Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1491 Structured version   Visualization version   GIF version

Theorem bnj1491 32439
Description: Technical lemma for bnj60 32444. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1491.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1491.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1491.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1491.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1491.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1491.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1491.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1491.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1491.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1491.10 𝑃 = 𝐻
bnj1491.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1491.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1491.13 (𝜒 → (𝑄𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
Assertion
Ref Expression
bnj1491 ((𝜒𝑄 ∈ V) → ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐺   𝑅,𝑓   𝑥,𝑓
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑓,𝑑)   𝐴(𝑥,𝑦,𝑑)   𝐵(𝑥,𝑦,𝑓,𝑑)   𝐶(𝑥,𝑦,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑓,𝑑)   𝑅(𝑥,𝑦,𝑑)   𝐺(𝑥,𝑦,𝑑)   𝐻(𝑥,𝑦,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑓,𝑑)

Proof of Theorem bnj1491
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj1491.13 . 2 (𝜒 → (𝑄𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
2 bnj1491.1 . . . . 5 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
3 bnj1491.2 . . . . 5 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
4 bnj1491.3 . . . . 5 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
5 bnj1491.4 . . . . 5 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
6 bnj1491.5 . . . . 5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
7 bnj1491.6 . . . . 5 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
8 bnj1491.7 . . . . 5 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
9 bnj1491.8 . . . . 5 (𝜏′[𝑦 / 𝑥]𝜏)
10 bnj1491.9 . . . . 5 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
11 bnj1491.10 . . . . 5 𝑃 = 𝐻
12 bnj1491.11 . . . . 5 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
13 bnj1491.12 . . . . 5 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
142, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13bnj1466 32435 . . . 4 (𝑤𝑄 → ∀𝑓 𝑤𝑄)
1514nfcii 2940 . . 3 𝑓𝑄
164bnj1317 32203 . . . . . 6 (𝑤𝐶 → ∀𝑓 𝑤𝐶)
1716nfcii 2940 . . . . 5 𝑓𝐶
1815, 17nfel 2969 . . . 4 𝑓 𝑄𝐶
1915nfdm 5787 . . . . 5 𝑓dom 𝑄
2019nfeq1 2970 . . . 4 𝑓dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
2118, 20nfan 1900 . . 3 𝑓(𝑄𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
22 eleq1 2877 . . . 4 (𝑓 = 𝑄 → (𝑓𝐶𝑄𝐶))
23 dmeq 5736 . . . . 5 (𝑓 = 𝑄 → dom 𝑓 = dom 𝑄)
2423eqeq1d 2800 . . . 4 (𝑓 = 𝑄 → (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ↔ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
2522, 24anbi12d 633 . . 3 (𝑓 = 𝑄 → ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑄𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))))
2615, 21, 25spcegf 3539 . 2 (𝑄 ∈ V → ((𝑄𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) → ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))))
271, 26mpan9 510 1 ((𝜒𝑄 ∈ V) → ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  {cab 2776  wne 2987  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  [wsbc 3720  cun 3879  wss 3881  c0 4243  {csn 4525  cop 4531   cuni 4800   class class class wbr 5030  dom cdm 5519  cres 5521   Fn wfn 6319  cfv 6324   predc-bnj14 32068   FrSe w-bnj15 32072   trClc-bnj18 32074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-xp 5525  df-dm 5529  df-res 5531  df-iota 6283  df-fv 6332
This theorem is referenced by:  bnj1312  32440
  Copyright terms: Public domain W3C validator