (sup(ran 𝐺, ℝ, < ) ∈ ran 𝐺 ∧ sup(ran 𝐺, ℝ, < ) ∈ ℝ ∧ ∀𝑠𝑇 (𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < )))
2524simp2d 1145 . . . . . . . . . . . 12 (𝜑 → sup(ran 𝐺, ℝ, < ) ∈ ℝ)
2620, 25eqeltrid 2838 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
2726recnd 10844 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
2827adantr 484 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑁 ∈ ℂ)
29 0red 10819 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
3017, 22ffvelrnd 6894 . . . . . . . . . . . . 13 (𝜑 → (𝐺𝑆) ∈ ℝ)
316, 8sseldd 3892 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
323, 4, 5, 31fcnre 42193 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑇⟶ℝ)
3332, 22ffvelrnd 6894 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑆) ∈ ℝ)
34 stoweidlem36.19 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹𝑆) ≠ (𝐹𝑍))
35 stoweidlem36.20 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹𝑍) = 0)
3634, 35neeqtrd 3004 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑆) ≠ 0)
3733, 36msqgt0d 11382 . . . . . . . . . . . . . 14 (𝜑 → 0 < ((𝐹𝑆) · (𝐹𝑆)))
3833, 33remulcld 10846 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐹𝑆) · (𝐹𝑆)) ∈ ℝ)
39 nfcv 2900 . . . . . . . . . . . . . . . 16 𝑡𝑆
409, 39nffv 6716 . . . . . . . . . . . . . . . . 17 𝑡(𝐹𝑆)
41 nfcv 2900 . . . . . . . . . . . . . . . . 17 𝑡 ·
4240, 41, 40nfov 7232 . . . . . . . . . . . . . . . 16 𝑡((𝐹𝑆) · (𝐹𝑆))
43 fveq2 6706 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑆 → (𝐹𝑡) = (𝐹𝑆))
4443, 43oveq12d 7220 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑆 → ((𝐹𝑡) · (𝐹𝑡)) = ((𝐹𝑆) · (𝐹𝑆)))
4539, 42, 44, 7fvmptf 6828 . . . . . . . . . . . . . . 15 ((𝑆𝑇 ∧ ((𝐹𝑆) · (𝐹𝑆)) ∈ ℝ) → (𝐺𝑆) = ((𝐹𝑆) · (𝐹𝑆)))
4622, 38, 45syl2anc 587 . . . . . . . . . . . . . 14 (𝜑 → (𝐺𝑆) = ((𝐹𝑆) · (𝐹𝑆)))
4737, 46breqtrrd 5071 . . . . . . . . . . . . 13 (𝜑 → 0 < (𝐺𝑆))
4824simp3d 1146 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑠𝑇 (𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < ))
49 fveq2 6706 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑆 → (𝐺𝑠) = (𝐺𝑆))
5049breq1d 5053 . . . . . . . . . . . . . . 15 (𝑠 = 𝑆 → ((𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < ) ↔ (𝐺𝑆) ≤ sup(ran 𝐺, ℝ, < )))
5150rspccva 3529 . . . . . . . . . . . . . 14 ((∀𝑠𝑇 (𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < ) ∧ 𝑆𝑇) → (𝐺𝑆) ≤ sup(ran 𝐺, ℝ, < ))
5248, 22, 51syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → (𝐺𝑆) ≤ sup(ran 𝐺, ℝ, < ))
5329, 30, 25, 47, 52ltletrd 10975 . . . . . . . . . . . 12 (𝜑 → 0 < sup(ran 𝐺, ℝ, < ))
5453gt0ne0d 11379 . . . . . . . . . . 11 (𝜑 → sup(ran 𝐺, ℝ, < ) ≠ 0)
