![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspce | Structured version Visualization version GIF version |
Description: Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) (Revised by Mario Carneiro, 11-Oct-2016.) |
Ref | Expression |
---|---|
rspc.1 | ⊢ Ⅎ𝑥𝜓 |
rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspce | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
3 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
4 | 2, 3 | nfan 1903 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 ∧ 𝜓) |
5 | eleq1 2822 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
6 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | 5, 6 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
8 | 1, 4, 7 | spcegf 3583 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
9 | 8 | anabsi5 668 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) |
10 | df-rex 3072 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
11 | 9, 10 | sylibr 233 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 Ⅎwnf 1786 ∈ wcel 2107 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rex 3072 df-v 3477 |
This theorem is referenced by: reuop 6290 ac6c4 10473 infcvgaux1i 15800 iunmbl2 25066 gsumpart 32195 esumcvg 33073 ptrecube 36477 poimirlem24 36501 sdclem1 36600 uzwo4 43726 eliuniincex 43784 elrnmpt1sf 43873 iuneqfzuzlem 44031 uzublem 44127 uzub 44128 limsupubuzlem 44415 sge0gerp 45098 smflim 45480 reupr 46177 |
Copyright terms: Public domain | W3C validator |