Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem36 Structured version   Visualization version   GIF version

Theorem stoweidlem36 45992
Description: This lemma is used to prove the existence of a function pt as in Lemma 1 of [BrosowskiDeutsh] p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function p in the subalgebra, such that pt ( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. Z is used for t0 , S is used for t e. T - U , h is used for pt . G is used for (ht)^2 and the final h is a normalized version of G ( divided by its norm, see the variable N ). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem36.1 𝑄
stoweidlem36.2 𝑡𝐻
stoweidlem36.3 𝑡𝐹
stoweidlem36.4 𝑡𝐺
stoweidlem36.5 𝑡𝜑
stoweidlem36.6 𝐾 = (topGen‘ran (,))
stoweidlem36.7 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem36.8 𝑇 = 𝐽
stoweidlem36.9 𝐺 = (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐹𝑡)))
stoweidlem36.10 𝑁 = sup(ran 𝐺, ℝ, < )
stoweidlem36.11 𝐻 = (𝑡𝑇 ↦ ((𝐺𝑡) / 𝑁))
stoweidlem36.12 (𝜑𝐽 ∈ Comp)
stoweidlem36.13 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
stoweidlem36.14 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem36.15 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem36.16 (𝜑𝑆𝑇)
stoweidlem36.17 (𝜑𝑍𝑇)
stoweidlem36.18 (𝜑𝐹𝐴)
stoweidlem36.19 (𝜑 → (𝐹𝑆) ≠ (𝐹𝑍))
stoweidlem36.20 (𝜑 → (𝐹𝑍) = 0)
Assertion
Ref Expression
stoweidlem36 (𝜑 → ∃(𝑄 ∧ 0 < (𝑆)))
Distinct variable groups:   𝑓,𝑔,𝑡,𝑇   𝐴,𝑓,𝑔   𝑓,𝐹,𝑔   𝑓,𝐺,𝑔   𝜑,𝑓,𝑔   𝑔,𝑁,𝑡   𝑡,,𝑆   𝐴,   ,𝐻   𝑇,   ,𝑍,𝑡   𝑥,𝑡,𝑁   𝑥,𝐴   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡)   𝑄(𝑥,𝑡,𝑓,𝑔,)   𝑆(𝑥,𝑓,𝑔)   𝐹(𝑥,𝑡,)   𝐺(𝑥,𝑡,)   𝐻(𝑥,𝑡,𝑓,𝑔)   𝐽(𝑥,𝑡,𝑓,𝑔,)   𝐾(𝑥,𝑡,𝑓,𝑔,)   𝑁(𝑓,)   𝑍(𝑥,𝑓,𝑔)

Proof of Theorem stoweidlem36
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem36.11 . . . . . 6 𝐻 = (𝑡𝑇 ↦ ((𝐺𝑡) / 𝑁))
2 stoweidlem36.5 . . . . . . 7 𝑡𝜑
3 stoweidlem36.6 . . . . . . . . . . . 12 𝐾 = (topGen‘ran (,))
4 stoweidlem36.8 . . . . . . . . . . . 12 𝑇 = 𝐽
5 eqid 2735 . . . . . . . . . . . 12 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
6 stoweidlem36.13 . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
7 stoweidlem36.9 . . . . . . . . . . . . . 14 𝐺 = (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐹𝑡)))
8 stoweidlem36.18 . . . . . . . . . . . . . . 15 (𝜑𝐹𝐴)
9 stoweidlem36.3 . . . . . . . . . . . . . . . . 17 𝑡𝐹
109nfeq2 2921 . . . . . . . . . . . . . . . 16 𝑡 𝑓 = 𝐹
119nfeq2 2921 . . . . . . . . . . . . . . . 16 𝑡 𝑔 = 𝐹
12 stoweidlem36.14 . . . . . . . . . . . . . . . 16 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
