| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1491 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj60 35059. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1491.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| bnj1491.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1491.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| bnj1491.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
| bnj1491.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
| bnj1491.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
| bnj1491.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
| bnj1491.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
| bnj1491.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
| bnj1491.10 | ⊢ 𝑃 = ∪ 𝐻 |
| bnj1491.11 | ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1491.12 | ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
| bnj1491.13 | ⊢ (𝜒 → (𝑄 ∈ 𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
| Ref | Expression |
|---|---|
| bnj1491 | ⊢ ((𝜒 ∧ 𝑄 ∈ V) → ∃𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1491.13 | . 2 ⊢ (𝜒 → (𝑄 ∈ 𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) | |
| 2 | bnj1491.1 | . . . . 5 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
| 3 | bnj1491.2 | . . . . 5 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
| 4 | bnj1491.3 | . . . . 5 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
| 5 | bnj1491.4 | . . . . 5 ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) | |
| 6 | bnj1491.5 | . . . . 5 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | |
| 7 | bnj1491.6 | . . . . 5 ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | |
| 8 | bnj1491.7 | . . . . 5 ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | |
| 9 | bnj1491.8 | . . . . 5 ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) | |
| 10 | bnj1491.9 | . . . . 5 ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
| 11 | bnj1491.10 | . . . . 5 ⊢ 𝑃 = ∪ 𝐻 | |
| 12 | bnj1491.11 | . . . . 5 ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
| 13 | bnj1491.12 | . . . . 5 ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) | |
| 14 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | bnj1466 35050 | . . . 4 ⊢ (𝑤 ∈ 𝑄 → ∀𝑓 𝑤 ∈ 𝑄) |
| 15 | 14 | nfcii 2881 | . . 3 ⊢ Ⅎ𝑓𝑄 |
| 16 | 4 | bnj1317 34818 | . . . . . 6 ⊢ (𝑤 ∈ 𝐶 → ∀𝑓 𝑤 ∈ 𝐶) |
| 17 | 16 | nfcii 2881 | . . . . 5 ⊢ Ⅎ𝑓𝐶 |
| 18 | 15, 17 | nfel 2907 | . . . 4 ⊢ Ⅎ𝑓 𝑄 ∈ 𝐶 |
| 19 | 15 | nfdm 5918 | . . . . 5 ⊢ Ⅎ𝑓dom 𝑄 |
| 20 | 19 | nfeq1 2908 | . . . 4 ⊢ Ⅎ𝑓dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) |
| 21 | 18, 20 | nfan 1899 | . . 3 ⊢ Ⅎ𝑓(𝑄 ∈ 𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
| 22 | eleq1 2817 | . . . 4 ⊢ (𝑓 = 𝑄 → (𝑓 ∈ 𝐶 ↔ 𝑄 ∈ 𝐶)) | |
| 23 | dmeq 5870 | . . . . 5 ⊢ (𝑓 = 𝑄 → dom 𝑓 = dom 𝑄) | |
| 24 | 23 | eqeq1d 2732 | . . . 4 ⊢ (𝑓 = 𝑄 → (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ↔ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
| 25 | 22, 24 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝑄 → ((𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑄 ∈ 𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))) |
| 26 | 15, 21, 25 | spcegf 3561 | . 2 ⊢ (𝑄 ∈ V → ((𝑄 ∈ 𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) → ∃𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))) |
| 27 | 1, 26 | mpan9 506 | 1 ⊢ ((𝜒 ∧ 𝑄 ∈ V) → ∃𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2708 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 {crab 3408 Vcvv 3450 [wsbc 3756 ∪ cun 3915 ⊆ wss 3917 ∅c0 4299 {csn 4592 〈cop 4598 ∪ cuni 4874 class class class wbr 5110 dom cdm 5641 ↾ cres 5643 Fn wfn 6509 ‘cfv 6514 predc-bnj14 34685 FrSe w-bnj15 34689 trClc-bnj18 34691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-dm 5651 df-res 5653 df-iota 6467 df-fv 6522 |
| This theorem is referenced by: bnj1312 35055 |
| Copyright terms: Public domain | W3C validator |