| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elsetrecslem | Structured version Visualization version GIF version | ||
| Description: Lemma for elsetrecs 49695. Any element of setrecs(𝐹) is generated by some subset of setrecs(𝐹). This is much weaker than setrec2v 49691. To see why this lemma also requires setrec1 49686, consider what would happen if we replaced 𝐵 with {𝐴}. The antecedent would still hold, but the consequent would fail in general. Consider dispensing with the deduction form. (Contributed by Emmett Weisz, 11-Jul-2021.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elsetrecs.1 | ⊢ 𝐵 = setrecs(𝐹) |
| Ref | Expression |
|---|---|
| elsetrecslem | ⊢ (𝐴 ∈ 𝐵 → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdifsn 4739 | . . . . 5 ⊢ (𝐵 ⊆ (𝐵 ∖ {𝐴}) ↔ (𝐵 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝐵)) | |
| 2 | 1 | simprbi 496 | . . . 4 ⊢ (𝐵 ⊆ (𝐵 ∖ {𝐴}) → ¬ 𝐴 ∈ 𝐵) |
| 3 | 2 | con2i 139 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐵 ⊆ (𝐵 ∖ {𝐴})) |
| 4 | elsetrecs.1 | . . . 4 ⊢ 𝐵 = setrecs(𝐹) | |
| 5 | sseq1 3961 | . . . . . . . . 9 ⊢ (𝑥 = 𝑎 → (𝑥 ⊆ 𝐵 ↔ 𝑎 ⊆ 𝐵)) | |
| 6 | fveq2 6822 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑎 → (𝐹‘𝑥) = (𝐹‘𝑎)) | |
| 7 | 6 | eleq2d 2814 | . . . . . . . . 9 ⊢ (𝑥 = 𝑎 → (𝐴 ∈ (𝐹‘𝑥) ↔ 𝐴 ∈ (𝐹‘𝑎))) |
| 8 | 5, 7 | anbi12d 632 | . . . . . . . 8 ⊢ (𝑥 = 𝑎 → ((𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) ↔ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)))) |
| 9 | 8 | notbid 318 | . . . . . . 7 ⊢ (𝑥 = 𝑎 → (¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) ↔ ¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)))) |
| 10 | 9 | spvv 1988 | . . . . . 6 ⊢ (∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) → ¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎))) |
| 11 | imnan 399 | . . . . . . . . 9 ⊢ ((𝑎 ⊆ 𝐵 → ¬ 𝐴 ∈ (𝐹‘𝑎)) ↔ ¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎))) | |
| 12 | idd 24 | . . . . . . . . . . 11 ⊢ (𝑎 ⊆ 𝐵 → (¬ 𝐴 ∈ (𝐹‘𝑎) → ¬ 𝐴 ∈ (𝐹‘𝑎))) | |
| 13 | vex 3440 | . . . . . . . . . . . . 13 ⊢ 𝑎 ∈ V | |
| 14 | 13 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑎 ⊆ 𝐵 → 𝑎 ∈ V) |
| 15 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑎 ⊆ 𝐵 → 𝑎 ⊆ 𝐵) | |
| 16 | 4, 14, 15 | setrec1 49686 | . . . . . . . . . . 11 ⊢ (𝑎 ⊆ 𝐵 → (𝐹‘𝑎) ⊆ 𝐵) |
| 17 | 12, 16 | jctild 525 | . . . . . . . . . 10 ⊢ (𝑎 ⊆ 𝐵 → (¬ 𝐴 ∈ (𝐹‘𝑎) → ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎)))) |
| 18 | 17 | a2i 14 | . . . . . . . . 9 ⊢ ((𝑎 ⊆ 𝐵 → ¬ 𝐴 ∈ (𝐹‘𝑎)) → (𝑎 ⊆ 𝐵 → ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎)))) |
| 19 | 11, 18 | sylbir 235 | . . . . . . . 8 ⊢ (¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)) → (𝑎 ⊆ 𝐵 → ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎)))) |
| 20 | 19 | adantrd 491 | . . . . . . 7 ⊢ (¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)) → ((𝑎 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝑎) → ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎)))) |
| 21 | ssdifsn 4739 | . . . . . . 7 ⊢ (𝑎 ⊆ (𝐵 ∖ {𝐴}) ↔ (𝑎 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝑎)) | |
| 22 | ssdifsn 4739 | . . . . . . 7 ⊢ ((𝐹‘𝑎) ⊆ (𝐵 ∖ {𝐴}) ↔ ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎))) | |
| 23 | 20, 21, 22 | 3imtr4g 296 | . . . . . 6 ⊢ (¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)) → (𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹‘𝑎) ⊆ (𝐵 ∖ {𝐴}))) |
| 24 | 10, 23 | syl 17 | . . . . 5 ⊢ (∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) → (𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹‘𝑎) ⊆ (𝐵 ∖ {𝐴}))) |
| 25 | 24 | alrimiv 1927 | . . . 4 ⊢ (∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) → ∀𝑎(𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹‘𝑎) ⊆ (𝐵 ∖ {𝐴}))) |
| 26 | 4, 25 | setrec2v 49691 | . . 3 ⊢ (∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) → 𝐵 ⊆ (𝐵 ∖ {𝐴})) |
| 27 | 3, 26 | nsyl 140 | . 2 ⊢ (𝐴 ∈ 𝐵 → ¬ ∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) |
| 28 | df-ex 1780 | . 2 ⊢ (∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) ↔ ¬ ∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) | |
| 29 | 27, 28 | sylibr 234 | 1 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3436 ∖ cdif 3900 ⊆ wss 3903 {csn 4577 ‘cfv 6482 setrecscsetrecs 49678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-reg 9484 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-r1 9660 df-rank 9661 df-setrecs 49679 |
| This theorem is referenced by: elsetrecs 49695 |
| Copyright terms: Public domain | W3C validator |