Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdrng4 Structured version   Visualization version   GIF version

Theorem isdrng4 33298
Description: A division ring is a ring in which 1 ≠ 0 and every nonzero element has a left and right inverse. (Contributed by Thierry Arnoux, 2-Mar-2025.)
Hypotheses
Ref Expression
isdrng4.b 𝐵 = (Base‘𝑅)
isdrng4.0 0 = (0g𝑅)
isdrng4.1 1 = (1r𝑅)
isdrng4.x · = (.r𝑅)
isdrng4.u 𝑈 = (Unit‘𝑅)
isdrng4.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
isdrng4 (𝜑 → (𝑅 ∈ DivRing ↔ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))))
Distinct variable groups:   𝑥, 0   𝑥, 1 ,𝑦   𝑥, · ,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦
Allowed substitution hint:   0 (𝑦)

Proof of Theorem isdrng4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 isdrng4.b . . . 4 𝐵 = (Base‘𝑅)
2 isdrng4.u . . . 4 𝑈 = (Unit‘𝑅)
3 isdrng4.0 . . . 4 0 = (0g𝑅)
41, 2, 3isdrng 20733 . . 3 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 })))
5 isdrng4.r . . . 4 (𝜑𝑅 ∈ Ring)
65biantrurd 532 . . 3 (𝜑 → (𝑈 = (𝐵 ∖ { 0 }) ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))))
74, 6bitr4id 290 . 2 (𝜑 → (𝑅 ∈ DivRing ↔ 𝑈 = (𝐵 ∖ { 0 })))
8 isdrng4.1 . . . . . . . . 9 1 = (1r𝑅)
92, 81unit 20374 . . . . . . . 8 (𝑅 ∈ Ring → 1𝑈)
105, 9syl 17 . . . . . . 7 (𝜑1𝑈)
1110adantr 480 . . . . . 6 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → 1𝑈)
12 simpr 484 . . . . . 6 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → 𝑈 = (𝐵 ∖ { 0 }))
1311, 12eleqtrd 2843 . . . . 5 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → 1 ∈ (𝐵 ∖ { 0 }))
14 eldifsni 4790 . . . . 5 ( 1 ∈ (𝐵 ∖ { 0 }) → 10 )
1513, 14syl 17 . . . 4 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → 10 )
16 simpll 767 . . . . . 6 (((𝜑𝑈 = (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝜑)
1712eleq2d 2827 . . . . . . 7 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → (𝑥𝑈𝑥 ∈ (𝐵 ∖ { 0 })))
1817biimpar 477 . . . . . 6 (((𝜑𝑈 = (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥𝑈)
19 isdrng4.x . . . . . . . . . . . . 13 · = (.r𝑅)
205ad5antr 734 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑅 ∈ Ring)
211, 2unitcl 20375 . . . . . . . . . . . . . 14 (𝑥𝑈𝑥𝐵)
2221ad5antlr 735 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑥𝐵)
23 simp-4r 784 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑦𝐵)
24 simplr 769 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑧𝐵)
25 simpllr 776 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → (𝑦 · 𝑥) = 1 )
26 simpr 484 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → (𝑥 · 𝑧) = 1 )
271, 3, 8, 19, 2, 20, 22, 23, 24, 25, 26ringinveu 33297 . . . . . . . . . . . 12 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑧 = 𝑦)
2827oveq2d 7447 . . . . . . . . . . 11 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → (𝑥 · 𝑧) = (𝑥 · 𝑦))
2928, 26eqtr3d 2779 . . . . . . . . . 10 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → (𝑥 · 𝑦) = 1 )
3021ad3antlr 731 . . . . . . . . . . 11 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → 𝑥𝐵)
31 eqid 2737 . . . . . . . . . . . . . 14 (∥r𝑅) = (∥r𝑅)
