![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elsetrecslem | Structured version Visualization version GIF version |
Description: Lemma for elsetrecs 43561. Any element of setrecs(𝐹) is generated by some subset of setrecs(𝐹). This is much weaker than setrec2v 43558. To see why this lemma also requires setrec1 43553, consider what would happen if we replaced 𝐵 with {𝐴}. The antecedent would still hold, but the consequent would fail in general. Consider dispensing with the deduction form. (Contributed by Emmett Weisz, 11-Jul-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elsetrecs.1 | ⊢ 𝐵 = setrecs(𝐹) |
Ref | Expression |
---|---|
elsetrecslem | ⊢ (𝐴 ∈ 𝐵 → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdifsn 4551 | . . . . 5 ⊢ (𝐵 ⊆ (𝐵 ∖ {𝐴}) ↔ (𝐵 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝐵)) | |
2 | 1 | simprbi 492 | . . . 4 ⊢ (𝐵 ⊆ (𝐵 ∖ {𝐴}) → ¬ 𝐴 ∈ 𝐵) |
3 | 2 | con2i 137 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐵 ⊆ (𝐵 ∖ {𝐴})) |
4 | elsetrecs.1 | . . . 4 ⊢ 𝐵 = setrecs(𝐹) | |
5 | sseq1 3845 | . . . . . . . . 9 ⊢ (𝑥 = 𝑎 → (𝑥 ⊆ 𝐵 ↔ 𝑎 ⊆ 𝐵)) | |
6 | fveq2 6448 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑎 → (𝐹‘𝑥) = (𝐹‘𝑎)) | |
7 | 6 | eleq2d 2845 | . . . . . . . . 9 ⊢ (𝑥 = 𝑎 → (𝐴 ∈ (𝐹‘𝑥) ↔ 𝐴 ∈ (𝐹‘𝑎))) |
8 | 5, 7 | anbi12d 624 | . . . . . . . 8 ⊢ (𝑥 = 𝑎 → ((𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) ↔ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)))) |
9 | 8 | notbid 310 | . . . . . . 7 ⊢ (𝑥 = 𝑎 → (¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) ↔ ¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)))) |
10 | 9 | spv 2358 | . . . . . 6 ⊢ (∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) → ¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎))) |
11 | imnan 390 | . . . . . . . . 9 ⊢ ((𝑎 ⊆ 𝐵 → ¬ 𝐴 ∈ (𝐹‘𝑎)) ↔ ¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎))) | |
12 | idd 24 | . . . . . . . . . . 11 ⊢ (𝑎 ⊆ 𝐵 → (¬ 𝐴 ∈ (𝐹‘𝑎) → ¬ 𝐴 ∈ (𝐹‘𝑎))) | |
13 | vex 3401 | . . . . . . . . . . . . 13 ⊢ 𝑎 ∈ V | |
14 | 13 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑎 ⊆ 𝐵 → 𝑎 ∈ V) |
15 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑎 ⊆ 𝐵 → 𝑎 ⊆ 𝐵) | |
16 | 4, 14, 15 | setrec1 43553 | . . . . . . . . . . 11 ⊢ (𝑎 ⊆ 𝐵 → (𝐹‘𝑎) ⊆ 𝐵) |
17 | 12, 16 | jctild 521 | . . . . . . . . . 10 ⊢ (𝑎 ⊆ 𝐵 → (¬ 𝐴 ∈ (𝐹‘𝑎) → ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎)))) |
18 | 17 | a2i 14 | . . . . . . . . 9 ⊢ ((𝑎 ⊆ 𝐵 → ¬ 𝐴 ∈ (𝐹‘𝑎)) → (𝑎 ⊆ 𝐵 → ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎)))) |
19 | 11, 18 | sylbir 227 | . . . . . . . 8 ⊢ (¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)) → (𝑎 ⊆ 𝐵 → ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎)))) |
20 | 19 | adantrd 487 | . . . . . . 7 ⊢ (¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)) → ((𝑎 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝑎) → ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎)))) |
21 | ssdifsn 4551 | . . . . . . 7 ⊢ (𝑎 ⊆ (𝐵 ∖ {𝐴}) ↔ (𝑎 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝑎)) | |
22 | ssdifsn 4551 | . . . . . . 7 ⊢ ((𝐹‘𝑎) ⊆ (𝐵 ∖ {𝐴}) ↔ ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎))) | |
23 | 20, 21, 22 | 3imtr4g 288 | . . . . . 6 ⊢ (¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)) → (𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹‘𝑎) ⊆ (𝐵 ∖ {𝐴}))) |
24 | 10, 23 | syl 17 | . . . . 5 ⊢ (∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) → (𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹‘𝑎) ⊆ (𝐵 ∖ {𝐴}))) |
25 | 24 | alrimiv 1970 | . . . 4 ⊢ (∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) → ∀𝑎(𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹‘𝑎) ⊆ (𝐵 ∖ {𝐴}))) |
26 | 4, 25 | setrec2v 43558 | . . 3 ⊢ (∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) → 𝐵 ⊆ (𝐵 ∖ {𝐴})) |
27 | 3, 26 | nsyl 138 | . 2 ⊢ (𝐴 ∈ 𝐵 → ¬ ∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) |
28 | df-ex 1824 | . 2 ⊢ (∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) ↔ ¬ ∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) | |
29 | 27, 28 | sylibr 226 | 1 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∀wal 1599 = wceq 1601 ∃wex 1823 ∈ wcel 2107 Vcvv 3398 ∖ cdif 3789 ⊆ wss 3792 {csn 4398 ‘cfv 6137 setrecscsetrecs 43545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-reg 8788 ax-inf2 8837 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-om 7346 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-r1 8926 df-rank 8927 df-setrecs 43546 |
This theorem is referenced by: elsetrecs 43561 |
Copyright terms: Public domain | W3C validator |