1310, 11, 12stoweidlem6 45962 . . . . . . . . . . . . . . 15 ((𝜑𝐹𝐴𝐹𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐹𝑡))) ∈ 𝐴)
148, 8, 13mpd3an23 1462 . . . . . . . . . . . . . 14 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐹𝑡))) ∈ 𝐴)
157, 14eqeltrid 2843 . . . . . . . . . . . . 13 (𝜑𝐺𝐴)
166, 15sseldd 3996 . . . . . . . . . . . 12 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
173, 4, 5, 16fcnre 44963 . . . . . . . . . . 11 (𝜑𝐺:𝑇⟶ℝ)
1817ffvelcdmda 7104 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (𝐺𝑡) ∈ ℝ)
1918recnd 11287 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐺𝑡) ∈ ℂ)
20 stoweidlem36.10 . . . . . . . . . . . 12 𝑁 = sup(ran 𝐺, ℝ, < )
21 stoweidlem36.12 . . . . . . . . . . . . . 14 (𝜑𝐽 ∈ Comp)
22 stoweidlem36.16 . . . . . . . . . . . . . . 15 (𝜑𝑆𝑇)
2322ne0d 4348 . . . . . . . . . . . . . 14 (𝜑𝑇 ≠ ∅)
244, 3, 21, 16, 23cncmpmax 44970 . . . . . . . . . . . . 13 (𝜑 → (sup(ran 𝐺, ℝ, < ) ∈ ran 𝐺 ∧ sup(ran 𝐺, ℝ, < ) ∈ ℝ ∧ ∀𝑠𝑇 (𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < )))
2524simp2d 1142 . . . . . . . . . . . 12 (𝜑 → sup(ran 𝐺, ℝ, < ) ∈ ℝ)
2620, 25eqeltrid 2843 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
2726recnd 11287 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
2827adantr 480 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑁 ∈ ℂ)
29 0red 11262 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
3017, 22ffvelcdmd 7105 . . . . . . . . . . . . 13 (𝜑 → (𝐺𝑆) ∈ ℝ)
316, 8sseldd 3996 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
323, 4, 5, 31fcnre 44963 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑇⟶ℝ)
3332, 22ffvelcdmd 7105 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑆) ∈ ℝ)
34 stoweidlem36.19 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹𝑆) ≠ (𝐹𝑍))
35 stoweidlem36.20 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹𝑍) = 0)
3634, 35neeqtrd 3008 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑆) ≠ 0)
3733, 36msqgt0d 11828 . . . . . . . . . . . . . 14 (𝜑 → 0 < ((𝐹𝑆) · (𝐹𝑆)))
3833, 33remulcld 11289 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐹𝑆) · (𝐹𝑆)) ∈ ℝ)
39 nfcv 2903 . . . . . . . . . . . . . . . 16 𝑡𝑆
409, 39nffv 6917 . . . . . . . . . . . . . . . . 17 𝑡(𝐹𝑆)
41 nfcv 2903 . . . . . . . . . . . . . . . . 17 𝑡 ·
4240, 41, 40nfov 7461 . . . . . . . . . . . . . . . 16 𝑡((𝐹𝑆) · (𝐹𝑆))
43 fveq2 6907 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑆 → (𝐹𝑡) = (𝐹𝑆))
4443, 43oveq12d 7449 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑆 → ((𝐹𝑡) · (𝐹𝑡)) = ((𝐹𝑆) · (𝐹𝑆)))
4539, 42, 44, 7fvmptf 7037 . . . . . . . . . . . . . . 15 ((𝑆𝑇 ∧ ((𝐹𝑆) · (𝐹𝑆)) ∈ ℝ) → (𝐺𝑆) = ((𝐹𝑆) · (𝐹𝑆)))
