MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspce Structured version   Visualization version   GIF version

Theorem rspce 3566
Description: Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) (Revised by Mario Carneiro, 11-Oct-2016.)
Hypotheses
Ref Expression
rspc.1 𝑥𝜓
rspc.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rspce ((𝐴𝐵𝜓) → ∃𝑥𝐵 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem rspce
StepHypRef Expression
1 nfcv 2891 . . . 4 𝑥𝐴
2 nfv 1914 . . . . 5 𝑥 𝐴𝐵
3 rspc.1 . . . . 5 𝑥𝜓
42, 3nfan 1899 . . . 4 𝑥(𝐴𝐵𝜓)
5 eleq1 2816 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
6 rspc.2 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
75, 6anbi12d 632 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓)))
81, 4, 7spcegf 3547 . . 3 (𝐴𝐵 → ((𝐴𝐵𝜓) → ∃𝑥(𝑥𝐵𝜑)))
98anabsi5 669 . 2 ((𝐴𝐵𝜓) → ∃𝑥(𝑥𝐵𝜑))
10 df-rex 3054 . 2 (∃𝑥𝐵 𝜑 ↔ ∃𝑥(𝑥𝐵𝜑))
119, 10sylibr 234 1 ((𝐴𝐵𝜓) → ∃𝑥𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wnf 1783  wcel 2109  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rex 3054
This theorem is referenced by:  reuop  6241  ac6c4  10375  infcvgaux1i  15764  iunmbl2  25456  gsumpart  33010  esumcvg  34053  ptrecube  37600  poimirlem24  37624  sdclem1  37723  uzwo4  45031  eliuniincex  45087  elrnmpt1sf  45167  iuneqfzuzlem  45314  uzublem  45409  uzub  45410  limsupubuzlem  45693  sge0gerp  46376  smflim  46758  reupr  47506
  Copyright terms: Public domain W3C validator