Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem36 Structured version   Visualization version   GIF version

Theorem stoweidlem36 46133
Description: This lemma is used to prove the existence of a function pt as in Lemma 1 of [BrosowskiDeutsh] p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function p in the subalgebra, such that pt ( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. Z is used for t0 , S is used for t e. T - U , h is used for pt . G is used for (ht)^2 and the final h is a normalized version of G ( divided by its norm, see the variable N ). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem36.1 𝑄
stoweidlem36.2 𝑡𝐻
stoweidlem36.3 𝑡𝐹
stoweidlem36.4 𝑡𝐺
stoweidlem36.5 𝑡𝜑
stoweidlem36.6 𝐾 = (topGen‘ran (,))
stoweidlem36.7 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem36.8 𝑇 = 𝐽
stoweidlem36.9 𝐺 = (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐹𝑡)))
stoweidlem36.10 𝑁 = sup(ran 𝐺, ℝ, < )
stoweidlem36.11 𝐻 = (𝑡𝑇 ↦ ((𝐺𝑡) / 𝑁))
stoweidlem36.12 (𝜑𝐽 ∈ Comp)
stoweidlem36.13 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
stoweidlem36.14 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem36.15 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem36.16 (𝜑𝑆𝑇)
stoweidlem36.17 (𝜑𝑍𝑇)
stoweidlem36.18 (𝜑𝐹𝐴)
stoweidlem36.19 (𝜑 → (𝐹𝑆) ≠ (𝐹𝑍))
stoweidlem36.20 (𝜑 → (𝐹𝑍) = 0)
Assertion
Ref Expression
stoweidlem36 (𝜑 → ∃(𝑄 ∧ 0 < (𝑆)))
Distinct variable groups:   𝑓,𝑔,𝑡,𝑇   𝐴,𝑓,𝑔   𝑓,𝐹,𝑔   𝑓,𝐺,𝑔   𝜑,𝑓,𝑔   𝑔,𝑁,𝑡   𝑡,,𝑆   𝐴,   ,𝐻   𝑇,   ,𝑍,𝑡   𝑥,𝑡,𝑁   𝑥,𝐴   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡)   𝑄(𝑥,𝑡,𝑓,𝑔,)   𝑆(𝑥,𝑓,𝑔)   𝐹(𝑥,𝑡,)   𝐺(𝑥,𝑡,)   𝐻(𝑥,𝑡,𝑓,𝑔)   𝐽(𝑥,𝑡,𝑓,𝑔,)   𝐾(𝑥,𝑡,𝑓,𝑔,)   𝑁(𝑓,)   𝑍(𝑥,𝑓,𝑔)

Proof of Theorem stoweidlem36
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem36.11 . . . . . 6 𝐻 = (𝑡𝑇 ↦ ((𝐺𝑡) / 𝑁))
2 stoweidlem36.5 . . . . . . 7 𝑡𝜑
3 stoweidlem36.6 . . . . . . . . . . . 12 𝐾 = (topGen‘ran (,))
4 stoweidlem36.8 . . . . . . . . . . . 12 𝑇 = 𝐽
5 eqid 2731 . . . . . . . . . . . 12 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
6 stoweidlem36.13 . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
7 stoweidlem36.9 . . . . . . . . . . . . . 14 𝐺 = (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐹𝑡)))
8 stoweidlem36.18 . . . . . . . . . . . . . . 15 (𝜑𝐹𝐴)
9 stoweidlem36.3 . . . . . . . . . . . . . . . . 17 𝑡𝐹
109nfeq2 2912 . . . . . . . . . . . . . . . 16 𝑡 𝑓 = 𝐹
119nfeq2 2912 . . . . . . . . . . . . . . . 16 𝑡 𝑔 = 𝐹
12 stoweidlem36.14 . . . . . . . . . . . . . . . 16 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
