Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elsetrecslem | Structured version Visualization version GIF version |
Description: Lemma for elsetrecs 46664. Any element of setrecs(𝐹) is generated by some subset of setrecs(𝐹). This is much weaker than setrec2v 46661. To see why this lemma also requires setrec1 46656, consider what would happen if we replaced 𝐵 with {𝐴}. The antecedent would still hold, but the consequent would fail in general. Consider dispensing with the deduction form. (Contributed by Emmett Weisz, 11-Jul-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elsetrecs.1 | ⊢ 𝐵 = setrecs(𝐹) |
Ref | Expression |
---|---|
elsetrecslem | ⊢ (𝐴 ∈ 𝐵 → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdifsn 4731 | . . . . 5 ⊢ (𝐵 ⊆ (𝐵 ∖ {𝐴}) ↔ (𝐵 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝐵)) | |
2 | 1 | simprbi 497 | . . . 4 ⊢ (𝐵 ⊆ (𝐵 ∖ {𝐴}) → ¬ 𝐴 ∈ 𝐵) |
3 | 2 | con2i 139 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐵 ⊆ (𝐵 ∖ {𝐴})) |
4 | elsetrecs.1 | . . . 4 ⊢ 𝐵 = setrecs(𝐹) | |
5 | sseq1 3955 | . . . . . . . . 9 ⊢ (𝑥 = 𝑎 → (𝑥 ⊆ 𝐵 ↔ 𝑎 ⊆ 𝐵)) | |
6 | fveq2 6809 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑎 → (𝐹‘𝑥) = (𝐹‘𝑎)) | |
7 | 6 | eleq2d 2823 | . . . . . . . . 9 ⊢ (𝑥 = 𝑎 → (𝐴 ∈ (𝐹‘𝑥) ↔ 𝐴 ∈ (𝐹‘𝑎))) |
8 | 5, 7 | anbi12d 631 | . . . . . . . 8 ⊢ (𝑥 = 𝑎 → ((𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) ↔ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)))) |
9 | 8 | notbid 317 | . . . . . . 7 ⊢ (𝑥 = 𝑎 → (¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) ↔ ¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)))) |
10 | 9 | spvv 1999 | . . . . . 6 ⊢ (∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) → ¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎))) |
11 | imnan 400 | . . . . . . . . 9 ⊢ ((𝑎 ⊆ 𝐵 → ¬ 𝐴 ∈ (𝐹‘𝑎)) ↔ ¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎))) | |
12 | idd 24 | . . . . . . . . . . 11 ⊢ (𝑎 ⊆ 𝐵 → (¬ 𝐴 ∈ (𝐹‘𝑎) → ¬ 𝐴 ∈ (𝐹‘𝑎))) | |
13 | vex 3445 | . . . . . . . . . . . . 13 ⊢ 𝑎 ∈ V | |
14 | 13 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑎 ⊆ 𝐵 → 𝑎 ∈ V) |
15 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑎 ⊆ 𝐵 → 𝑎 ⊆ 𝐵) | |
16 | 4, 14, 15 | setrec1 46656 | . . . . . . . . . . 11 ⊢ (𝑎 ⊆ 𝐵 → (𝐹‘𝑎) ⊆ 𝐵) |
17 | 12, 16 | jctild 526 | . . . . . . . . . 10 ⊢ (𝑎 ⊆ 𝐵 → (¬ 𝐴 ∈ (𝐹‘𝑎) → ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎)))) |
18 | 17 | a2i 14 | . . . . . . . . 9 ⊢ ((𝑎 ⊆ 𝐵 → ¬ 𝐴 ∈ (𝐹‘𝑎)) → (𝑎 ⊆ 𝐵 → ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎)))) |
19 | 11, 18 | sylbir 234 | . . . . . . . 8 ⊢ (¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)) → (𝑎 ⊆ 𝐵 → ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎)))) |
20 | 19 | adantrd 492 | . . . . . . 7 ⊢ (¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)) → ((𝑎 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝑎) → ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎)))) |
21 | ssdifsn 4731 | . . . . . . 7 ⊢ (𝑎 ⊆ (𝐵 ∖ {𝐴}) ↔ (𝑎 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝑎)) | |
22 | ssdifsn 4731 | . . . . . . 7 ⊢ ((𝐹‘𝑎) ⊆ (𝐵 ∖ {𝐴}) ↔ ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎))) | |
23 | 20, 21, 22 | 3imtr4g 295 | . . . . . 6 ⊢ (¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)) → (𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹‘𝑎) ⊆ (𝐵 ∖ {𝐴}))) |
24 | 10, 23 | syl 17 | . . . . 5 ⊢ (∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) → (𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹‘𝑎) ⊆ (𝐵 ∖ {𝐴}))) |
25 | 24 | alrimiv 1929 | . . . 4 ⊢ (∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) → ∀𝑎(𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹‘𝑎) ⊆ (𝐵 ∖ {𝐴}))) |
26 | 4, 25 | setrec2v 46661 | . . 3 ⊢ (∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) → 𝐵 ⊆ (𝐵 ∖ {𝐴})) |
27 | 3, 26 | nsyl 140 | . 2 ⊢ (𝐴 ∈ 𝐵 → ¬ ∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) |
28 | df-ex 1781 | . 2 ⊢ (∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) ↔ ¬ ∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) | |
29 | 27, 28 | sylibr 233 | 1 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∀wal 1538 = wceq 1540 ∃wex 1780 ∈ wcel 2105 Vcvv 3441 ∖ cdif 3893 ⊆ wss 3896 {csn 4569 ‘cfv 6463 setrecscsetrecs 46648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-reg 9419 ax-inf2 9467 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-iin 4938 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-ov 7316 df-om 7756 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-r1 9590 df-rank 9591 df-setrecs 46649 |
This theorem is referenced by: elsetrecs 46664 |
Copyright terms: Public domain | W3C validator |