Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsetrecslem Structured version   Visualization version   GIF version

Theorem elsetrecslem 46404
Description: Lemma for elsetrecs 46405. Any element of setrecs(𝐹) is generated by some subset of setrecs(𝐹). This is much weaker than setrec2v 46402. To see why this lemma also requires setrec1 46397, consider what would happen if we replaced 𝐵 with {𝐴}. The antecedent would still hold, but the consequent would fail in general. Consider dispensing with the deduction form. (Contributed by Emmett Weisz, 11-Jul-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
elsetrecs.1 𝐵 = setrecs(𝐹)
Assertion
Ref Expression
elsetrecslem (𝐴𝐵 → ∃𝑥(𝑥𝐵𝐴 ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem elsetrecslem
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ssdifsn 4721 . . . . 5 (𝐵 ⊆ (𝐵 ∖ {𝐴}) ↔ (𝐵𝐵 ∧ ¬ 𝐴𝐵))
21simprbi 497 . . . 4 (𝐵 ⊆ (𝐵 ∖ {𝐴}) → ¬ 𝐴𝐵)
32con2i 139 . . 3 (𝐴𝐵 → ¬ 𝐵 ⊆ (𝐵 ∖ {𝐴}))
4 elsetrecs.1 . . . 4 𝐵 = setrecs(𝐹)
5 sseq1 3946 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑥𝐵𝑎𝐵))
6 fveq2 6774 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
76eleq2d 2824 . . . . . . . . 9 (𝑥 = 𝑎 → (𝐴 ∈ (𝐹𝑥) ↔ 𝐴 ∈ (𝐹𝑎)))
85, 7anbi12d 631 . . . . . . . 8 (𝑥 = 𝑎 → ((𝑥𝐵𝐴 ∈ (𝐹𝑥)) ↔ (𝑎𝐵𝐴 ∈ (𝐹𝑎))))
98notbid 318 . . . . . . 7 (𝑥 = 𝑎 → (¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)) ↔ ¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎))))
109spvv 2000 . . . . . 6 (∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)) → ¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎)))
11 imnan 400 . . . . . . . . 9 ((𝑎𝐵 → ¬ 𝐴 ∈ (𝐹𝑎)) ↔ ¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎)))
12 idd 24 . . . . . . . . . . 11 (𝑎𝐵 → (¬ 𝐴 ∈ (𝐹𝑎) → ¬ 𝐴 ∈ (𝐹𝑎)))
13 vex 3436 . . . . . . . . . . . . 13 𝑎 ∈ V
1413a1i 11 . . . . . . . . . . . 12 (𝑎𝐵𝑎 ∈ V)
15 id 22 . . . . . . . . . . . 12 (𝑎𝐵𝑎𝐵)
164, 14, 15setrec1 46397 . . . . . . . . . . 11 (𝑎𝐵 → (𝐹𝑎) ⊆ 𝐵)
1712, 16jctild 526 . . . . . . . . . 10 (𝑎𝐵 → (¬ 𝐴 ∈ (𝐹𝑎) → ((𝐹𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹𝑎))))
1817a2i 14 . . . . . . . . 9 ((𝑎𝐵 → ¬ 𝐴 ∈ (𝐹𝑎)) → (𝑎𝐵 → ((𝐹𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹𝑎))))
1911, 18sylbir 234 . . . . . . . 8 (¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎)) → (𝑎𝐵 → ((𝐹𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹𝑎))))
2019adantrd 492 . . . . . . 7 (¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎)) → ((𝑎𝐵 ∧ ¬ 𝐴𝑎) → ((𝐹𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹𝑎))))
21 ssdifsn 4721 . . . . . . 7 (𝑎 ⊆ (𝐵 ∖ {𝐴}) ↔ (𝑎𝐵 ∧ ¬ 𝐴𝑎))
22 ssdifsn 4721 . . . . . . 7 ((𝐹𝑎) ⊆ (𝐵 ∖ {𝐴}) ↔ ((𝐹𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹𝑎)))
2320, 21, 223imtr4g 296 . . . . . 6 (¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎)) → (𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹𝑎) ⊆ (𝐵 ∖ {𝐴})))
2410, 23syl 17 . . . . 5 (∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)) → (𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹𝑎) ⊆ (𝐵 ∖ {𝐴})))
2524alrimiv 1930 . . . 4 (∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)) → ∀𝑎(𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹𝑎) ⊆ (𝐵 ∖ {𝐴})))
264, 25setrec2v 46402 . . 3 (∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)) → 𝐵 ⊆ (𝐵 ∖ {𝐴}))
273, 26nsyl 140 . 2 (𝐴𝐵 → ¬ ∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)))
28 df-ex 1783 . 2 (∃𝑥(𝑥𝐵𝐴 ∈ (𝐹𝑥)) ↔ ¬ ∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)))
2927, 28sylibr 233 1 (𝐴𝐵 → ∃𝑥(𝑥𝐵𝐴 ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432  cdif 3884  wss 3887  {csn 4561  cfv 6433  setrecscsetrecs 46389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-r1 9522  df-rank 9523  df-setrecs 46390
This theorem is referenced by:  elsetrecs  46405
  Copyright terms: Public domain W3C validator