5520neeq1i 2999 . . . . . . . . . . 11 (𝑁 ≠ 0 ↔ sup(ran 𝐺, ℝ, < ) ≠ 0)
5654, 55sylibr 237 . . . . . . . . . 10 (𝜑𝑁 ≠ 0)
5756adantr 484 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑁 ≠ 0)
5819, 28, 57divrecd 11594 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 𝑁) = ((𝐺𝑡) · (1 / 𝑁)))
59 simpr 488 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 𝑡𝑇)
6026, 56rereccld 11642 . . . . . . . . . . 11 (𝜑 → (1 / 𝑁) ∈ ℝ)
6160adantr 484 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (1 / 𝑁) ∈ ℝ)
62 eqid 2734 . . . . . . . . . . 11 (𝑡𝑇 ↦ (1 / 𝑁)) = (𝑡𝑇 ↦ (1 / 𝑁))
6362fvmpt2 6818 . . . . . . . . . 10 ((𝑡𝑇 ∧ (1 / 𝑁) ∈ ℝ) → ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡) = (1 / 𝑁))
6459, 61, 63syl2anc 587 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡) = (1 / 𝑁))
6564oveq2d 7218 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡)) = ((𝐺𝑡) · (1 / 𝑁)))
6658, 65eqtr4d 2777 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 𝑁) = ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡)))
672, 66mpteq2da 5138 . . . . . 6 (𝜑 → (𝑡𝑇 ↦ ((𝐺𝑡) / 𝑁)) = (𝑡𝑇 ↦ ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡))))
681, 67syl5eq 2786 . . . . 5 (𝜑𝐻 = (𝑡𝑇 ↦ ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡))))
69 stoweidlem36.15 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
7069stoweidlem4 43174 . . . . . . 7 ((𝜑 ∧ (1 / 𝑁) ∈ ℝ) → (𝑡𝑇 ↦ (1 / 𝑁)) ∈ 𝐴)
7160, 70mpdan 687 . . . . . 6 (𝜑 → (𝑡𝑇 ↦ (1 / 𝑁)) ∈ 𝐴)
72 stoweidlem36.4 . . . . . . . 8 𝑡𝐺
7372nfeq2 2917 . . . . . . 7 𝑡 𝑓 = 𝐺
74 nfmpt1 5142 . . . . . . . 8 𝑡(𝑡𝑇 ↦ (1 / 𝑁))
7574nfeq2 2917 . . . . . . 7 𝑡 𝑔 = (𝑡𝑇 ↦ (1 / 𝑁))
7673, 75, 12stoweidlem6 43176 . . . . . 6 ((𝜑𝐺𝐴 ∧ (𝑡𝑇 ↦ (1 / 𝑁)) ∈ 𝐴) → (𝑡𝑇 ↦ ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡))) ∈ 𝐴)
7715, 71, 76mpd3an23 1465 . . . . 5 (𝜑 → (𝑡𝑇 ↦ ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡))) ∈ 𝐴)
7868, 77eqeltrd 2834 . . . 4 (𝜑𝐻𝐴)
79 stoweidlem36.17 . . . . . . 7 (𝜑𝑍𝑇)
8017, 79ffvelrnd 6894 . . . . . . . 8 (𝜑 → (𝐺𝑍) ∈ ℝ)
8180, 26, 56redivcld 11643 . . . . . . 7 (𝜑 → ((𝐺𝑍) / 𝑁) ∈ ℝ)
82 nfcv 2900 . . . . . . . 8 𝑡𝑍
8372, 82nffv 6716 . . . . . . . . 9 𝑡(𝐺𝑍)
84 nfcv 2900 . . . . . . . . 9 𝑡 /
85 nfcv 2900 . . . . . . . . 9 𝑡𝑁
8683, 84, 85nfov 7232 . . . . . . . 8 𝑡((𝐺𝑍) / 𝑁)
87 fveq2 6706 . . . . . . . . 9 (𝑡 = 𝑍 → (𝐺𝑡) = (𝐺𝑍))
8887oveq1d 7217 . . . . . . . 8 (𝑡 = 𝑍 → ((𝐺𝑡) / 𝑁) = ((𝐺𝑍) / 𝑁))
8982, 86, 88, 1fvmptf 6828 . . . . . . 7 ((𝑍𝑇 ∧ ((𝐺𝑍) / 𝑁) ∈ ℝ) → (𝐻𝑍) = ((𝐺𝑍) / 𝑁))
9079, 81, 89syl2anc 587 . . . . . 6 (𝜑 → (𝐻𝑍) = ((𝐺𝑍) / 𝑁))
91 0re 10818 . . . . . . . . . . 11 0 ∈ ℝ
9235, 91eqeltrdi 2842 . . . . . . . . . 10 (𝜑 → (𝐹𝑍) ∈ ℝ)
