Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdrng4 Structured version   Visualization version   GIF version

Theorem isdrng4 33252
Description: A division ring is a ring in which 1 ≠ 0 and every nonzero element has a left and right inverse. (Contributed by Thierry Arnoux, 2-Mar-2025.)
Hypotheses
Ref Expression
isdrng4.b 𝐵 = (Base‘𝑅)
isdrng4.0 0 = (0g𝑅)
isdrng4.1 1 = (1r𝑅)
isdrng4.x · = (.r𝑅)
isdrng4.u 𝑈 = (Unit‘𝑅)
isdrng4.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
isdrng4 (𝜑 → (𝑅 ∈ DivRing ↔ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))))
Distinct variable groups:   𝑥, 0   𝑥, 1 ,𝑦   𝑥, · ,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦
Allowed substitution hint:   0 (𝑦)

Proof of Theorem isdrng4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 isdrng4.b . . . 4 𝐵 = (Base‘𝑅)
2 isdrng4.u . . . 4 𝑈 = (Unit‘𝑅)
3 isdrng4.0 . . . 4 0 = (0g𝑅)
41, 2, 3isdrng 20649 . . 3 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 })))
5 isdrng4.r . . . 4 (𝜑𝑅 ∈ Ring)
65biantrurd 532 . . 3 (𝜑 → (𝑈 = (𝐵 ∖ { 0 }) ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))))
74, 6bitr4id 290 . 2 (𝜑 → (𝑅 ∈ DivRing ↔ 𝑈 = (𝐵 ∖ { 0 })))
8 isdrng4.1 . . . . . . . . 9 1 = (1r𝑅)
92, 81unit 20290 . . . . . . . 8 (𝑅 ∈ Ring → 1𝑈)
105, 9syl 17 . . . . . . 7 (𝜑1𝑈)
1110adantr 480 . . . . . 6 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → 1𝑈)
12 simpr 484 . . . . . 6 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → 𝑈 = (𝐵 ∖ { 0 }))
1311, 12eleqtrd 2831 . . . . 5 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → 1 ∈ (𝐵 ∖ { 0 }))
14 eldifsni 4757 . . . . 5 ( 1 ∈ (𝐵 ∖ { 0 }) → 10 )
1513, 14syl 17 . . . 4 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → 10 )
16 simpll 766 . . . . . 6 (((𝜑𝑈 = (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝜑)
1712eleq2d 2815 . . . . . . 7 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → (𝑥𝑈𝑥 ∈ (𝐵 ∖ { 0 })))
1817biimpar 477 . . . . . 6 (((𝜑𝑈 = (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥𝑈)
19 isdrng4.x . . . . . . . . . . . . 13 · = (.r𝑅)
205ad5antr 734 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑅 ∈ Ring)
211, 2unitcl 20291 . . . . . . . . . . . . . 14 (𝑥𝑈𝑥𝐵)
2221ad5antlr 735 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑥𝐵)
23 simp-4r 783 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑦𝐵)
24 simplr 768 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑧𝐵)
25 simpllr 775 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → (𝑦 · 𝑥) = 1 )
26 simpr 484 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → (𝑥 · 𝑧) = 1 )
271, 3, 8, 19, 2, 20, 22, 23, 24, 25, 26ringinveu 33251 . . . . . . . . . . . 12 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑧 = 𝑦)
2827oveq2d 7406 . . . . . . . . . . 11 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → (𝑥 · 𝑧) = (𝑥 · 𝑦))
2928, 26eqtr3d 2767 . . . . . . . . . 10 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → (𝑥 · 𝑦) = 1 )
3021ad3antlr 731 . . . . . . . . . . 11 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → 𝑥𝐵)
31 eqid 2730 . . . . . . . . . . . . . 14 (∥r𝑅) = (∥r𝑅)
