Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspce | Structured version Visualization version GIF version |
Description: Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) (Revised by Mario Carneiro, 11-Oct-2016.) |
Ref | Expression |
---|---|
rspc.1 | ⊢ Ⅎ𝑥𝜓 |
rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspce | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2905 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
3 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
4 | 2, 3 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 ∧ 𝜓) |
5 | eleq1 2824 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
6 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | 5, 6 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
8 | 1, 4, 7 | spcegf 3536 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
9 | 8 | anabsi5 667 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) |
10 | df-rex 3072 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
11 | 9, 10 | sylibr 233 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2104 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-rex 3072 df-v 3439 |
This theorem is referenced by: reuop 6211 ac6c4 10283 infcvgaux1i 15614 iunmbl2 24766 gsumpart 31360 esumcvg 32099 ptrecube 35821 poimirlem24 35845 sdclem1 35945 uzwo4 42639 eliuniincex 42697 elrnmpt1sf 42771 iuneqfzuzlem 42921 uzublem 43018 uzub 43019 limsupubuzlem 43302 sge0gerp 43983 smflim 44365 reupr 45032 |
Copyright terms: Public domain | W3C validator |