1310, 11, 12stoweidlem6 46103 . . . . . . . . . . . . . . 15 ((𝜑𝐹𝐴𝐹𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐹𝑡))) ∈ 𝐴)
148, 8, 13mpd3an23 1465 . . . . . . . . . . . . . 14 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐹𝑡))) ∈ 𝐴)
157, 14eqeltrid 2835 . . . . . . . . . . . . 13 (𝜑𝐺𝐴)
166, 15sseldd 3930 . . . . . . . . . . . 12 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
173, 4, 5, 16fcnre 45121 . . . . . . . . . . 11 (𝜑𝐺:𝑇⟶ℝ)
1817ffvelcdmda 7017 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (𝐺𝑡) ∈ ℝ)
1918recnd 11140 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐺𝑡) ∈ ℂ)
20 stoweidlem36.10 . . . . . . . . . . . 12 𝑁 = sup(ran 𝐺, ℝ, < )
21 stoweidlem36.12 . . . . . . . . . . . . . 14 (𝜑𝐽 ∈ Comp)
22 stoweidlem36.16 . . . . . . . . . . . . . . 15 (𝜑𝑆𝑇)
2322ne0d 4289 . . . . . . . . . . . . . 14 (𝜑𝑇 ≠ ∅)
244, 3, 21, 16, 23cncmpmax 45128 . . . . . . . . . . . . 13 (𝜑 → (sup(ran 𝐺, ℝ, < ) ∈ ran 𝐺 ∧ sup(ran 𝐺, ℝ, < ) ∈ ℝ ∧ ∀𝑠𝑇 (𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < )))
2524simp2d 1143 . . . . . . . . . . . 12 (𝜑 → sup(ran 𝐺, ℝ, < ) ∈ ℝ)
2620, 25eqeltrid 2835 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
2726recnd 11140 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
2827adantr 480 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑁 ∈ ℂ)
29 0red 11115 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
3017, 22ffvelcdmd 7018 . . . . . . . . . . . . 13 (𝜑 → (𝐺𝑆) ∈ ℝ)
316, 8sseldd 3930 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
323, 4, 5, 31fcnre 45121 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑇⟶ℝ)
3332, 22ffvelcdmd 7018 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑆) ∈ ℝ)
34 stoweidlem36.19 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹𝑆) ≠ (𝐹𝑍))
35 stoweidlem36.20 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹𝑍) = 0)
3634, 35neeqtrd 2997 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑆) ≠ 0)
3733, 36msqgt0d 11684 . . . . . . . . . . . . . 14 (𝜑 → 0 < ((𝐹𝑆) · (𝐹𝑆)))
3833, 33remulcld 11142 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐹𝑆) · (𝐹𝑆)) ∈ ℝ)
39 nfcv 2894 . . . . . . . . . . . . . . . 16 𝑡𝑆
409, 39nffv 6832 . . . . . . . . . . . . . . . . 17 𝑡(𝐹𝑆)
41 nfcv 2894 . . . . . . . . . . . . . . . . 17 𝑡 ·
4240, 41, 40nfov 7376 . . . . . . . . . . . . . . . 16 𝑡((𝐹𝑆) · (𝐹𝑆))
43 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑆 → (𝐹𝑡) = (𝐹𝑆))
4443, 43oveq12d 7364 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑆 → ((𝐹𝑡) · (𝐹𝑡)) = ((𝐹𝑆) · (𝐹𝑆)))
4539, 42, 44, 7fvmptf 6950 . . . . . . . . . . . . . . 15 ((𝑆𝑇 ∧ ((𝐹𝑆) · (𝐹𝑆)) ∈ ℝ) → (𝐺𝑆) = ((𝐹𝑆) · (𝐹𝑆)))
4622, 38, 45syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝐺𝑆) = ((𝐹𝑆) · (𝐹𝑆)))
4737, 46breqtrrd 5117 . . . . . . . . . . . . 13 (𝜑 → 0 < (𝐺𝑆))
4824simp3d 1144 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑠𝑇 (𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < ))
49 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑆 → (𝐺𝑠) = (𝐺𝑆))
5049breq1d 5099 . . . . . . . . . . . . . . 15 (𝑠 = 𝑆 → ((𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < ) ↔ (𝐺𝑆) ≤ sup(ran 𝐺, ℝ, < )))
5150rspccva 3571 . . . . . . . . . . . . . 14 ((∀𝑠𝑇 (𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < ) ∧ 𝑆𝑇) → (𝐺𝑆) ≤ sup(ran 𝐺, ℝ, < ))
5248, 22, 51syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝐺𝑆) ≤ sup(ran 𝐺, ℝ, < ))
5329, 30, 25, 47, 52ltletrd 11273 . . . . . . . . . . . 12 (𝜑 → 0 < sup(ran 𝐺, ℝ, < ))
5453gt0ne0d 11681 . . . . . . . . . . 11 (𝜑 → sup(ran 𝐺, ℝ, < ) ≠ 0)
5520neeq1i 2992 . . . . . . . . . . 11 (𝑁 ≠ 0 ↔ sup(ran 𝐺, ℝ, < ) ≠ 0)
5654, 55sylibr 234 . . . . . . . . . 10 (𝜑𝑁 ≠ 0)
5756adantr 480 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑁 ≠ 0)
5819, 28, 57divrecd 11900 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 𝑁) = ((𝐺𝑡) · (1 / 𝑁)))
59 simpr 484 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 𝑡𝑇)
6026, 56rereccld 11948 . . . . . . . . . . 11 (𝜑 → (1 / 𝑁) ∈ ℝ)
6160adantr 480 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (1 / 𝑁) ∈ ℝ)
62 eqid 2731 . . . . . . . . . . 11 (𝑡𝑇 ↦ (1 / 𝑁)) = (𝑡𝑇 ↦ (1 / 𝑁))
6362fvmpt2 6940 . . . . . . . . . 10 ((𝑡𝑇 ∧ (1 / 𝑁) ∈ ℝ) → ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡) = (1 / 𝑁))
6459, 61, 63syl2anc 584 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡) = (1 / 𝑁))
6564oveq2d 7362 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡)) = ((𝐺𝑡) · (1 / 𝑁)))
6658, 65eqtr4d 2769 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 𝑁) = ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡)))
672, 66mpteq2da 5181 . . . . . 6 (𝜑 → (𝑡𝑇 ↦ ((𝐺𝑡) / 𝑁)) = (𝑡𝑇 ↦ ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡))))
681, 67eqtrid 2778 . . . . 5 (𝜑𝐻 = (𝑡𝑇 ↦ ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡))))
69 stoweidlem36.15 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
7069stoweidlem4 46101 . . . . . . 7 ((𝜑 ∧ (1 / 𝑁) ∈ ℝ) → (𝑡𝑇 ↦ (1 / 𝑁)) ∈ 𝐴)
7160, 70mpdan 687 . . . . . 6 (𝜑 → (𝑡𝑇 ↦ (1 / 𝑁)) ∈ 𝐴)
72 stoweidlem36.4 . . . . . . . 8 𝑡𝐺
7372nfeq2 2912 . . . . . . 7 𝑡 𝑓 = 𝐺
74 nfmpt1 5188 . . . . . . . 8 𝑡(𝑡𝑇 ↦ (1 / 𝑁))
7574nfeq2 2912 . . . . . . 7 𝑡 𝑔 = (𝑡𝑇 ↦ (1 / 𝑁))
7673, 75, 12stoweidlem6 46103 . . . . . 6 ((𝜑𝐺𝐴 ∧ (𝑡𝑇 ↦ (1 / 𝑁)) ∈ 𝐴) → (𝑡𝑇 ↦ ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡))) ∈ 𝐴)
7715, 71, 76mpd3an23 1465 . . . . 5 (𝜑 → (𝑡𝑇 ↦ ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡))) ∈ 𝐴)
7868, 77eqeltrd 2831 . . . 4 (𝜑𝐻𝐴)
79 stoweidlem36.17 . . . . . . 7 (𝜑𝑍𝑇)
8017, 79ffvelcdmd 7018 . . . . . . . 8 (𝜑 → (𝐺𝑍) ∈ ℝ)
8180, 26, 56redivcld 11949 . . . . . . 7 (𝜑 → ((𝐺𝑍) / 𝑁) ∈ ℝ)
82 nfcv 2894 . . . . . . . 8 𝑡𝑍
8372, 82nffv 6832 . . . . . . . . 9 𝑡(𝐺𝑍)
84 nfcv 2894 . . . . . . . . 9 𝑡 /
85 nfcv 2894 . . . . . . . . 9 𝑡𝑁
8683, 84, 85nfov 7376 . . . . . . . 8 𝑡((𝐺𝑍) / 𝑁)
87 fveq2 6822 . . . . . . . . 9 (𝑡 = 𝑍 → (𝐺𝑡) = (𝐺𝑍))
8887oveq1d 7361 . . . . . . . 8 (𝑡 = 𝑍 → ((𝐺𝑡) / 𝑁) = ((𝐺𝑍) / 𝑁))
8982, 86, 88, 1fvmptf 6950 . . . . . . 7 ((𝑍𝑇 ∧ ((𝐺𝑍) / 𝑁) ∈ ℝ) → (𝐻𝑍) = ((𝐺𝑍) / 𝑁))
9079, 81, 89syl2anc 584 . . . . . 6 (𝜑 → (𝐻𝑍) = ((𝐺𝑍) / 𝑁))
91 0re 11114 . . . . . . . . . . 11 0 ∈ ℝ
9235, 91eqeltrdi 2839 . . . . . . . . . 10 (𝜑 → (𝐹𝑍) ∈ ℝ)
9392, 92remulcld 11142 . . . . . . . . 9 (𝜑 → ((𝐹𝑍) · (𝐹𝑍)) ∈ ℝ)
949, 82nffv 6832 . . . . . . . . . . 11 𝑡(𝐹𝑍)
9594, 41, 94nfov 7376 . . . . . . . . . 10 𝑡((𝐹𝑍) · (𝐹𝑍))
96 fveq2 6822 . . . . . . . . . . 11 (𝑡 = 𝑍 → (𝐹𝑡) = (𝐹𝑍))
9796, 96oveq12d 7364 . . . . . . . . . 10 (𝑡 = 𝑍 → ((𝐹𝑡) · (𝐹𝑡)) = ((𝐹𝑍) · (𝐹𝑍)))
9882, 95, 97, 7fvmptf 6950 . . . . . . . . 9 ((𝑍𝑇 ∧ ((𝐹𝑍) · (𝐹𝑍)) ∈ ℝ) → (𝐺𝑍) = ((𝐹𝑍) · (𝐹𝑍)))
9979, 93, 98syl2anc 584 . . . . . . . 8 (𝜑 → (𝐺𝑍) = ((𝐹𝑍) · (𝐹𝑍)))
10035, 35oveq12d 7364 . . . . . . . . 9 (𝜑 → ((𝐹𝑍) · (𝐹𝑍)) = (0 · 0))
101 0cn 11104 . . . . . . . . . 10 0 ∈ ℂ
102101mul02i 11302 . . . . . . . . 9 (0 · 0) = 0
103100, 102eqtrdi 2782 . . . . . . . 8 (𝜑 → ((𝐹𝑍) · (𝐹𝑍)) = 0)
10499, 103eqtrd 2766 . . . . . . 7 (𝜑 → (𝐺𝑍) = 0)
105104oveq1d 7361 . . . . . 6 (𝜑 → ((𝐺𝑍) / 𝑁) = (0 / 𝑁))
10627, 56div0d 11896 . . . . . 6 (𝜑 → (0 / 𝑁) = 0)
10790, 105, 1063eqtrd 2770 . . . . 5 (𝜑 → (𝐻𝑍) = 0)
10832ffvelcdmda 7017 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
109108msqge0d 11685 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 0 ≤ ((𝐹𝑡) · (𝐹𝑡)))
110108, 108remulcld 11142 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → ((𝐹𝑡) · (𝐹𝑡)) ∈ ℝ)
1117fvmpt2 6940 . . . . . . . . . . . 12 ((𝑡𝑇 ∧ ((𝐹𝑡) · (𝐹𝑡)) ∈ ℝ) → (𝐺𝑡) = ((𝐹𝑡) · (𝐹𝑡)))
11259, 110, 111syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → (𝐺𝑡) = ((𝐹𝑡) · (𝐹𝑡)))
113109, 112breqtrrd 5117 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 0 ≤ (𝐺𝑡))
11426adantr 480 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 𝑁 ∈ ℝ)
11553, 20breqtrrdi 5131 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
116115adantr 480 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 0 < 𝑁)
