MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspce Structured version   Visualization version   GIF version

Theorem rspce 3594
Description: Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) (Revised by Mario Carneiro, 11-Oct-2016.)
Hypotheses
Ref Expression
rspc.1 𝑥𝜓
rspc.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rspce ((𝐴𝐵𝜓) → ∃𝑥𝐵 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem rspce
StepHypRef Expression
1 nfcv 2897 . . . 4 𝑥𝐴
2 nfv 1913 . . . . 5 𝑥 𝐴𝐵
3 rspc.1 . . . . 5 𝑥𝜓
42, 3nfan 1898 . . . 4 𝑥(𝐴𝐵𝜓)
5 eleq1 2821 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
6 rspc.2 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
75, 6anbi12d 632 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓)))
81, 4, 7spcegf 3575 . . 3 (𝐴𝐵 → ((𝐴𝐵𝜓) → ∃𝑥(𝑥𝐵𝜑)))
98anabsi5 669 . 2 ((𝐴𝐵𝜓) → ∃𝑥(𝑥𝐵𝜑))
10 df-rex 3060 . 2 (∃𝑥𝐵 𝜑 ↔ ∃𝑥(𝑥𝐵𝜑))
119, 10sylibr 234 1 ((𝐴𝐵𝜓) → ∃𝑥𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wnf 1782  wcel 2107  wrex 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-cleq 2726  df-clel 2808  df-nfc 2884  df-rex 3060
This theorem is referenced by:  reuop  6293  ac6c4  10503  infcvgaux1i  15875  iunmbl2  25528  gsumpart  32999  esumcvg  34046  ptrecube  37586  poimirlem24  37610  sdclem1  37709  uzwo4  45015  eliuniincex  45071  elrnmpt1sf  45151  iuneqfzuzlem  45302  uzublem  45398  uzub  45399  limsupubuzlem  45684  sge0gerp  46367  smflim  46749  reupr  47467
  Copyright terms: Public domain W3C validator