4622, 38, 45syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝐺𝑆) = ((𝐹𝑆) · (𝐹𝑆)))
4737, 46breqtrrd 5176 . . . . . . . . . . . . 13 (𝜑 → 0 < (𝐺𝑆))
4824simp3d 1143 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑠𝑇 (𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < ))
49 fveq2 6907 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑆 → (𝐺𝑠) = (𝐺𝑆))
5049breq1d 5158 . . . . . . . . . . . . . . 15 (𝑠 = 𝑆 → ((𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < ) ↔ (𝐺𝑆) ≤ sup(ran 𝐺, ℝ, < )))
5150rspccva 3621 . . . . . . . . . . . . . 14 ((∀𝑠𝑇 (𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < ) ∧ 𝑆𝑇) → (𝐺𝑆) ≤ sup(ran 𝐺, ℝ, < ))
5248, 22, 51syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝐺𝑆) ≤ sup(ran 𝐺, ℝ, < ))
5329, 30, 25, 47, 52ltletrd 11419 . . . . . . . . . . . 12 (𝜑 → 0 < sup(ran 𝐺, ℝ, < ))
5453gt0ne0d 11825 . . . . . . . . . . 11 (𝜑 → sup(ran 𝐺, ℝ, < ) ≠ 0)
5520neeq1i 3003 . . . . . . . . . . 11 (𝑁 ≠ 0 ↔ sup(ran 𝐺, ℝ, < ) ≠ 0)
5654, 55sylibr 234 . . . . . . . . . 10 (𝜑𝑁 ≠ 0)
5756adantr 480 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑁 ≠ 0)
5819, 28, 57divrecd 12044 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 𝑁) = ((𝐺𝑡) · (1 / 𝑁)))
59 simpr 484 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 𝑡𝑇)
6026, 56rereccld 12092 . . . . . . . . . . 11 (𝜑 → (1 / 𝑁) ∈ ℝ)
6160adantr 480 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (1 / 𝑁) ∈ ℝ)
62 eqid 2735 . . . . . . . . . . 11 (𝑡𝑇 ↦ (1 / 𝑁)) = (𝑡𝑇 ↦ (1 / 𝑁))
6362fvmpt2 7027 . . . . . . . . . 10 ((𝑡𝑇 ∧ (1 / 𝑁) ∈ ℝ) → ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡) = (1 / 𝑁))
6459, 61, 63syl2anc 584 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡) = (1 / 𝑁))
6564oveq2d 7447 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡)) = ((𝐺𝑡) · (1 / 𝑁)))
6658, 65eqtr4d 2778 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 𝑁) = ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡)))
672, 66mpteq2da 5246 . . . . . 6 (𝜑 → (𝑡𝑇 ↦ ((𝐺𝑡) / 𝑁)) = (𝑡𝑇 ↦ ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡))))
681, 67eqtrid 2787 . . . . 5 (𝜑𝐻 = (𝑡𝑇 ↦ ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡))))
69 stoweidlem36.15 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
7069stoweidlem4 45960 . . . . . . 7 ((𝜑 ∧ (1 / 𝑁) ∈ ℝ) → (𝑡𝑇 ↦ (1 / 𝑁)) ∈ 𝐴)
7160, 70mpdan 687 . . . . . 6 (𝜑 → (𝑡𝑇 ↦ (1 / 𝑁)) ∈ 𝐴)
72 stoweidlem36.4 . . . . . . . 8 𝑡𝐺
7372nfeq2 2921 . . . . . . 7 𝑡 𝑓 = 𝐺
74 nfmpt1 5256 . . . . . . . 8 𝑡(𝑡𝑇 ↦ (1 / 𝑁))
7574nfeq2 2921 . . . . . . 7 𝑡 𝑔 = (𝑡𝑇 ↦ (1 / 𝑁))
