Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsetrecslem Structured version   Visualization version   GIF version

Theorem elsetrecslem 48930
Description: Lemma for elsetrecs 48931. Any element of setrecs(𝐹) is generated by some subset of setrecs(𝐹). This is much weaker than setrec2v 48927. To see why this lemma also requires setrec1 48922, consider what would happen if we replaced 𝐵 with {𝐴}. The antecedent would still hold, but the consequent would fail in general. Consider dispensing with the deduction form. (Contributed by Emmett Weisz, 11-Jul-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
elsetrecs.1 𝐵 = setrecs(𝐹)
Assertion
Ref Expression
elsetrecslem (𝐴𝐵 → ∃𝑥(𝑥𝐵𝐴 ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem elsetrecslem
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ssdifsn 4793 . . . . 5 (𝐵 ⊆ (𝐵 ∖ {𝐴}) ↔ (𝐵𝐵 ∧ ¬ 𝐴𝐵))
21simprbi 496 . . . 4 (𝐵 ⊆ (𝐵 ∖ {𝐴}) → ¬ 𝐴𝐵)
32con2i 139 . . 3 (𝐴𝐵 → ¬ 𝐵 ⊆ (𝐵 ∖ {𝐴}))
4 elsetrecs.1 . . . 4 𝐵 = setrecs(𝐹)
5 sseq1 4021 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑥𝐵𝑎𝐵))
6 fveq2 6907 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
76eleq2d 2825 . . . . . . . . 9 (𝑥 = 𝑎 → (𝐴 ∈ (𝐹𝑥) ↔ 𝐴 ∈ (𝐹𝑎)))
85, 7anbi12d 632 . . . . . . . 8 (𝑥 = 𝑎 → ((𝑥𝐵𝐴 ∈ (𝐹𝑥)) ↔ (𝑎𝐵𝐴 ∈ (𝐹𝑎))))
98notbid 318 . . . . . . 7 (𝑥 = 𝑎 → (¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)) ↔ ¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎))))
109spvv 1994 . . . . . 6 (∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)) → ¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎)))
11 imnan 399 . . . . . . . . 9 ((𝑎𝐵 → ¬ 𝐴 ∈ (𝐹𝑎)) ↔ ¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎)))
12 idd 24 . . . . . . . . . . 11 (𝑎𝐵 → (¬ 𝐴 ∈ (𝐹𝑎) → ¬ 𝐴 ∈ (𝐹𝑎)))
13 vex 3482 . . . . . . . . . . . . 13 𝑎 ∈ V
1413a1i 11 . . . . . . . . . . . 12 (𝑎𝐵𝑎 ∈ V)
15 id 22 . . . . . . . . . . . 12 (𝑎𝐵𝑎𝐵)
164, 14, 15setrec1 48922 . . . . . . . . . . 11 (𝑎𝐵 → (𝐹𝑎) ⊆ 𝐵)
1712, 16jctild 525 . . . . . . . . . 10 (𝑎𝐵 → (¬ 𝐴 ∈ (𝐹𝑎) → ((𝐹𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹𝑎))))
1817a2i 14 . . . . . . . . 9 ((𝑎𝐵 → ¬ 𝐴 ∈ (𝐹𝑎)) → (𝑎𝐵 → ((𝐹𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹𝑎))))
1911, 18sylbir 235 . . . . . . . 8 (¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎)) → (𝑎𝐵 → ((𝐹𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹𝑎))))
2019adantrd 491 . . . . . . 7 (¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎)) → ((𝑎𝐵 ∧ ¬ 𝐴𝑎) → ((𝐹𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹𝑎))))
21 ssdifsn 4793 . . . . . . 7 (𝑎 ⊆ (𝐵 ∖ {𝐴}) ↔ (𝑎𝐵 ∧ ¬ 𝐴𝑎))
22 ssdifsn 4793 . . . . . . 7 ((𝐹𝑎) ⊆ (𝐵 ∖ {𝐴}) ↔ ((𝐹𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹𝑎)))
2320, 21, 223imtr4g 296 . . . . . 6 (¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎)) → (𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹𝑎) ⊆ (𝐵 ∖ {𝐴})))
2410, 23syl 17 . . . . 5 (∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)) → (𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹𝑎) ⊆ (𝐵 ∖ {𝐴})))
2524alrimiv 1925 . . . 4 (∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)) → ∀𝑎(𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹𝑎) ⊆ (𝐵 ∖ {𝐴})))
264, 25setrec2v 48927 . . 3 (∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)) → 𝐵 ⊆ (𝐵 ∖ {𝐴}))
273, 26nsyl 140 . 2 (𝐴𝐵 → ¬ ∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)))
28 df-ex 1777 . 2 (∃𝑥(𝑥𝐵𝐴 ∈ (𝐹𝑥)) ↔ ¬ ∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)))
2927, 28sylibr 234 1 (𝐴𝐵 → ∃𝑥(𝑥𝐵𝐴 ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1535   = wceq 1537  wex 1776  wcel 2106  Vcvv 3478  cdif 3960  wss 3963  {csn 4631  cfv 6563  setrecscsetrecs 48914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-reg 9630  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-r1 9802  df-rank 9803  df-setrecs 48915
This theorem is referenced by:  elsetrecs  48931
  Copyright terms: Public domain W3C validator