Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1491 Structured version   Visualization version   GIF version

Theorem bnj1491 34819
Description: Technical lemma for bnj60 34824. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1491.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1491.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1491.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1491.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1491.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1491.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1491.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1491.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1491.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1491.10 𝑃 = 𝐻
bnj1491.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1491.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1491.13 (𝜒 → (𝑄𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
Assertion
Ref Expression
bnj1491 ((𝜒𝑄 ∈ V) → ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐺   𝑅,𝑓   𝑥,𝑓
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑓,𝑑)   𝐴(𝑥,𝑦,𝑑)   𝐵(𝑥,𝑦,𝑓,𝑑)   𝐶(𝑥,𝑦,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑓,𝑑)   𝑅(𝑥,𝑦,𝑑)   𝐺(𝑥,𝑦,𝑑)   𝐻(𝑥,𝑦,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑓,𝑑)

Proof of Theorem bnj1491
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj1491.13 . 2 (𝜒 → (𝑄𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
2 bnj1491.1 . . . . 5 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
3 bnj1491.2 . . . . 5 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
4 bnj1491.3 . . . . 5 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
5 bnj1491.4 . . . . 5 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
6 bnj1491.5 . . . . 5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
7 bnj1491.6 . . . . 5 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
8 bnj1491.7 . . . . 5 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
9 bnj1491.8 . . . . 5 (𝜏′[𝑦 / 𝑥]𝜏)
10 bnj1491.9 . . . . 5 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
11 bnj1491.10 . . . . 5 𝑃 = 𝐻
12 bnj1491.11 . . . . 5 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
13 bnj1491.12 . . . . 5 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
142, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13bnj1466 34815 . . . 4 (𝑤𝑄 → ∀𝑓 𝑤𝑄)
1514nfcii 2879 . . 3 𝑓𝑄
164bnj1317 34583 . . . . . 6 (𝑤𝐶 → ∀𝑓 𝑤𝐶)
1716nfcii 2879 . . . . 5 𝑓𝐶
1815, 17nfel 2906 . . . 4 𝑓 𝑄𝐶
1915nfdm 5953 . . . . 5 𝑓dom 𝑄
2019nfeq1 2907 . . . 4 𝑓dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
2118, 20nfan 1894 . . 3 𝑓(𝑄𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
22 eleq1 2813 . . . 4 (𝑓 = 𝑄 → (𝑓𝐶𝑄𝐶))
23 dmeq 5906 . . . . 5 (𝑓 = 𝑄 → dom 𝑓 = dom 𝑄)
2423eqeq1d 2727 . . . 4 (𝑓 = 𝑄 → (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ↔ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
2522, 24anbi12d 630 . . 3 (𝑓 = 𝑄 → ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑄𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))))
2615, 21, 25spcegf 3576 . 2 (𝑄 ∈ V → ((𝑄𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) → ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))))
271, 26mpan9 505 1 ((𝜒𝑄 ∈ V) → ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wex 1773  wcel 2098  {cab 2702  wne 2929  wral 3050  wrex 3059  {crab 3418  Vcvv 3461  [wsbc 3773  cun 3942  wss 3944  c0 4322  {csn 4630  cop 4636   cuni 4909   class class class wbr 5149  dom cdm 5678  cres 5680   Fn wfn 6544  cfv 6549   predc-bnj14 34450   FrSe w-bnj15 34454   trClc-bnj18 34456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-xp 5684  df-dm 5688  df-res 5690  df-iota 6501  df-fv 6557
This theorem is referenced by:  bnj1312  34820
  Copyright terms: Public domain W3C validator