32 eqid 2730 . . . . . . . . . . . . . 14 (oppr𝑅) = (oppr𝑅)
33 eqid 2730 . . . . . . . . . . . . . 14 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
342, 8, 31, 32, 33isunit 20289 . . . . . . . . . . . . 13 (𝑥𝑈 ↔ (𝑥(∥r𝑅) 1𝑥(∥r‘(oppr𝑅)) 1 ))
3534simprbi 496 . . . . . . . . . . . 12 (𝑥𝑈𝑥(∥r‘(oppr𝑅)) 1 )
3635ad3antlr 731 . . . . . . . . . . 11 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → 𝑥(∥r‘(oppr𝑅)) 1 )
3732, 1opprbas 20259 . . . . . . . . . . . . . . 15 𝐵 = (Base‘(oppr𝑅))
38 eqid 2730 . . . . . . . . . . . . . . 15 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
3937, 33, 38dvdsr2 20279 . . . . . . . . . . . . . 14 (𝑥𝐵 → (𝑥(∥r‘(oppr𝑅)) 1 ↔ ∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 ))
4039biimpa 476 . . . . . . . . . . . . 13 ((𝑥𝐵𝑥(∥r‘(oppr𝑅)) 1 ) → ∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 )
411, 19, 32, 38opprmul 20256 . . . . . . . . . . . . . . 15 (𝑦(.r‘(oppr𝑅))𝑥) = (𝑥 · 𝑦)
4241eqeq1i 2735 . . . . . . . . . . . . . 14 ((𝑦(.r‘(oppr𝑅))𝑥) = 1 ↔ (𝑥 · 𝑦) = 1 )
4342rexbii 3077 . . . . . . . . . . . . 13 (∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 ↔ ∃𝑦𝐵 (𝑥 · 𝑦) = 1 )
4440, 43sylib 218 . . . . . . . . . . . 12 ((𝑥𝐵𝑥(∥r‘(oppr𝑅)) 1 ) → ∃𝑦𝐵 (𝑥 · 𝑦) = 1 )
45 oveq2 7398 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑥 · 𝑦) = (𝑥 · 𝑧))
4645eqeq1d 2732 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝑥 · 𝑦) = 1 ↔ (𝑥 · 𝑧) = 1 ))
4746cbvrexvw 3217 . . . . . . . . . . . 12 (∃𝑦𝐵 (𝑥 · 𝑦) = 1 ↔ ∃𝑧𝐵 (𝑥 · 𝑧) = 1 )
4844, 47sylib 218 . . . . . . . . . . 11 ((𝑥𝐵𝑥(∥r‘(oppr𝑅)) 1 ) → ∃𝑧𝐵 (𝑥 · 𝑧) = 1 )
4930, 36, 48syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → ∃𝑧𝐵 (𝑥 · 𝑧) = 1 )
5029, 49r19.29a 3142 . . . . . . . . 9 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → (𝑥 · 𝑦) = 1 )
51 simpr 484 . . . . . . . . 9 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → (𝑦 · 𝑥) = 1 )
5250, 51jca 511 . . . . . . . 8 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
5352anasss 466 . . . . . . 7 (((𝜑𝑥𝑈) ∧ (𝑦𝐵 ∧ (𝑦 · 𝑥) = 1 )) → ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
5421adantl 481 . . . . . . . 8 ((𝜑𝑥𝑈) → 𝑥𝐵)
5534simplbi 497 . . . . . . . . 9 (𝑥𝑈𝑥(∥r𝑅) 1 )
5655adantl 481 . . . . . . . 8 ((𝜑𝑥𝑈) → 𝑥(∥r𝑅) 1 )
571, 31, 19dvdsr2 20279 . . . . . . . . 9 (𝑥𝐵 → (𝑥(∥r𝑅) 1 ↔ ∃𝑦𝐵 (𝑦 · 𝑥) = 1 ))
5857biimpa 476 . . . . . . . 8 ((𝑥𝐵𝑥(∥r𝑅) 1 ) → ∃𝑦𝐵 (𝑦 · 𝑥) = 1 )
5954, 56, 58syl2anc 584 . . . . . . 7 ((𝜑𝑥𝑈) → ∃𝑦𝐵 (𝑦 · 𝑥) = 1 )
6053, 59reximddv 3150 . . . . . 6 ((𝜑𝑥𝑈) → ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
6116, 18, 60syl2anc 584 . . . . 5 (((𝜑𝑈 = (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
6261ralrimiva 3126 . . . 4 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
6315, 62jca 511 . . 3 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )))
641, 2unitss 20292 . . . . . 6 𝑈𝐵
6564a1i 11 . . . . 5 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 𝑈𝐵)
665adantr 480 . . . . . 6 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 𝑅 ∈ Ring)
67 simprl 770 . . . . . 6 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 10 )
682, 3, 80unit 20312 . . . . . . . 8 (𝑅 ∈ Ring → ( 0𝑈1 = 0 ))
6968necon3bbid 2963 . . . . . . 7 (𝑅 ∈ Ring → (¬ 0𝑈10 ))
7069biimpar 477 . . . . . 6 ((𝑅 ∈ Ring ∧ 10 ) → ¬ 0𝑈)
7166, 67, 70syl2anc 584 . . . . 5 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → ¬ 0𝑈)
72 ssdifsn 4755 . . . . 5 (𝑈 ⊆ (𝐵 ∖ { 0 }) ↔ (𝑈𝐵 ∧ ¬ 0𝑈))
7365, 71, 72sylanbrc 583 . . . 4 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 𝑈 ⊆ (𝐵 ∖ { 0 }))
74 simplr 768 . . . . . . . . . . 11 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥 ∈ (𝐵 ∖ { 0 }))
7574eldifad 3929 . . . . . . . . . 10 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥𝐵)
76 simpr 484 . . . . . . . . . . . 12 (((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → (𝑦 · 𝑥) = 1 )
7776reximi 3068 . . . . . . . . . . 11 (∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → ∃𝑦𝐵 (𝑦 · 𝑥) = 1 )
7877adantl 481 . . . . . . . . . 10 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → ∃𝑦𝐵 (𝑦 · 𝑥) = 1 )
7957biimpar 477 . . . . . . . . . 10 ((𝑥𝐵 ∧ ∃𝑦𝐵 (𝑦 · 𝑥) = 1 ) → 𝑥(∥r𝑅) 1 )
8075, 78, 79syl2anc 584 . . . . . . . . 9 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥(∥r𝑅) 1 )
81 simpl 482 . . . . . . . . . . . . 13 (((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → (𝑥 · 𝑦) = 1 )
8281reximi 3068 . . . . . . . . . . . 12 (∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → ∃𝑦𝐵 (𝑥 · 𝑦) = 1 )
8382adantl 481 . . . . . . . . . . 11 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → ∃𝑦𝐵 (𝑥 · 𝑦) = 1 )
8483, 43sylibr 234 . . . . . . . . . 10 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → ∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 )
8539biimpar 477 . . . . . . . . . 10 ((𝑥𝐵 ∧ ∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 ) → 𝑥(∥r‘(oppr𝑅)) 1 )
8675, 84, 85syl2anc 584 . . . . . . . . 9 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥(∥r‘(oppr𝑅)) 1 )
8780, 86, 34sylanbrc 583 . . . . . . . 8 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥𝑈)
8887ex 412 . . . . . . 7 (((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → 𝑥𝑈))
8988ralimdva 3146 . . . . . 6 ((𝜑10 ) → (∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝑈))
9089impr 454 . . . . 5 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝑈)
91 dfss3 3938 . . . . 5 ((𝐵 ∖ { 0 }) ⊆ 𝑈 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝑈)
9290, 91sylibr 234 . . . 4 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → (𝐵 ∖ { 0 }) ⊆ 𝑈)
9373, 92eqssd 3967 . . 3 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 𝑈 = (𝐵 ∖ { 0 }))
9463, 93impbida 800 . 2 (𝜑 → (𝑈 = (𝐵 ∖ { 0 }) ↔ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))))
957, 94bitrd 279 1 (𝜑 → (𝑅 ∈ DivRing ↔ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cdif 3914  wss 3917  {csn 4592   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  .rcmulr 17228  0gc0g 17409  1rcur 20097  Ringcrg 20149  opprcoppr 20252  rcdsr 20270  Unitcui 20271  DivRingcdr 20645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-drng 20647
This theorem is referenced by:  fracfld  33265  drngidl  33411  opprqusdrng  33471  qsdrngi  33473
  Copyright terms: Public domain W3C validator