117 divge0 11991 . . . . . . . . . 10 ((((𝐺𝑡) ∈ ℝ ∧ 0 ≤ (𝐺𝑡)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((𝐺𝑡) / 𝑁))
11818, 113, 114, 116, 117syl22anc 838 . . . . . . . . 9 ((𝜑𝑡𝑇) → 0 ≤ ((𝐺𝑡) / 𝑁))
11918, 114, 57redivcld 11949 . . . . . . . . . 10 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 𝑁) ∈ ℝ)
1201fvmpt2 6940 . . . . . . . . . 10 ((𝑡𝑇 ∧ ((𝐺𝑡) / 𝑁) ∈ ℝ) → (𝐻𝑡) = ((𝐺𝑡) / 𝑁))
12159, 119, 120syl2anc 584 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐻𝑡) = ((𝐺𝑡) / 𝑁))
122118, 121breqtrrd 5117 . . . . . . . 8 ((𝜑𝑡𝑇) → 0 ≤ (𝐻𝑡))
12319div1d 11889 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 1) = (𝐺𝑡))
124 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑠 = 𝑡 → (𝐺𝑠) = (𝐺𝑡))
125124breq1d 5099 . . . . . . . . . . . . . 14 (𝑠 = 𝑡 → ((𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < ) ↔ (𝐺𝑡) ≤ sup(ran 𝐺, ℝ, < )))
126125rspccva 3571 . . . . . . . . . . . . 13 ((∀𝑠𝑇 (𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < ) ∧ 𝑡𝑇) → (𝐺𝑡) ≤ sup(ran 𝐺, ℝ, < ))
12748, 126sylan 580 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (𝐺𝑡) ≤ sup(ran 𝐺, ℝ, < ))
128127, 20breqtrrdi 5131 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → (𝐺𝑡) ≤ 𝑁)
129123, 128eqbrtrd 5111 . . . . . . . . . 10 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 1) ≤ 𝑁)
130 1red 11113 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 1 ∈ ℝ)
131 0lt1 11639 . . . . . . . . . . . 12 0 < 1
132131a1i 11 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 0 < 1)
133 lediv23 12014 . . . . . . . . . . 11 (((𝐺𝑡) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁) ∧ (1 ∈ ℝ ∧ 0 < 1)) → (((𝐺𝑡) / 𝑁) ≤ 1 ↔ ((𝐺𝑡) / 1) ≤ 𝑁))
13418, 114, 116, 130, 132, 133syl122anc 1381 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (((𝐺𝑡) / 𝑁) ≤ 1 ↔ ((𝐺𝑡) / 1) ≤ 𝑁))
135129, 134mpbird 257 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 𝑁) ≤ 1)
136121, 135eqbrtrd 5111 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐻𝑡) ≤ 1)
137122, 136jca 511 . . . . . . 7 ((𝜑𝑡𝑇) → (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1))
138137ex 412 . . . . . 6 (𝜑 → (𝑡𝑇 → (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
1392, 138ralrimi 3230 . . . . 5 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1))
140107, 139jca 511 . . . 4 (𝜑 → ((𝐻𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
141 fveq1 6821 . . . . . . 7 ( = 𝐻 → (𝑍) = (𝐻𝑍))
142141eqeq1d 2733 . . . . . 6 ( = 𝐻 → ((𝑍) = 0 ↔ (𝐻𝑍) = 0))
143 stoweidlem36.2 . . . . . . . 8 𝑡𝐻
144143nfeq2 2912 . . . . . . 7 𝑡 = 𝐻
145 fveq1 6821 . . . . . . . . 9 ( = 𝐻 → (𝑡) = (𝐻𝑡))