7673, 75, 12stoweidlem6 45962 . . . . . 6 ((𝜑𝐺𝐴 ∧ (𝑡𝑇 ↦ (1 / 𝑁)) ∈ 𝐴) → (𝑡𝑇 ↦ ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡))) ∈ 𝐴)
7715, 71, 76mpd3an23 1462 . . . . 5 (𝜑 → (𝑡𝑇 ↦ ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡))) ∈ 𝐴)
7868, 77eqeltrd 2839 . . . 4 (𝜑𝐻𝐴)
79 stoweidlem36.17 . . . . . . 7 (𝜑𝑍𝑇)
8017, 79ffvelcdmd 7105 . . . . . . . 8 (𝜑 → (𝐺𝑍) ∈ ℝ)
8180, 26, 56redivcld 12093 . . . . . . 7 (𝜑 → ((𝐺𝑍) / 𝑁) ∈ ℝ)
82 nfcv 2903 . . . . . . . 8 𝑡𝑍
8372, 82nffv 6917 . . . . . . . . 9 𝑡(𝐺𝑍)
84 nfcv 2903 . . . . . . . . 9 𝑡 /
85 nfcv 2903 . . . . . . . . 9 𝑡𝑁
8683, 84, 85nfov 7461 . . . . . . . 8 𝑡((𝐺𝑍) / 𝑁)
87 fveq2 6907 . . . . . . . . 9 (𝑡 = 𝑍 → (𝐺𝑡) = (𝐺𝑍))
8887oveq1d 7446 . . . . . . . 8 (𝑡 = 𝑍 → ((𝐺𝑡) / 𝑁) = ((𝐺𝑍) / 𝑁))
8982, 86, 88, 1fvmptf 7037 . . . . . . 7 ((𝑍𝑇 ∧ ((𝐺𝑍) / 𝑁) ∈ ℝ) → (𝐻𝑍) = ((𝐺𝑍) / 𝑁))
9079, 81, 89syl2anc 584 . . . . . 6 (𝜑 → (𝐻𝑍) = ((𝐺𝑍) / 𝑁))
91 0re 11261 . . . . . . . . . . 11 0 ∈ ℝ
9235, 91eqeltrdi 2847 . . . . . . . . . 10 (𝜑 → (𝐹𝑍) ∈ ℝ)
9392, 92remulcld 11289 . . . . . . . . 9 (𝜑 → ((𝐹𝑍) · (𝐹𝑍)) ∈ ℝ)
949, 82nffv 6917 . . . . . . . . . . 11 𝑡(𝐹𝑍)
9594, 41, 94nfov 7461 . . . . . . . . . 10 𝑡((𝐹𝑍) · (𝐹𝑍))
96 fveq2 6907 . . . . . . . . . . 11 (𝑡 = 𝑍 → (𝐹𝑡) = (𝐹𝑍))
9796, 96oveq12d 7449 . . . . . . . . . 10 (𝑡 = 𝑍 → ((𝐹𝑡) · (𝐹𝑡)) = ((𝐹𝑍) · (𝐹𝑍)))
9882, 95, 97, 7fvmptf 7037 . . . . . . . . 9 ((𝑍𝑇 ∧ ((𝐹𝑍) · (𝐹𝑍)) ∈ ℝ) → (𝐺𝑍) = ((𝐹𝑍) · (𝐹𝑍)))
9979, 93, 98syl2anc 584 . . . . . . . 8 (𝜑 → (𝐺𝑍) = ((𝐹𝑍) · (𝐹𝑍)))
10035, 35oveq12d 7449 . . . . . . . . 9 (𝜑 → ((𝐹𝑍) · (𝐹𝑍)) = (0 · 0))
101 0cn 11251 . . . . . . . . . 10 0 ∈ ℂ
102101mul02i 11448 . . . . . . . . 9 (0 · 0) = 0
103100, 102eqtrdi 2791 . . . . . . . 8 (𝜑 → ((𝐹𝑍) · (𝐹𝑍)) = 0)
10499, 103eqtrd 2775 . . . . . . 7 (𝜑 → (𝐺𝑍) = 0)
105104oveq1d 7446 . . . . . 6 (𝜑 → ((𝐺𝑍) / 𝑁) = (0 / 𝑁))
10627, 56div0d 12040 . . . . . 6 (𝜑 → (0 / 𝑁) = 0)
10790, 105, 1063eqtrd 2779 . . . . 5 (𝜑 → (𝐻𝑍) = 0)
10832ffvelcdmda 7104 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
109108msqge0d 11829 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 0 ≤ ((𝐹𝑡) · (𝐹𝑡)))
110108, 108remulcld 11289 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → ((𝐹𝑡) · (𝐹𝑡)) ∈ ℝ)
1117fvmpt2 7027 . . . . . . . . . . . 12 ((𝑡𝑇 ∧ ((𝐹𝑡) · (𝐹𝑡)) ∈ ℝ) → (𝐺𝑡) = ((𝐹𝑡) · (𝐹𝑡)))
11259, 110, 111syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → (𝐺𝑡) = ((𝐹𝑡) · (𝐹𝑡)))
113109, 112breqtrrd 5176 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 0 ≤ (𝐺𝑡))
11426adantr 480 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 𝑁 ∈ ℝ)
11553, 20breqtrrdi 5190 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
