| Step | Hyp | Ref
| Expression |
| 1 | | ax7 2015 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑤 → 𝑦 = 𝑤)) |
| 2 | | ax12v2 2179 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → ((𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡) → ∀𝑥(𝑥 = 𝑤 → (𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡)))) |
| 3 | 2 | imp 406 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑤 ∧ (𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡)) → ∀𝑥(𝑥 = 𝑤 → (𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡))) |
| 4 | | sb6 2085 |
. . . . . . . . . . . . 13
⊢ ([𝑤 / 𝑥](𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡) ↔ ∀𝑥(𝑥 = 𝑤 → (𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡))) |
| 5 | | df-in 3957 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∩ 𝑡) = {𝑥 ∣ (𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡)} |
| 6 | | df-in 3957 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∩ 𝑡) = {𝑦 ∣ (𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)} |
| 7 | 5, 6 | eqtr3i 2766 |
. . . . . . . . . . . . . . . 16
⊢ {𝑥 ∣ (𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡)} = {𝑦 ∣ (𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)} |
| 8 | | dfcleq 2729 |
. . . . . . . . . . . . . . . 16
⊢ ({𝑥 ∣ (𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡)} = {𝑦 ∣ (𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)} ↔ ∀𝑤(𝑤 ∈ {𝑥 ∣ (𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡)} ↔ 𝑤 ∈ {𝑦 ∣ (𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)})) |
| 9 | 7, 8 | mpbi 230 |
. . . . . . . . . . . . . . 15
⊢
∀𝑤(𝑤 ∈ {𝑥 ∣ (𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡)} ↔ 𝑤 ∈ {𝑦 ∣ (𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)}) |
| 10 | 9 | spi 2184 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ {𝑥 ∣ (𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡)} ↔ 𝑤 ∈ {𝑦 ∣ (𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)}) |
| 11 | | df-clab 2714 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ {𝑥 ∣ (𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡)} ↔ [𝑤 / 𝑥](𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡)) |
| 12 | | df-clab 2714 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ {𝑦 ∣ (𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)} ↔ [𝑤 / 𝑦](𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)) |
| 13 | 10, 11, 12 | 3bitr3i 301 |
. . . . . . . . . . . . 13
⊢ ([𝑤 / 𝑥](𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡) ↔ [𝑤 / 𝑦](𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)) |
| 14 | 4, 13 | bitr3i 277 |
. . . . . . . . . . . 12
⊢
(∀𝑥(𝑥 = 𝑤 → (𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡)) ↔ [𝑤 / 𝑦](𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)) |
| 15 | | sb6 2085 |
. . . . . . . . . . . 12
⊢ ([𝑤 / 𝑦](𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡) ↔ ∀𝑦(𝑦 = 𝑤 → (𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡))) |
| 16 | 14, 15 | sylbb 219 |
. . . . . . . . . . 11
⊢
(∀𝑥(𝑥 = 𝑤 → (𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡)) → ∀𝑦(𝑦 = 𝑤 → (𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡))) |
| 17 | | sp 2183 |
. . . . . . . . . . 11
⊢
(∀𝑦(𝑦 = 𝑤 → (𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)) → (𝑦 = 𝑤 → (𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡))) |
| 18 | 3, 16, 17 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑤 ∧ (𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡)) → (𝑦 = 𝑤 → (𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡))) |
| 19 | 18 | ex 412 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → ((𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡) → (𝑦 = 𝑤 → (𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)))) |
| 20 | 19 | com23 86 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝑦 = 𝑤 → ((𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡) → (𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)))) |
| 21 | 1, 20 | sylcom 30 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑤 → ((𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡) → (𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)))) |
| 22 | 21 | com12 32 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (𝑥 = 𝑦 → ((𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡) → (𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)))) |
| 23 | 22 | equcoms 2019 |
. . . . 5
⊢ (𝑤 = 𝑥 → (𝑥 = 𝑦 → ((𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡) → (𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)))) |
| 24 | | ax6ev 1969 |
. . . . 5
⊢
∃𝑤 𝑤 = 𝑥 |
| 25 | 23, 24 | exlimiiv 1931 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡) → (𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡))) |
| 26 | | pm4.24 563 |
. . . 4
⊢ (𝑥 ∈ 𝑡 ↔ (𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡)) |
| 27 | | pm4.24 563 |
. . . 4
⊢ (𝑦 ∈ 𝑡 ↔ (𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡)) |
| 28 | 25, 26, 27 | 3imtr4g 296 |
. . 3
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡)) |
| 29 | | ax9 2122 |
. . . . 5
⊢ (𝑧 = 𝑡 → (𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑡)) |
| 30 | 29 | equcoms 2019 |
. . . 4
⊢ (𝑡 = 𝑧 → (𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑡)) |
| 31 | | ax9 2122 |
. . . 4
⊢ (𝑡 = 𝑧 → (𝑦 ∈ 𝑡 → 𝑦 ∈ 𝑧)) |
| 32 | 30, 31 | imim12d 81 |
. . 3
⊢ (𝑡 = 𝑧 → ((𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡) → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧))) |
| 33 | 28, 32 | syl5 34 |
. 2
⊢ (𝑡 = 𝑧 → (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧))) |
| 34 | | ax6ev 1969 |
. 2
⊢
∃𝑡 𝑡 = 𝑧 |
| 35 | 33, 34 | exlimiiv 1931 |
1
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) |