9392, 92remulcld 10846 . . . . . . . . 9 (𝜑 → ((𝐹𝑍) · (𝐹𝑍)) ∈ ℝ)
949, 82nffv 6716 . . . . . . . . . . 11 𝑡(𝐹𝑍)
9594, 41, 94nfov 7232 . . . . . . . . . 10 𝑡((𝐹𝑍) · (𝐹𝑍))
96 fveq2 6706 . . . . . . . . . . 11 (𝑡 = 𝑍 → (𝐹𝑡) = (𝐹𝑍))
9796, 96oveq12d 7220 . . . . . . . . . 10 (𝑡 = 𝑍 → ((𝐹𝑡) · (𝐹𝑡)) = ((𝐹𝑍) · (𝐹𝑍)))
9882, 95, 97, 7fvmptf 6828 . . . . . . . . 9 ((𝑍𝑇 ∧ ((𝐹𝑍) · (𝐹𝑍)) ∈ ℝ) → (𝐺𝑍) = ((𝐹𝑍) · (𝐹𝑍)))
9979, 93, 98syl2anc 587 . . . . . . . 8 (𝜑 → (𝐺𝑍) = ((𝐹𝑍) · (𝐹𝑍)))
10035, 35oveq12d 7220 . . . . . . . . 9 (𝜑 → ((𝐹𝑍) · (𝐹𝑍)) = (0 · 0))
101 0cn 10808 . . . . . . . . . 10 0 ∈ ℂ
102101mul02i 11004 . . . . . . . . 9 (0 · 0) = 0
103100, 102eqtrdi 2790 . . . . . . . 8 (𝜑 → ((𝐹𝑍) · (𝐹𝑍)) = 0)
10499, 103eqtrd 2774 . . . . . . 7 (𝜑 → (𝐺𝑍) = 0)
105104oveq1d 7217 . . . . . 6 (𝜑 → ((𝐺𝑍) / 𝑁) = (0 / 𝑁))
10627, 56div0d 11590 . . . . . 6 (𝜑 → (0 / 𝑁) = 0)
10790, 105, 1063eqtrd 2778 . . . . 5 (𝜑 → (𝐻𝑍) = 0)
10832ffvelrnda 6893 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
109108msqge0d 11383 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 0 ≤ ((𝐹𝑡) · (𝐹𝑡)))
110108, 108remulcld 10846 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → ((𝐹𝑡) · (𝐹𝑡)) ∈ ℝ)
1117fvmpt2 6818 . . . . . . . . . . . 12 ((𝑡𝑇 ∧ ((𝐹𝑡) · (𝐹𝑡)) ∈ ℝ) → (𝐺𝑡) = ((𝐹𝑡) · (𝐹𝑡)))
11259, 110, 111syl2anc 587 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → (𝐺𝑡) = ((𝐹𝑡) · (𝐹𝑡)))
113109, 112breqtrrd 5071 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 0 ≤ (𝐺𝑡))
11426adantr 484 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 𝑁 ∈ ℝ)
11553, 20breqtrrdi 5085 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
116115adantr 484 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 0 < 𝑁)
117 divge0 11684 . . . . . . . . . 10 ((((𝐺𝑡) ∈ ℝ ∧ 0 ≤ (𝐺𝑡)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((𝐺𝑡) / 𝑁))
11818, 113, 114, 116, 117syl22anc 839 . . . . . . . . 9 ((𝜑𝑡𝑇) → 0 ≤ ((𝐺𝑡) / 𝑁))
11918, 114, 57redivcld 11643 . . . . . . . . . 10 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 𝑁) ∈ ℝ)
1201fvmpt2 6818 . . . . . . . . . 10 ((𝑡𝑇 ∧ ((𝐺𝑡) / 𝑁) ∈ ℝ) → (𝐻𝑡) = ((𝐺𝑡) / 𝑁))
12159, 119, 120syl2anc 587 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐻𝑡) = ((𝐺𝑡) / 𝑁))
122118, 121breqtrrd 5071 . . . . . . . 8 ((𝜑𝑡𝑇) → 0 ≤ (𝐻𝑡))
12319div1d 11583 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 1) = (𝐺𝑡))
124 fveq2 6706 . . . . . . . . . . . . . . 15 (𝑠 = 𝑡 → (𝐺𝑠) = (𝐺𝑡))
125124breq1d 5053 . . . . . . . . . . . . . 14 (𝑠 = 𝑡 → ((𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < ) ↔ (𝐺𝑡) ≤ sup(ran 𝐺, ℝ, < )))
126125rspccva 3529 . . . . . . . . . . . . 13 ((∀𝑠𝑇 (𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < ) ∧ 𝑡𝑇) → (𝐺𝑡) ≤ sup(ran 𝐺, ℝ, < ))
