Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  in-ax8 Structured version   Visualization version   GIF version

Theorem in-ax8 36182
Description: A proof of ax-8 2110 that does not rely on ax-8 2110. It employs df-in 3983 to perform alpha-renaming and eliminates disjoint variable conditions using ax-9 2118. Since the nature of this result is unclear, usage of this theorem is discouraged, and this method should not be applied to eliminate axiom dependencies. (Contributed by GG, 1-Aug-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
in-ax8 (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))

Proof of Theorem in-ax8
Dummy variables 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax7 2015 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = 𝑤𝑦 = 𝑤))
2 ax12v2 2180 . . . . . . . . . . . 12 (𝑥 = 𝑤 → ((𝑥𝑡𝑥𝑡) → ∀𝑥(𝑥 = 𝑤 → (𝑥𝑡𝑥𝑡))))
32imp 406 . . . . . . . . . . 11 ((𝑥 = 𝑤 ∧ (𝑥𝑡𝑥𝑡)) → ∀𝑥(𝑥 = 𝑤 → (𝑥𝑡𝑥𝑡)))
4 sb6 2085 . . . . . . . . . . . . 13 ([𝑤 / 𝑥](𝑥𝑡𝑥𝑡) ↔ ∀𝑥(𝑥 = 𝑤 → (𝑥𝑡𝑥𝑡)))
5 df-in 3983 . . . . . . . . . . . . . . . . 17 (𝑡𝑡) = {𝑥 ∣ (𝑥𝑡𝑥𝑡)}
6 df-in 3983 . . . . . . . . . . . . . . . . 17 (𝑡𝑡) = {𝑦 ∣ (𝑦𝑡𝑦𝑡)}
75, 6eqtr3i 2770 . . . . . . . . . . . . . . . 16 {𝑥 ∣ (𝑥𝑡𝑥𝑡)} = {𝑦 ∣ (𝑦𝑡𝑦𝑡)}
8 dfcleq 2733 . . . . . . . . . . . . . . . 16 ({𝑥 ∣ (𝑥𝑡𝑥𝑡)} = {𝑦 ∣ (𝑦𝑡𝑦𝑡)} ↔ ∀𝑤(𝑤 ∈ {𝑥 ∣ (𝑥𝑡𝑥𝑡)} ↔ 𝑤 ∈ {𝑦 ∣ (𝑦𝑡𝑦𝑡)}))
97, 8mpbi 230 . . . . . . . . . . . . . . 15 𝑤(𝑤 ∈ {𝑥 ∣ (𝑥𝑡𝑥𝑡)} ↔ 𝑤 ∈ {𝑦 ∣ (𝑦𝑡𝑦𝑡)})
109spi 2185 . . . . . . . . . . . . . 14 (𝑤 ∈ {𝑥 ∣ (𝑥𝑡𝑥𝑡)} ↔ 𝑤 ∈ {𝑦 ∣ (𝑦𝑡𝑦𝑡)})
11 df-clab 2718 . . . . . . . . . . . . . 14 (𝑤 ∈ {𝑥 ∣ (𝑥𝑡𝑥𝑡)} ↔ [𝑤 / 𝑥](𝑥𝑡𝑥𝑡))
12 df-clab 2718 . . . . . . . . . . . . . 14 (𝑤 ∈ {𝑦 ∣ (𝑦𝑡𝑦𝑡)} ↔ [𝑤 / 𝑦](𝑦𝑡𝑦𝑡))
1310, 11, 123bitr3i 301 . . . . . . . . . . . . 13 ([𝑤 / 𝑥](𝑥𝑡𝑥𝑡) ↔ [𝑤 / 𝑦](𝑦𝑡𝑦𝑡))
144, 13bitr3i 277 . . . . . . . . . . . 12 (∀𝑥(𝑥 = 𝑤 → (𝑥𝑡𝑥𝑡)) ↔ [𝑤 / 𝑦](𝑦𝑡𝑦𝑡))
15 sb6 2085 . . . . . . . . . . . 12 ([𝑤 / 𝑦](𝑦𝑡𝑦𝑡) ↔ ∀𝑦(𝑦 = 𝑤 → (𝑦𝑡𝑦𝑡)))
1614, 15sylbb 219 . . . . . . . . . . 11 (∀𝑥(𝑥 = 𝑤 → (𝑥𝑡𝑥𝑡)) → ∀𝑦(𝑦 = 𝑤 → (𝑦𝑡𝑦𝑡)))
17 sp 2184 . . . . . . . . . . 11 (∀𝑦(𝑦 = 𝑤 → (𝑦𝑡𝑦𝑡)) → (𝑦 = 𝑤 → (𝑦𝑡𝑦𝑡)))
183, 16, 173syl 18 . . . . . . . . . 10 ((𝑥 = 𝑤 ∧ (𝑥𝑡𝑥𝑡)) → (𝑦 = 𝑤 → (𝑦𝑡𝑦𝑡)))
1918ex 412 . . . . . . . . 9 (𝑥 = 𝑤 → ((𝑥𝑡𝑥𝑡) → (𝑦 = 𝑤 → (𝑦𝑡𝑦𝑡))))
2019com23 86 . . . . . . . 8 (𝑥 = 𝑤 → (𝑦 = 𝑤 → ((𝑥𝑡𝑥𝑡) → (𝑦𝑡𝑦𝑡))))
211, 20sylcom 30 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = 𝑤 → ((𝑥𝑡𝑥𝑡) → (𝑦𝑡𝑦𝑡))))
2221com12 32 . . . . . 6 (𝑥 = 𝑤 → (𝑥 = 𝑦 → ((𝑥𝑡𝑥𝑡) → (𝑦𝑡𝑦𝑡))))
2322equcoms 2019 . . . . 5 (𝑤 = 𝑥 → (𝑥 = 𝑦 → ((𝑥𝑡𝑥𝑡) → (𝑦𝑡𝑦𝑡))))
24 ax6ev 1969 . . . . 5 𝑤 𝑤 = 𝑥
2523, 24exlimiiv 1930 . . . 4 (𝑥 = 𝑦 → ((𝑥𝑡𝑥𝑡) → (𝑦𝑡𝑦𝑡)))
26 pm4.24 563 . . . 4 (𝑥𝑡 ↔ (𝑥𝑡𝑥𝑡))
27 pm4.24 563 . . . 4 (𝑦𝑡 ↔ (𝑦𝑡𝑦𝑡))
2825, 26, 273imtr4g 296 . . 3 (𝑥 = 𝑦 → (𝑥𝑡𝑦𝑡))
29 ax9 2122 . . . . 5 (𝑧 = 𝑡 → (𝑥𝑧𝑥𝑡))
3029equcoms 2019 . . . 4 (𝑡 = 𝑧 → (𝑥𝑧𝑥𝑡))
31 ax9 2122 . . . 4 (𝑡 = 𝑧 → (𝑦𝑡𝑦𝑧))
3230, 31imim12d 81 . . 3 (𝑡 = 𝑧 → ((𝑥𝑡𝑦𝑡) → (𝑥𝑧𝑦𝑧)))
3328, 32syl5 34 . 2 (𝑡 = 𝑧 → (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧)))
34 ax6ev 1969 . 2 𝑡 𝑡 = 𝑧
3533, 34exlimiiv 1930 1 (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  [wsb 2064  wcel 2108  {cab 2717  cin 3975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-in 3983
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator