Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdrng4 Structured version   Visualization version   GIF version

Theorem isdrng4 33253
Description: A division ring is a ring in which 1 ≠ 0 and every nonzero element has a left and right inverse. (Contributed by Thierry Arnoux, 2-Mar-2025.)
Hypotheses
Ref Expression
isdrng4.b 𝐵 = (Base‘𝑅)
isdrng4.0 0 = (0g𝑅)
isdrng4.1 1 = (1r𝑅)
isdrng4.x · = (.r𝑅)
isdrng4.u 𝑈 = (Unit‘𝑅)
isdrng4.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
isdrng4 (𝜑 → (𝑅 ∈ DivRing ↔ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))))
Distinct variable groups:   𝑥, 0   𝑥, 1 ,𝑦   𝑥, · ,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦
Allowed substitution hint:   0 (𝑦)

Proof of Theorem isdrng4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 isdrng4.b . . . 4 𝐵 = (Base‘𝑅)
2 isdrng4.u . . . 4 𝑈 = (Unit‘𝑅)
3 isdrng4.0 . . . 4 0 = (0g𝑅)
41, 2, 3isdrng 20637 . . 3 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 })))
5 isdrng4.r . . . 4 (𝜑𝑅 ∈ Ring)
65biantrurd 532 . . 3 (𝜑 → (𝑈 = (𝐵 ∖ { 0 }) ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))))
74, 6bitr4id 290 . 2 (𝜑 → (𝑅 ∈ DivRing ↔ 𝑈 = (𝐵 ∖ { 0 })))
8 isdrng4.1 . . . . . . . . 9 1 = (1r𝑅)
92, 81unit 20278 . . . . . . . 8 (𝑅 ∈ Ring → 1𝑈)
105, 9syl 17 . . . . . . 7 (𝜑1𝑈)
1110adantr 480 . . . . . 6 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → 1𝑈)
12 simpr 484 . . . . . 6 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → 𝑈 = (𝐵 ∖ { 0 }))
1311, 12eleqtrd 2830 . . . . 5 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → 1 ∈ (𝐵 ∖ { 0 }))
14 eldifsni 4744 . . . . 5 ( 1 ∈ (𝐵 ∖ { 0 }) → 10 )
1513, 14syl 17 . . . 4 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → 10 )
16 simpll 766 . . . . . 6 (((𝜑𝑈 = (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝜑)
1712eleq2d 2814 . . . . . . 7 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → (𝑥𝑈𝑥 ∈ (𝐵 ∖ { 0 })))
1817biimpar 477 . . . . . 6 (((𝜑𝑈 = (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥𝑈)
19 isdrng4.x . . . . . . . . . . . . 13 · = (.r𝑅)
205ad5antr 734 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑅 ∈ Ring)
211, 2unitcl 20279 . . . . . . . . . . . . . 14 (𝑥𝑈𝑥𝐵)
2221ad5antlr 735 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑥𝐵)
23 simp-4r 783 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑦𝐵)
24 simplr 768 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑧𝐵)
25 simpllr 775 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → (𝑦 · 𝑥) = 1 )
26 simpr 484 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → (𝑥 · 𝑧) = 1 )
271, 3, 8, 19, 2, 20, 22, 23, 24, 25, 26ringinveu 33252 . . . . . . . . . . . 12 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑧 = 𝑦)
2827oveq2d 7369 . . . . . . . . . . 11 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → (𝑥 · 𝑧) = (𝑥 · 𝑦))
2928, 26eqtr3d 2766 . . . . . . . . . 10 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → (𝑥 · 𝑦) = 1 )
3021ad3antlr 731 . . . . . . . . . . 11 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → 𝑥𝐵)
31 eqid 2729 . . . . . . . . . . . . . 14 (∥r𝑅) = (∥r𝑅)
32 eqid 2729 . . . . . . . . . . . . . 14 (oppr𝑅) = (oppr𝑅)
33 eqid 2729 . . . . . . . . . . . . . 14 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
342, 8, 31, 32, 33isunit 20277 . . . . . . . . . . . . 13 (𝑥𝑈 ↔ (𝑥(∥r𝑅) 1𝑥(∥r‘(oppr𝑅)) 1 ))
3534simprbi 496 . . . . . . . . . . . 12 (𝑥𝑈𝑥(∥r‘(oppr𝑅)) 1 )
3635ad3antlr 731 . . . . . . . . . . 11 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → 𝑥(∥r‘(oppr𝑅)) 1 )
3732, 1opprbas 20247 . . . . . . . . . . . . . . 15 𝐵 = (Base‘(oppr𝑅))
38 eqid 2729 . . . . . . . . . . . . . . 15 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
3937, 33, 38dvdsr2 20267 . . . . . . . . . . . . . 14 (𝑥𝐵 → (𝑥(∥r‘(oppr𝑅)) 1 ↔ ∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 ))
4039biimpa 476 . . . . . . . . . . . . 13 ((𝑥𝐵𝑥(∥r‘(oppr𝑅)) 1 ) → ∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 )
411, 19, 32, 38opprmul 20244 . . . . . . . . . . . . . . 15 (𝑦(.r‘(oppr𝑅))𝑥) = (𝑥 · 𝑦)
4241eqeq1i 2734 . . . . . . . . . . . . . 14 ((𝑦(.r‘(oppr𝑅))𝑥) = 1 ↔ (𝑥 · 𝑦) = 1 )
4342rexbii 3076 . . . . . . . . . . . . 13 (∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 ↔ ∃𝑦𝐵 (𝑥 · 𝑦) = 1 )
4440, 43sylib 218 . . . . . . . . . . . 12 ((𝑥𝐵𝑥(∥r‘(oppr𝑅)) 1 ) → ∃𝑦𝐵 (𝑥 · 𝑦) = 1 )
45 oveq2 7361 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑥 · 𝑦) = (𝑥 · 𝑧))
4645eqeq1d 2731 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝑥 · 𝑦) = 1 ↔ (𝑥 · 𝑧) = 1 ))
4746cbvrexvw 3208 . . . . . . . . . . . 12 (∃𝑦𝐵 (𝑥 · 𝑦) = 1 ↔ ∃𝑧𝐵 (𝑥 · 𝑧) = 1 )
4844, 47sylib 218 . . . . . . . . . . 11 ((𝑥𝐵𝑥(∥r‘(oppr𝑅)) 1 ) → ∃𝑧𝐵 (𝑥 · 𝑧) = 1 )
4930, 36, 48syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → ∃𝑧𝐵 (𝑥 · 𝑧) = 1 )
5029, 49r19.29a 3137 . . . . . . . . 9 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → (𝑥 · 𝑦) = 1 )
51 simpr 484 . . . . . . . . 9 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → (𝑦 · 𝑥) = 1 )
5250, 51jca 511 . . . . . . . 8 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
5352anasss 466 . . . . . . 7 (((𝜑𝑥𝑈) ∧ (𝑦𝐵 ∧ (𝑦 · 𝑥) = 1 )) → ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
5421adantl 481 . . . . . . . 8 ((𝜑𝑥𝑈) → 𝑥𝐵)
5534simplbi 497 . . . . . . . . 9 (𝑥𝑈𝑥(∥r𝑅) 1 )
5655adantl 481 . . . . . . . 8 ((𝜑𝑥𝑈) → 𝑥(∥r𝑅) 1 )
571, 31, 19dvdsr2 20267 . . . . . . . . 9 (𝑥𝐵 → (𝑥(∥r𝑅) 1 ↔ ∃𝑦𝐵 (𝑦 · 𝑥) = 1 ))
5857biimpa 476 . . . . . . . 8 ((𝑥𝐵𝑥(∥r𝑅) 1 ) → ∃𝑦𝐵 (𝑦 · 𝑥) = 1 )
5954, 56, 58syl2anc 584 . . . . . . 7 ((𝜑𝑥𝑈) → ∃𝑦𝐵 (𝑦 · 𝑥) = 1 )
6053, 59reximddv 3145 . . . . . 6 ((𝜑𝑥𝑈) → ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
6116, 18, 60syl2anc 584 . . . . 5 (((𝜑𝑈 = (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
6261ralrimiva 3121 . . . 4 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
6315, 62jca 511 . . 3 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )))
641, 2unitss 20280 . . . . . 6 𝑈𝐵
6564a1i 11 . . . . 5 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 𝑈𝐵)
665adantr 480 . . . . . 6 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 𝑅 ∈ Ring)
67 simprl 770 . . . . . 6 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 10 )
682, 3, 80unit 20300 . . . . . . . 8 (𝑅 ∈ Ring → ( 0𝑈1 = 0 ))
6968necon3bbid 2962 . . . . . . 7 (𝑅 ∈ Ring → (¬ 0𝑈10 ))
7069biimpar 477 . . . . . 6 ((𝑅 ∈ Ring ∧ 10 ) → ¬ 0𝑈)
7166, 67, 70syl2anc 584 . . . . 5 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → ¬ 0𝑈)
72 ssdifsn 4742 . . . . 5 (𝑈 ⊆ (𝐵 ∖ { 0 }) ↔ (𝑈𝐵 ∧ ¬ 0𝑈))
7365, 71, 72sylanbrc 583 . . . 4 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 𝑈 ⊆ (𝐵 ∖ { 0 }))
74 simplr 768 . . . . . . . . . . 11 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥 ∈ (𝐵 ∖ { 0 }))
7574eldifad 3917 . . . . . . . . . 10 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥𝐵)
76 simpr 484 . . . . . . . . . . . 12 (((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → (𝑦 · 𝑥) = 1 )
7776reximi 3067 . . . . . . . . . . 11 (∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → ∃𝑦𝐵 (𝑦 · 𝑥) = 1 )
7877adantl 481 . . . . . . . . . 10 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → ∃𝑦𝐵 (𝑦 · 𝑥) = 1 )
7957biimpar 477 . . . . . . . . . 10 ((𝑥𝐵 ∧ ∃𝑦𝐵 (𝑦 · 𝑥) = 1 ) → 𝑥(∥r𝑅) 1 )
8075, 78, 79syl2anc 584 . . . . . . . . 9 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥(∥r𝑅) 1 )
81 simpl 482 . . . . . . . . . . . . 13 (((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → (𝑥 · 𝑦) = 1 )
8281reximi 3067 . . . . . . . . . . . 12 (∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → ∃𝑦𝐵 (𝑥 · 𝑦) = 1 )
8382adantl 481 . . . . . . . . . . 11 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → ∃𝑦𝐵 (𝑥 · 𝑦) = 1 )
8483, 43sylibr 234 . . . . . . . . . 10 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → ∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 )
8539biimpar 477 . . . . . . . . . 10 ((𝑥𝐵 ∧ ∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 ) → 𝑥(∥r‘(oppr𝑅)) 1 )
8675, 84, 85syl2anc 584 . . . . . . . . 9 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥(∥r‘(oppr𝑅)) 1 )
8780, 86, 34sylanbrc 583 . . . . . . . 8 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥𝑈)
8887ex 412 . . . . . . 7 (((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → 𝑥𝑈))
8988ralimdva 3141 . . . . . 6 ((𝜑10 ) → (∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝑈))
9089impr 454 . . . . 5 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝑈)
91 dfss3 3926 . . . . 5 ((𝐵 ∖ { 0 }) ⊆ 𝑈 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝑈)
9290, 91sylibr 234 . . . 4 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → (𝐵 ∖ { 0 }) ⊆ 𝑈)
9373, 92eqssd 3955 . . 3 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 𝑈 = (𝐵 ∖ { 0 }))
9463, 93impbida 800 . 2 (𝜑 → (𝑈 = (𝐵 ∖ { 0 }) ↔ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))))
957, 94bitrd 279 1 (𝜑 → (𝑅 ∈ DivRing ↔ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3902  wss 3905  {csn 4579   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17139  .rcmulr 17181  0gc0g 17362  1rcur 20085  Ringcrg 20137  opprcoppr 20240  rcdsr 20258  Unitcui 20259  DivRingcdr 20633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-0g 17364  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-grp 18834  df-minusg 18835  df-cmn 19680  df-abl 19681  df-mgp 20045  df-rng 20057  df-ur 20086  df-ring 20139  df-oppr 20241  df-dvdsr 20261  df-unit 20262  df-invr 20292  df-drng 20635
This theorem is referenced by:  fracfld  33266  drngidl  33389  opprqusdrng  33449  qsdrngi  33451
  Copyright terms: Public domain W3C validator