32 eqid 2737 . . . . . . . . . . . . . 14 (oppr𝑅) = (oppr𝑅)
33 eqid 2737 . . . . . . . . . . . . . 14 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
342, 8, 31, 32, 33isunit 20373 . . . . . . . . . . . . 13 (𝑥𝑈 ↔ (𝑥(∥r𝑅) 1𝑥(∥r‘(oppr𝑅)) 1 ))
3534simprbi 496 . . . . . . . . . . . 12 (𝑥𝑈𝑥(∥r‘(oppr𝑅)) 1 )
3635ad3antlr 731 . . . . . . . . . . 11 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → 𝑥(∥r‘(oppr𝑅)) 1 )
3732, 1opprbas 20341 . . . . . . . . . . . . . . 15 𝐵 = (Base‘(oppr𝑅))
38 eqid 2737 . . . . . . . . . . . . . . 15 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
3937, 33, 38dvdsr2 20363 . . . . . . . . . . . . . 14 (𝑥𝐵 → (𝑥(∥r‘(oppr𝑅)) 1 ↔ ∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 ))
4039biimpa 476 . . . . . . . . . . . . 13 ((𝑥𝐵𝑥(∥r‘(oppr𝑅)) 1 ) → ∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 )
411, 19, 32, 38opprmul 20337 . . . . . . . . . . . . . . 15 (𝑦(.r‘(oppr𝑅))𝑥) = (𝑥 · 𝑦)
4241eqeq1i 2742 . . . . . . . . . . . . . 14 ((𝑦(.r‘(oppr𝑅))𝑥) = 1 ↔ (𝑥 · 𝑦) = 1 )
4342rexbii 3094 . . . . . . . . . . . . 13 (∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 ↔ ∃𝑦𝐵 (𝑥 · 𝑦) = 1 )
4440, 43sylib 218 . . . . . . . . . . . 12 ((𝑥𝐵𝑥(∥r‘(oppr𝑅)) 1 ) → ∃𝑦𝐵 (𝑥 · 𝑦) = 1 )
45 oveq2 7439 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑥 · 𝑦) = (𝑥 · 𝑧))
4645eqeq1d 2739 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝑥 · 𝑦) = 1 ↔ (𝑥 · 𝑧) = 1 ))
4746cbvrexvw 3238 . . . . . . . . . . . 12 (∃𝑦𝐵 (𝑥 · 𝑦) = 1 ↔ ∃𝑧𝐵 (𝑥 · 𝑧) = 1 )
4844, 47sylib 218 . . . . . . . . . . 11 ((𝑥𝐵𝑥(∥r‘(oppr𝑅)) 1 ) → ∃𝑧𝐵 (𝑥 · 𝑧) = 1 )
4930, 36, 48syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → ∃𝑧𝐵 (𝑥 · 𝑧) = 1 )
5029, 49r19.29a 3162 . . . . . . . . 9 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → (𝑥 · 𝑦) = 1 )
51 simpr 484 . . . . . . . . 9 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → (𝑦 · 𝑥) = 1 )
5250, 51jca 511 . . . . . . . 8 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
5352anasss 466 . . . . . . 7 (((𝜑𝑥𝑈) ∧ (𝑦𝐵 ∧ (𝑦 · 𝑥) = 1 )) → ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
5421adantl 481 . . . . . . . 8 ((𝜑𝑥𝑈) → 𝑥𝐵)
5534simplbi 497 . . . . . . . . 9 (𝑥𝑈𝑥(∥r𝑅) 1 )
5655adantl 481 . . . . . . . 8 ((𝜑𝑥𝑈) → 𝑥(∥r𝑅) 1 )
571, 31, 19dvdsr2 20363 . . . . . . . . 9 (𝑥𝐵 → (𝑥(∥r𝑅) 1 ↔ ∃𝑦𝐵 (𝑦 · 𝑥) = 1 ))
5857biimpa 476 . . . . . . . 8 ((𝑥𝐵𝑥(∥r𝑅) 1 ) → ∃𝑦𝐵 (𝑦 · 𝑥) = 1 )
5954, 56, 58syl2anc 584 . . . . . . 7 ((𝜑𝑥𝑈) → ∃𝑦𝐵 (𝑦 · 𝑥) = 1 )
6053, 59reximddv 3171 . . . . . 6 ((𝜑𝑥𝑈) → ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
6116, 18, 60syl2anc 584 . . . . 5 (((𝜑𝑈 = (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
6261ralrimiva 3146 . . . 4 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
6315, 62jca 511 . . 3 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )))
641, 2unitss 20376 . . . . . 6 𝑈𝐵
6564a1i 11 . . . . 5 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 𝑈𝐵)
665adantr 480 . . . . . 6 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 𝑅 ∈ Ring)
67 simprl 771 . . . . . 6 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 10 )
682, 3, 80unit 20396 . . . . . . . 8 (𝑅 ∈ Ring → ( 0𝑈1 = 0 ))