146145breq2d 5101 . . . . . . . 8 ( = 𝐻 → (0 ≤ (𝑡) ↔ 0 ≤ (𝐻𝑡)))
147145breq1d 5099 . . . . . . . 8 ( = 𝐻 → ((𝑡) ≤ 1 ↔ (𝐻𝑡) ≤ 1))
148146, 147anbi12d 632 . . . . . . 7 ( = 𝐻 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
149144, 148ralbid 3245 . . . . . 6 ( = 𝐻 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
150142, 149anbi12d 632 . . . . 5 ( = 𝐻 → (((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)) ↔ ((𝐻𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1))))
151150elrab 3642 . . . 4 (𝐻 ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} ↔ (𝐻𝐴 ∧ ((𝐻𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1))))
15278, 140, 151sylanbrc 583 . . 3 (𝜑𝐻 ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))})
153 stoweidlem36.7 . . 3 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
154152, 153eleqtrrdi 2842 . 2 (𝜑𝐻𝑄)
15530, 26, 47, 115divgt0d 12057 . . 3 (𝜑 → 0 < ((𝐺𝑆) / 𝑁))
15630, 26, 56redivcld 11949 . . . 4 (𝜑 → ((𝐺𝑆) / 𝑁) ∈ ℝ)
15772, 39nffv 6832 . . . . . 6 𝑡(𝐺𝑆)
158157, 84, 85nfov 7376 . . . . 5 𝑡((𝐺𝑆) / 𝑁)
159 fveq2 6822 . . . . . 6 (𝑡 = 𝑆 → (𝐺𝑡) = (𝐺𝑆))
160159oveq1d 7361 . . . . 5 (𝑡 = 𝑆 → ((𝐺𝑡) / 𝑁) = ((𝐺𝑆) / 𝑁))
16139, 158, 160, 1fvmptf 6950 . . . 4 ((𝑆𝑇 ∧ ((𝐺𝑆) / 𝑁) ∈ ℝ) → (𝐻𝑆) = ((𝐺𝑆) / 𝑁))
16222, 156, 161syl2anc 584 . . 3 (𝜑 → (𝐻𝑆) = ((𝐺𝑆) / 𝑁))
163155, 162breqtrrd 5117 . 2 (𝜑 → 0 < (𝐻𝑆))
164 nfcv 2894 . . . 4 𝐻
165 stoweidlem36.1 . . . . . 6 𝑄
166165nfel2 2913 . . . . 5 𝐻𝑄
167 nfv 1915 . . . . 5 0 < (𝐻𝑆)
168166, 167nfan 1900 . . . 4 (𝐻𝑄 ∧ 0 < (𝐻𝑆))
169 eleq1 2819 . . . . 5 ( = 𝐻 → (𝑄𝐻𝑄))
170 fveq1 6821 . . . . . 6 ( = 𝐻 → (𝑆) = (𝐻𝑆))
171170breq2d 5101 . . . . 5 ( = 𝐻 → (0 < (𝑆) ↔ 0 < (𝐻𝑆)))
172169, 171anbi12d 632 . . . 4 ( = 𝐻 → ((𝑄 ∧ 0 < (𝑆)) ↔ (𝐻𝑄 ∧ 0 < (𝐻𝑆))))
173164, 168, 172spcegf 3542 . . 3 (𝐻𝑄 → ((𝐻𝑄 ∧ 0 < (𝐻𝑆)) → ∃(𝑄 ∧ 0 < (𝑆))))
174173anabsi5 669 . 2 ((𝐻𝑄 ∧ 0 < (𝐻𝑆)) → ∃(𝑄 ∧ 0 < (𝑆)))
175154, 163, 174syl2anc 584 1 (𝜑 → ∃(𝑄 ∧ 0 < (𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wnf 1784  wcel 2111  wnfc 2879  wne 2928  wral 3047  {crab 3395  wss 3897   cuni 4856   class class class wbr 5089  cmpt 5170  ran crn 5615  cfv 6481  (class class class)co 7346  supcsup 9324  cc 11004  cr 11005  0cc0 11006  1c1 11007   · cmul 11011   < clt 11146  cle 11147   / cdiv 11774  (,)cioo 13245  topGenctg 17341   Cn ccn 23139  Compccmp 23301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cn 23142  df-cnp 23143  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-xms 24235  df-ms 24236  df-tms 24237
This theorem is referenced by:  stoweidlem43  46140
  Copyright terms: Public domain W3C validator