Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsetrecslem Structured version   Visualization version   GIF version

Theorem elsetrecslem 46663
Description: Lemma for elsetrecs 46664. Any element of setrecs(𝐹) is generated by some subset of setrecs(𝐹). This is much weaker than setrec2v 46661. To see why this lemma also requires setrec1 46656, consider what would happen if we replaced 𝐵 with {𝐴}. The antecedent would still hold, but the consequent would fail in general. Consider dispensing with the deduction form. (Contributed by Emmett Weisz, 11-Jul-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
elsetrecs.1 𝐵 = setrecs(𝐹)
Assertion
Ref Expression
elsetrecslem (𝐴𝐵 → ∃𝑥(𝑥𝐵𝐴 ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem elsetrecslem
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ssdifsn 4731 . . . . 5 (𝐵 ⊆ (𝐵 ∖ {𝐴}) ↔ (𝐵𝐵 ∧ ¬ 𝐴𝐵))
21simprbi 497 . . . 4 (𝐵 ⊆ (𝐵 ∖ {𝐴}) → ¬ 𝐴𝐵)
32con2i 139 . . 3 (𝐴𝐵 → ¬ 𝐵 ⊆ (𝐵 ∖ {𝐴}))
4 elsetrecs.1 . . . 4 𝐵 = setrecs(𝐹)
5 sseq1 3955 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑥𝐵𝑎𝐵))
6 fveq2 6809 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
76eleq2d 2823 . . . . . . . . 9 (𝑥 = 𝑎 → (𝐴 ∈ (𝐹𝑥) ↔ 𝐴 ∈ (𝐹𝑎)))
85, 7anbi12d 631 . . . . . . . 8 (𝑥 = 𝑎 → ((𝑥𝐵𝐴 ∈ (𝐹𝑥)) ↔ (𝑎𝐵𝐴 ∈ (𝐹𝑎))))
98notbid 317 . . . . . . 7 (𝑥 = 𝑎 → (¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)) ↔ ¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎))))
109spvv 1999 . . . . . 6 (∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)) → ¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎)))
11 imnan 400 . . . . . . . . 9 ((𝑎𝐵 → ¬ 𝐴 ∈ (𝐹𝑎)) ↔ ¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎)))
12 idd 24 . . . . . . . . . . 11 (𝑎𝐵 → (¬ 𝐴 ∈ (𝐹𝑎) → ¬ 𝐴 ∈ (𝐹𝑎)))
13 vex 3445 . . . . . . . . . . . . 13 𝑎 ∈ V
1413a1i 11 . . . . . . . . . . . 12 (𝑎𝐵𝑎 ∈ V)
15 id 22 . . . . . . . . . . . 12 (𝑎𝐵𝑎𝐵)
164, 14, 15setrec1 46656 . . . . . . . . . . 11 (𝑎𝐵 → (𝐹𝑎) ⊆ 𝐵)
1712, 16jctild 526 . . . . . . . . . 10 (𝑎𝐵 → (¬ 𝐴 ∈ (𝐹𝑎) → ((𝐹𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹𝑎))))
1817a2i 14 . . . . . . . . 9 ((𝑎𝐵 → ¬ 𝐴 ∈ (𝐹𝑎)) → (𝑎𝐵 → ((𝐹𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹𝑎))))
1911, 18sylbir 234 . . . . . . . 8 (¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎)) → (𝑎𝐵 → ((𝐹𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹𝑎))))
2019adantrd 492 . . . . . . 7 (¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎)) → ((𝑎𝐵 ∧ ¬ 𝐴𝑎) → ((𝐹𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹𝑎))))
21 ssdifsn 4731 . . . . . . 7 (𝑎 ⊆ (𝐵 ∖ {𝐴}) ↔ (𝑎𝐵 ∧ ¬ 𝐴𝑎))
22 ssdifsn 4731 . . . . . . 7 ((𝐹𝑎) ⊆ (𝐵 ∖ {𝐴}) ↔ ((𝐹𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹𝑎)))
2320, 21, 223imtr4g 295 . . . . . 6 (¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎)) → (𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹𝑎) ⊆ (𝐵 ∖ {𝐴})))
2410, 23syl 17 . . . . 5 (∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)) → (𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹𝑎) ⊆ (𝐵 ∖ {𝐴})))
2524alrimiv 1929 . . . 4 (∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)) → ∀𝑎(𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹𝑎) ⊆ (𝐵 ∖ {𝐴})))
264, 25setrec2v 46661 . . 3 (∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)) → 𝐵 ⊆ (𝐵 ∖ {𝐴}))
273, 26nsyl 140 . 2 (𝐴𝐵 → ¬ ∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)))
28 df-ex 1781 . 2 (∃𝑥(𝑥𝐵𝐴 ∈ (𝐹𝑥)) ↔ ¬ ∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)))
2927, 28sylibr 233 1 (𝐴𝐵 → ∃𝑥(𝑥𝐵𝐴 ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wal 1538   = wceq 1540  wex 1780  wcel 2105  Vcvv 3441  cdif 3893  wss 3896  {csn 4569  cfv 6463  setrecscsetrecs 46648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-reg 9419  ax-inf2 9467
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-int 4891  df-iun 4937  df-iin 4938  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-ov 7316  df-om 7756  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-r1 9590  df-rank 9591  df-setrecs 46649
This theorem is referenced by:  elsetrecs  46664
  Copyright terms: Public domain W3C validator