6968necon3bbid 2978 . . . . . . 7 (𝑅 ∈ Ring → (¬ 0𝑈10 ))
7069biimpar 477 . . . . . 6 ((𝑅 ∈ Ring ∧ 10 ) → ¬ 0𝑈)
7166, 67, 70syl2anc 584 . . . . 5 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → ¬ 0𝑈)
72 ssdifsn 4788 . . . . 5 (𝑈 ⊆ (𝐵 ∖ { 0 }) ↔ (𝑈𝐵 ∧ ¬ 0𝑈))
7365, 71, 72sylanbrc 583 . . . 4 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 𝑈 ⊆ (𝐵 ∖ { 0 }))
74 simplr 769 . . . . . . . . . . 11 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥 ∈ (𝐵 ∖ { 0 }))
7574eldifad 3963 . . . . . . . . . 10 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥𝐵)
76 simpr 484 . . . . . . . . . . . 12 (((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → (𝑦 · 𝑥) = 1 )
7776reximi 3084 . . . . . . . . . . 11 (∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → ∃𝑦𝐵 (𝑦 · 𝑥) = 1 )
7877adantl 481 . . . . . . . . . 10 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → ∃𝑦𝐵 (𝑦 · 𝑥) = 1 )
7957biimpar 477 . . . . . . . . . 10 ((𝑥𝐵 ∧ ∃𝑦𝐵 (𝑦 · 𝑥) = 1 ) → 𝑥(∥r𝑅) 1 )
8075, 78, 79syl2anc 584 . . . . . . . . 9 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥(∥r𝑅) 1 )
81 simpl 482 . . . . . . . . . . . . 13 (((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → (𝑥 · 𝑦) = 1 )
8281reximi 3084 . . . . . . . . . . . 12 (∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → ∃𝑦𝐵 (𝑥 · 𝑦) = 1 )
8382adantl 481 . . . . . . . . . . 11 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → ∃𝑦𝐵 (𝑥 · 𝑦) = 1 )
8483, 43sylibr 234 . . . . . . . . . 10 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → ∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 )
8539biimpar 477 . . . . . . . . . 10 ((𝑥𝐵 ∧ ∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 ) → 𝑥(∥r‘(oppr𝑅)) 1 )
8675, 84, 85syl2anc 584 . . . . . . . . 9 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥(∥r‘(oppr𝑅)) 1 )
8780, 86, 34sylanbrc 583 . . . . . . . 8 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥𝑈)
8887ex 412 . . . . . . 7 (((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → 𝑥𝑈))
8988ralimdva 3167 . . . . . 6 ((𝜑10 ) → (∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝑈))
9089impr 454 . . . . 5 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝑈)
91 dfss3 3972 . . . . 5 ((𝐵 ∖ { 0 }) ⊆ 𝑈 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝑈)
9290, 91sylibr 234 . . . 4 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → (𝐵 ∖ { 0 }) ⊆ 𝑈)
9373, 92eqssd 4001 . . 3 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 𝑈 = (𝐵 ∖ { 0 }))
9463, 93impbida 801 . 2 (𝜑 → (𝑈 = (𝐵 ∖ { 0 }) ↔ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))))
957, 94bitrd 279 1 (𝜑 → (𝑅 ∈ DivRing ↔ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  cdif 3948  wss 3951  {csn 4626   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  .rcmulr 17298  0gc0g 17484  1rcur 20178  Ringcrg 20230  opprcoppr 20333  rcdsr 20354  Unitcui 20355  DivRingcdr 20729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-drng 20731
This theorem is referenced by:  fracfld  33310  drngidl  33461  opprqusdrng  33521  qsdrngi  33523
  Copyright terms: Public domain W3C validator