Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1491 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 33050. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1491.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1491.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1491.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1491.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
bnj1491.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
bnj1491.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
bnj1491.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
bnj1491.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
bnj1491.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
bnj1491.10 | ⊢ 𝑃 = ∪ 𝐻 |
bnj1491.11 | ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1491.12 | ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
bnj1491.13 | ⊢ (𝜒 → (𝑄 ∈ 𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
Ref | Expression |
---|---|
bnj1491 | ⊢ ((𝜒 ∧ 𝑄 ∈ V) → ∃𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1491.13 | . 2 ⊢ (𝜒 → (𝑄 ∈ 𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) | |
2 | bnj1491.1 | . . . . 5 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
3 | bnj1491.2 | . . . . 5 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
4 | bnj1491.3 | . . . . 5 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
5 | bnj1491.4 | . . . . 5 ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) | |
6 | bnj1491.5 | . . . . 5 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | |
7 | bnj1491.6 | . . . . 5 ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | |
8 | bnj1491.7 | . . . . 5 ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | |
9 | bnj1491.8 | . . . . 5 ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) | |
10 | bnj1491.9 | . . . . 5 ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
11 | bnj1491.10 | . . . . 5 ⊢ 𝑃 = ∪ 𝐻 | |
12 | bnj1491.11 | . . . . 5 ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
13 | bnj1491.12 | . . . . 5 ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) | |
14 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | bnj1466 33041 | . . . 4 ⊢ (𝑤 ∈ 𝑄 → ∀𝑓 𝑤 ∈ 𝑄) |
15 | 14 | nfcii 2891 | . . 3 ⊢ Ⅎ𝑓𝑄 |
16 | 4 | bnj1317 32809 | . . . . . 6 ⊢ (𝑤 ∈ 𝐶 → ∀𝑓 𝑤 ∈ 𝐶) |
17 | 16 | nfcii 2891 | . . . . 5 ⊢ Ⅎ𝑓𝐶 |
18 | 15, 17 | nfel 2921 | . . . 4 ⊢ Ⅎ𝑓 𝑄 ∈ 𝐶 |
19 | 15 | nfdm 5853 | . . . . 5 ⊢ Ⅎ𝑓dom 𝑄 |
20 | 19 | nfeq1 2922 | . . . 4 ⊢ Ⅎ𝑓dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) |
21 | 18, 20 | nfan 1902 | . . 3 ⊢ Ⅎ𝑓(𝑄 ∈ 𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
22 | eleq1 2826 | . . . 4 ⊢ (𝑓 = 𝑄 → (𝑓 ∈ 𝐶 ↔ 𝑄 ∈ 𝐶)) | |
23 | dmeq 5805 | . . . . 5 ⊢ (𝑓 = 𝑄 → dom 𝑓 = dom 𝑄) | |
24 | 23 | eqeq1d 2740 | . . . 4 ⊢ (𝑓 = 𝑄 → (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ↔ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
25 | 22, 24 | anbi12d 631 | . . 3 ⊢ (𝑓 = 𝑄 → ((𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑄 ∈ 𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))) |
26 | 15, 21, 25 | spcegf 3528 | . 2 ⊢ (𝑄 ∈ V → ((𝑄 ∈ 𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) → ∃𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))) |
27 | 1, 26 | mpan9 507 | 1 ⊢ ((𝜒 ∧ 𝑄 ∈ V) → ∃𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 {crab 3068 Vcvv 3429 [wsbc 3715 ∪ cun 3884 ⊆ wss 3886 ∅c0 4256 {csn 4561 〈cop 4567 ∪ cuni 4839 class class class wbr 5073 dom cdm 5584 ↾ cres 5586 Fn wfn 6421 ‘cfv 6426 predc-bnj14 32675 FrSe w-bnj15 32679 trClc-bnj18 32681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-xp 5590 df-dm 5594 df-res 5596 df-iota 6384 df-fv 6434 |
This theorem is referenced by: bnj1312 33046 |
Copyright terms: Public domain | W3C validator |