| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspce | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) (Revised by Mario Carneiro, 11-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspc.1 | ⊢ Ⅎ𝑥𝜓 |
| rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspce | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
| 3 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 2, 3 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 ∧ 𝜓) |
| 5 | eleq1 2819 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 6 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | 5, 6 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
| 8 | 1, 4, 7 | spcegf 3542 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 9 | 8 | anabsi5 669 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) |
| 10 | df-rex 3057 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 11 | 9, 10 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 Ⅎwnf 1784 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rex 3057 |
| This theorem is referenced by: reuop 6240 ac6c4 10372 infcvgaux1i 15764 iunmbl2 25485 gsumpart 33037 esumcvg 34099 ptrecube 37668 poimirlem24 37692 sdclem1 37791 uzwo4 45098 eliuniincex 45154 elrnmpt1sf 45234 iuneqfzuzlem 45381 uzublem 45476 uzub 45477 limsupubuzlem 45758 sge0gerp 46441 smflim 46823 reupr 47561 |
| Copyright terms: Public domain | W3C validator |