MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspce Structured version   Visualization version   GIF version

Theorem rspce 3548
Description: Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) (Revised by Mario Carneiro, 11-Oct-2016.)
Hypotheses
Ref Expression
rspc.1 𝑥𝜓
rspc.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rspce ((𝐴𝐵𝜓) → ∃𝑥𝐵 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem rspce
StepHypRef Expression
1 nfcv 2908 . . . 4 𝑥𝐴
2 nfv 1920 . . . . 5 𝑥 𝐴𝐵
3 rspc.1 . . . . 5 𝑥𝜓
42, 3nfan 1905 . . . 4 𝑥(𝐴𝐵𝜓)
5 eleq1 2827 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
6 rspc.2 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
75, 6anbi12d 630 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓)))
81, 4, 7spcegf 3529 . . 3 (𝐴𝐵 → ((𝐴𝐵𝜓) → ∃𝑥(𝑥𝐵𝜑)))
98anabsi5 665 . 2 ((𝐴𝐵𝜓) → ∃𝑥(𝑥𝐵𝜑))
10 df-rex 3071 . 2 (∃𝑥𝐵 𝜑 ↔ ∃𝑥(𝑥𝐵𝜑))
119, 10sylibr 233 1 ((𝐴𝐵𝜓) → ∃𝑥𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wex 1785  wnf 1789  wcel 2109  wrex 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-rex 3071  df-v 3432
This theorem is referenced by:  rspcevOLD  3561  reuop  6193  ac6c4  10221  infcvgaux1i  15550  iunmbl2  24702  gsumpart  31294  esumcvg  32033  ptrecube  35756  poimirlem24  35780  sdclem1  35880  uzwo4  42554  eliuniincex  42612  elrnmpt1sf  42680  iuneqfzuzlem  42827  uzublem  42924  uzub  42925  limsupubuzlem  43207  sge0gerp  43887  smflim  44263  reupr  44926
  Copyright terms: Public domain W3C validator