12748, 126sylan 583 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (𝐺𝑡) ≤ sup(ran 𝐺, ℝ, < ))
128127, 20breqtrrdi 5085 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → (𝐺𝑡) ≤ 𝑁)
129123, 128eqbrtrd 5065 . . . . . . . . . 10 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 1) ≤ 𝑁)
130 1red 10817 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 1 ∈ ℝ)
131 0lt1 11337 . . . . . . . . . . . 12 0 < 1
132131a1i 11 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 0 < 1)
133 lediv23 11707 . . . . . . . . . . 11 (((𝐺𝑡) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁) ∧ (1 ∈ ℝ ∧ 0 < 1)) → (((𝐺𝑡) / 𝑁) ≤ 1 ↔ ((𝐺𝑡) / 1) ≤ 𝑁))
13418, 114, 116, 130, 132, 133syl122anc 1381 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (((𝐺𝑡) / 𝑁) ≤ 1 ↔ ((𝐺𝑡) / 1) ≤ 𝑁))
135129, 134mpbird 260 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 𝑁) ≤ 1)
136121, 135eqbrtrd 5065 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐻𝑡) ≤ 1)
137122, 136jca 515 . . . . . . 7 ((𝜑𝑡𝑇) → (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1))
138137ex 416 . . . . . 6 (𝜑 → (𝑡𝑇 → (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
1392, 138ralrimi 3130 . . . . 5 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1))
140107, 139jca 515 . . . 4 (𝜑 → ((𝐻𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
141 fveq1 6705 . . . . . . 7 ( = 𝐻 → (𝑍) = (𝐻𝑍))
142141eqeq1d 2736 . . . . . 6 ( = 𝐻 → ((𝑍) = 0 ↔ (𝐻𝑍) = 0))
143 stoweidlem36.2 . . . . . . . 8 𝑡𝐻
144143nfeq2 2917 . . . . . . 7 𝑡 = 𝐻
145 fveq1 6705 . . . . . . . . 9 ( = 𝐻 → (𝑡) = (𝐻𝑡))
146145breq2d 5055 . . . . . . . 8 ( = 𝐻 → (0 ≤ (𝑡) ↔ 0 ≤ (𝐻𝑡)))
147145breq1d 5053 . . . . . . . 8 ( = 𝐻 → ((𝑡) ≤ 1 ↔ (𝐻𝑡) ≤ 1))
148146, 147anbi12d 634 . . . . . . 7 ( = 𝐻 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
149144, 148ralbid 3147 . . . . . 6 ( = 𝐻 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
150142, 149anbi12d 634 . . . . 5 ( = 𝐻 → (((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)) ↔ ((𝐻𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1))))
151150elrab 3595 . . . 4 (𝐻 ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} ↔ (𝐻𝐴 ∧ ((𝐻𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1))))
15278, 140, 151sylanbrc 586 . . 3 (𝜑𝐻 ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))})
153 stoweidlem36.7 . . 3 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
154152, 153eleqtrrdi 2845 . 2 (𝜑𝐻𝑄)
15530, 26, 47, 115divgt0d 11750 . . 3 (𝜑 → 0 < ((𝐺𝑆) / 𝑁))
15630, 26, 56redivcld 11643 . . . 4 (𝜑 → ((𝐺𝑆) / 𝑁) ∈ ℝ)
15772, 39nffv 6716 . . . . . 6 𝑡(𝐺𝑆)
158157, 84, 85nfov 7232 . . . . 5 𝑡((𝐺𝑆) / 𝑁)
159 fveq2 6706 . . . . . 6 (𝑡 = 𝑆 → (𝐺𝑡) = (𝐺𝑆))