116115adantr 480 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 0 < 𝑁)
117 divge0 12135 . . . . . . . . . 10 ((((𝐺𝑡) ∈ ℝ ∧ 0 ≤ (𝐺𝑡)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((𝐺𝑡) / 𝑁))
11818, 113, 114, 116, 117syl22anc 839 . . . . . . . . 9 ((𝜑𝑡𝑇) → 0 ≤ ((𝐺𝑡) / 𝑁))
11918, 114, 57redivcld 12093 . . . . . . . . . 10 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 𝑁) ∈ ℝ)
1201fvmpt2 7027 . . . . . . . . . 10 ((𝑡𝑇 ∧ ((𝐺𝑡) / 𝑁) ∈ ℝ) → (𝐻𝑡) = ((𝐺𝑡) / 𝑁))
12159, 119, 120syl2anc 584 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐻𝑡) = ((𝐺𝑡) / 𝑁))
122118, 121breqtrrd 5176 . . . . . . . 8 ((𝜑𝑡𝑇) → 0 ≤ (𝐻𝑡))
12319div1d 12033 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 1) = (𝐺𝑡))
124 fveq2 6907 . . . . . . . . . . . . . . 15 (𝑠 = 𝑡 → (𝐺𝑠) = (𝐺𝑡))
125124breq1d 5158 . . . . . . . . . . . . . 14 (𝑠 = 𝑡 → ((𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < ) ↔ (𝐺𝑡) ≤ sup(ran 𝐺, ℝ, < )))
126125rspccva 3621 . . . . . . . . . . . . 13 ((∀𝑠𝑇 (𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < ) ∧ 𝑡𝑇) → (𝐺𝑡) ≤ sup(ran 𝐺, ℝ, < ))
12748, 126sylan 580 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (𝐺𝑡) ≤ sup(ran 𝐺, ℝ, < ))
128127, 20breqtrrdi 5190 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → (𝐺𝑡) ≤ 𝑁)
129123, 128eqbrtrd 5170 . . . . . . . . . 10 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 1) ≤ 𝑁)
130 1red 11260 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 1 ∈ ℝ)
131 0lt1 11783 . . . . . . . . . . . 12 0 < 1
132131a1i 11 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 0 < 1)
133 lediv23 12158 . . . . . . . . . . 11 (((𝐺𝑡) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁) ∧ (1 ∈ ℝ ∧ 0 < 1)) → (((𝐺𝑡) / 𝑁) ≤ 1 ↔ ((𝐺𝑡) / 1) ≤ 𝑁))
13418, 114, 116, 130, 132, 133syl122anc 1378 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (((𝐺𝑡) / 𝑁) ≤ 1 ↔ ((𝐺𝑡) / 1) ≤ 𝑁))
135129, 134mpbird 257 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 𝑁) ≤ 1)
136121, 135eqbrtrd 5170 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐻𝑡) ≤ 1)
137122, 136jca 511 . . . . . . 7 ((𝜑𝑡𝑇) → (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1))
138137ex 412 . . . . . 6 (𝜑 → (𝑡𝑇 → (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
1392, 138ralrimi 3255 . . . . 5 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1))
140107, 139jca 511 . . . 4 (𝜑 → ((𝐻𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
141 fveq1 6906 . . . . . . 7 ( = 𝐻 → (𝑍) = (𝐻𝑍))
142141eqeq1d 2737 . . . . . 6 ( = 𝐻 → ((𝑍) = 0 ↔ (𝐻𝑍) = 0))
143 stoweidlem36.2 . . . . . . . 8 𝑡𝐻
144143nfeq2 2921 . . . . . . 7 𝑡 = 𝐻
145 fveq1 6906 . . . . . . . . 9 ( = 𝐻 → (𝑡) = (𝐻𝑡))
146145breq2d 5160 . . . . . . . 8 ( = 𝐻 → (0 ≤ (𝑡) ↔ 0 ≤ (𝐻𝑡)))
147145breq1d 5158 . . . . . . . 8 ( = 𝐻 → ((𝑡) ≤ 1 ↔ (𝐻𝑡) ≤ 1))
148146, 147anbi12d 632 . . . . . . 7 ( = 𝐻 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
149144, 148ralbid 3271 . . . . . 6 ( = 𝐻 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
150142, 149anbi12d 632 . . . . 5 ( = 𝐻 → (((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)) ↔ ((𝐻𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1))))
151150elrab 3695 . . . 4 (𝐻 ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} ↔ (𝐻𝐴 ∧ ((𝐻𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1))))
15278, 140, 151sylanbrc 583 . . 3 (𝜑𝐻 ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))})
153 stoweidlem36.7 . . 3 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
154152, 153eleqtrrdi 2850 . 2 (𝜑𝐻𝑄)
15530, 26, 47, 115divgt0d 12201 . . 3 (𝜑 → 0 < ((𝐺𝑆) / 𝑁))
15630, 26, 56redivcld 12093 . . . 4 (𝜑 → ((𝐺𝑆) / 𝑁) ∈ ℝ)
15772, 39nffv 6917 . . . . . 6 𝑡(𝐺𝑆)
158157, 84, 85nfov 7461 . . . . 5 𝑡((𝐺𝑆) / 𝑁)
159 fveq2 6907 . . . . . 6 (𝑡 = 𝑆 → (𝐺𝑡) = (𝐺𝑆))
160159oveq1d 7446 . . . . 5 (𝑡 = 𝑆 → ((𝐺𝑡) / 𝑁) = ((𝐺𝑆) / 𝑁))
16139, 158, 160, 1fvmptf 7037 . . . 4 ((𝑆𝑇 ∧ ((𝐺𝑆) / 𝑁) ∈ ℝ) → (𝐻𝑆) = ((𝐺𝑆) / 𝑁))
16222, 156, 161syl2anc 584 . . 3 (𝜑 → (𝐻𝑆) = ((𝐺𝑆) / 𝑁))
163155, 162breqtrrd 5176 . 2 (𝜑 → 0 < (𝐻𝑆))
164 nfcv 2903 . . . 4 𝐻
165 stoweidlem36.1 . . . . . 6 𝑄
166165nfel2 2922 . . . . 5 𝐻𝑄
167 nfv 1912 . . . . 5 0 < (𝐻𝑆)
168166, 167nfan 1897 . . . 4 (𝐻𝑄 ∧ 0 < (𝐻𝑆))
169 eleq1 2827 . . . . 5 ( = 𝐻 → (𝑄𝐻𝑄))
170 fveq1 6906 . . . . . 6 ( = 𝐻 → (𝑆) = (𝐻𝑆))
171170breq2d 5160 . . . . 5 ( = 𝐻 → (0 < (𝑆) ↔ 0 < (𝐻𝑆)))
172169, 171anbi12d 632 . . . 4 ( = 𝐻 → ((𝑄 ∧ 0 < (𝑆)) ↔ (𝐻𝑄 ∧ 0 < (𝐻𝑆))))
173164, 168, 172spcegf 3592 . . 3 (𝐻𝑄 → ((𝐻𝑄 ∧ 0 < (𝐻𝑆)) → ∃(𝑄 ∧ 0 < (𝑆))))
174173anabsi5 669 . 2 ((𝐻𝑄 ∧ 0 < (𝐻𝑆)) → ∃(𝑄 ∧ 0 < (𝑆)))
175154, 163, 174syl2anc 584 1 (𝜑 → ∃(𝑄 ∧ 0 < (𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wnf 1780  wcel 2106  wnfc 2888  wne 2938  wral 3059  {crab 3433  wss 3963   cuni 4912   class class class wbr 5148  cmpt 5231  ran crn 5690  cfv 6563  (class class class)co 7431  supcsup 9478  cc 11151  cr 11152  0cc0 11153  1c1 11154   · cmul 11158   < clt 11293  cle 11294   / cdiv 11918  (,)cioo 13384  topGenctg 17484   Cn ccn 23248  Compccmp 23410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cn 23251  df-cnp 23252  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-xms 24346  df-ms 24347  df-tms 24348
This theorem is referenced by:  stoweidlem43  45999
  Copyright terms: Public domain W3C validator