160159oveq1d 7217 . . . . 5 (𝑡 = 𝑆 → ((𝐺𝑡) / 𝑁) = ((𝐺𝑆) / 𝑁))
16139, 158, 160, 1fvmptf 6828 . . . 4 ((𝑆𝑇 ∧ ((𝐺𝑆) / 𝑁) ∈ ℝ) → (𝐻𝑆) = ((𝐺𝑆) / 𝑁))
16222, 156, 161syl2anc 587 . . 3 (𝜑 → (𝐻𝑆) = ((𝐺𝑆) / 𝑁))
163155, 162breqtrrd 5071 . 2 (𝜑 → 0 < (𝐻𝑆))
164 nfcv 2900 . . . 4 𝐻
165 stoweidlem36.1 . . . . . 6 𝑄
166165nfel2 2918 . . . . 5 𝐻𝑄
167 nfv 1922 . . . . 5 0 < (𝐻𝑆)
168166, 167nfan 1907 . . . 4 (𝐻𝑄 ∧ 0 < (𝐻𝑆))
169 eleq1 2821 . . . . 5 ( = 𝐻 → (𝑄𝐻𝑄))
170 fveq1 6705 . . . . . 6 ( = 𝐻 → (𝑆) = (𝐻𝑆))
171170breq2d 5055 . . . . 5 ( = 𝐻 → (0 < (𝑆) ↔ 0 < (𝐻𝑆)))
172169, 171anbi12d 634 . . . 4 ( = 𝐻 → ((𝑄 ∧ 0 < (𝑆)) ↔ (𝐻𝑄 ∧ 0 < (𝐻𝑆))))
173164, 168, 172spcegf 3500 . . 3 (𝐻𝑄 → ((𝐻𝑄 ∧ 0 < (𝐻𝑆)) → ∃(𝑄 ∧ 0 < (𝑆))))
174173anabsi5 669 . 2 ((𝐻𝑄 ∧ 0 < (𝐻𝑆)) → ∃(𝑄 ∧ 0 < (𝑆)))
175154, 163, 174syl2anc 587 1 (𝜑 → ∃(𝑄 ∧ 0 < (𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wex 1787  wnf 1791  wcel 2110  wnfc 2880  wne 2935  wral 3054  {crab 3058  wss 3857   cuni 4809   class class class wbr 5043  cmpt 5124  ran crn 5541  cfv 6369  (class class class)co 7202  supcsup 9045  cc 10710  cr 10711  0cc0 10712  1c1 10713   · cmul 10717   < clt 10850  cle 10851   / cdiv 11472  (,)cioo 12918  topGenctg 16914   Cn ccn 22093  Compccmp 22255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790  ax-mulf 10792
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-supp 7893  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-er 8380  df-map 8499  df-ixp 8568  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fsupp 8975  df-fi 9016  df-sup 9047  df-inf 9048  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-q 12528  df-rp 12570  df-xneg 12687  df-xadd 12688  df-xmul 12689  df-ioo 12922  df-icc 12925  df-fz 13079  df-fzo 13222  df-seq 13558  df-exp 13619  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-starv 16782  df-sca 16783  df-vsca 16784  df-ip 16785  df-tset 16786  df-ple 16787  df-ds 16789  df-unif 16790  df-hom 16791  df-cco 16792  df-rest 16899  df-topn 16900  df-0g 16918  df-gsum 16919  df-topgen 16920  df-pt 16921  df-prds 16924  df-xrs 16979  df-qtop 16984  df-imas 16985  df-xps 16987  df-mre 17061  df-mrc 17062  df-acs 17064  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-submnd 18191  df-mulg 18461  df-cntz 18683  df-cmn 19144  df-psmet 20327  df-xmet 20328  df-met 20329  df-bl 20330  df-mopn 20331  df-cnfld 20336  df-top 21763  df-topon 21780  df-topsp 21802  df-bases 21815  df-cn 22096  df-cnp 22097  df-cmp 22256  df-tx 22431  df-hmeo 22624  df-xms 23190  df-ms 23191  df-tms 23192
This theorem is referenced by:  stoweidlem43  43213
  Copyright terms: Public domain W3C validator