Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdrng4 Structured version   Visualization version   GIF version

Theorem isdrng4 33264
Description: A division ring is a ring in which 1 ≠ 0 and every nonzero element has a left and right inverse. (Contributed by Thierry Arnoux, 2-Mar-2025.)
Hypotheses
Ref Expression
isdrng4.b 𝐵 = (Base‘𝑅)
isdrng4.0 0 = (0g𝑅)
isdrng4.1 1 = (1r𝑅)
isdrng4.x · = (.r𝑅)
isdrng4.u 𝑈 = (Unit‘𝑅)
isdrng4.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
isdrng4 (𝜑 → (𝑅 ∈ DivRing ↔ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))))
Distinct variable groups:   𝑥, 0   𝑥, 1 ,𝑦   𝑥, · ,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦
Allowed substitution hint:   0 (𝑦)

Proof of Theorem isdrng4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 isdrng4.b . . . 4 𝐵 = (Base‘𝑅)
2 isdrng4.u . . . 4 𝑈 = (Unit‘𝑅)
3 isdrng4.0 . . . 4 0 = (0g𝑅)
41, 2, 3isdrng 20755 . . 3 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 })))
5 isdrng4.r . . . 4 (𝜑𝑅 ∈ Ring)
65biantrurd 532 . . 3 (𝜑 → (𝑈 = (𝐵 ∖ { 0 }) ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))))
74, 6bitr4id 290 . 2 (𝜑 → (𝑅 ∈ DivRing ↔ 𝑈 = (𝐵 ∖ { 0 })))
8 isdrng4.1 . . . . . . . . 9 1 = (1r𝑅)
92, 81unit 20400 . . . . . . . 8 (𝑅 ∈ Ring → 1𝑈)
105, 9syl 17 . . . . . . 7 (𝜑1𝑈)
1110adantr 480 . . . . . 6 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → 1𝑈)
12 simpr 484 . . . . . 6 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → 𝑈 = (𝐵 ∖ { 0 }))
1311, 12eleqtrd 2846 . . . . 5 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → 1 ∈ (𝐵 ∖ { 0 }))
14 eldifsni 4815 . . . . 5 ( 1 ∈ (𝐵 ∖ { 0 }) → 10 )
1513, 14syl 17 . . . 4 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → 10 )
16 simpll 766 . . . . . 6 (((𝜑𝑈 = (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝜑)
1712eleq2d 2830 . . . . . . 7 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → (𝑥𝑈𝑥 ∈ (𝐵 ∖ { 0 })))
1817biimpar 477 . . . . . 6 (((𝜑𝑈 = (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥𝑈)
19 isdrng4.x . . . . . . . . . . . . 13 · = (.r𝑅)
205ad5antr 733 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑅 ∈ Ring)
211, 2unitcl 20401 . . . . . . . . . . . . . 14 (𝑥𝑈𝑥𝐵)
2221ad5antlr 734 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑥𝐵)
23 simp-4r 783 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑦𝐵)
24 simplr 768 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑧𝐵)
25 simpllr 775 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → (𝑦 · 𝑥) = 1 )
26 simpr 484 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → (𝑥 · 𝑧) = 1 )
271, 3, 8, 19, 2, 20, 22, 23, 24, 25, 26ringinveu 33263 . . . . . . . . . . . 12 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑧 = 𝑦)
2827oveq2d 7464 . . . . . . . . . . 11 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → (𝑥 · 𝑧) = (𝑥 · 𝑦))
2928, 26eqtr3d 2782 . . . . . . . . . 10 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → (𝑥 · 𝑦) = 1 )
3021ad3antlr 730 . . . . . . . . . . 11 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → 𝑥𝐵)
31 eqid 2740 . . . . . . . . . . . . . 14 (∥r𝑅) = (∥r𝑅)
32 eqid 2740 . . . . . . . . . . . . . 14 (oppr𝑅) = (oppr𝑅)
33 eqid 2740 . . . . . . . . . . . . . 14 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
342, 8, 31, 32, 33isunit 20399 . . . . . . . . . . . . 13 (𝑥𝑈 ↔ (𝑥(∥r𝑅) 1𝑥(∥r‘(oppr𝑅)) 1 ))
3534simprbi 496 . . . . . . . . . . . 12 (𝑥𝑈𝑥(∥r‘(oppr𝑅)) 1 )
3635ad3antlr 730 . . . . . . . . . . 11 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → 𝑥(∥r‘(oppr𝑅)) 1 )
3732, 1opprbas 20367 . . . . . . . . . . . . . . 15 𝐵 = (Base‘(oppr𝑅))
38 eqid 2740 . . . . . . . . . . . . . . 15 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
3937, 33, 38dvdsr2 20389 . . . . . . . . . . . . . 14 (𝑥𝐵 → (𝑥(∥r‘(oppr𝑅)) 1 ↔ ∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 ))
4039biimpa 476 . . . . . . . . . . . . 13 ((𝑥𝐵𝑥(∥r‘(oppr𝑅)) 1 ) → ∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 )
411, 19, 32, 38opprmul 20363 . . . . . . . . . . . . . . 15 (𝑦(.r‘(oppr𝑅))𝑥) = (𝑥 · 𝑦)
4241eqeq1i 2745 . . . . . . . . . . . . . 14 ((𝑦(.r‘(oppr𝑅))𝑥) = 1 ↔ (𝑥 · 𝑦) = 1 )
4342rexbii 3100 . . . . . . . . . . . . 13 (∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 ↔ ∃𝑦𝐵 (𝑥 · 𝑦) = 1 )
4440, 43sylib 218 . . . . . . . . . . . 12 ((𝑥𝐵𝑥(∥r‘(oppr𝑅)) 1 ) → ∃𝑦𝐵 (𝑥 · 𝑦) = 1 )
45 oveq2 7456 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑥 · 𝑦) = (𝑥 · 𝑧))
4645eqeq1d 2742 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝑥 · 𝑦) = 1 ↔ (𝑥 · 𝑧) = 1 ))
4746cbvrexvw 3244 . . . . . . . . . . . 12 (∃𝑦𝐵 (𝑥 · 𝑦) = 1 ↔ ∃𝑧𝐵 (𝑥 · 𝑧) = 1 )
4844, 47sylib 218 . . . . . . . . . . 11 ((𝑥𝐵𝑥(∥r‘(oppr𝑅)) 1 ) → ∃𝑧𝐵 (𝑥 · 𝑧) = 1 )
4930, 36, 48syl2anc 583 . . . . . . . . . 10 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → ∃𝑧𝐵 (𝑥 · 𝑧) = 1 )
5029, 49r19.29a 3168 . . . . . . . . 9 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → (𝑥 · 𝑦) = 1 )
51 simpr 484 . . . . . . . . 9 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → (𝑦 · 𝑥) = 1 )
5250, 51jca 511 . . . . . . . 8 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
5352anasss 466 . . . . . . 7 (((𝜑𝑥𝑈) ∧ (𝑦𝐵 ∧ (𝑦 · 𝑥) = 1 )) → ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
5421adantl 481 . . . . . . . 8 ((𝜑𝑥𝑈) → 𝑥𝐵)
5534simplbi 497 . . . . . . . . 9 (𝑥𝑈𝑥(∥r𝑅) 1 )
5655adantl 481 . . . . . . . 8 ((𝜑𝑥𝑈) → 𝑥(∥r𝑅) 1 )
571, 31, 19dvdsr2 20389 . . . . . . . . 9 (𝑥𝐵 → (𝑥(∥r𝑅) 1 ↔ ∃𝑦𝐵 (𝑦 · 𝑥) = 1 ))
5857biimpa 476 . . . . . . . 8 ((𝑥𝐵𝑥(∥r𝑅) 1 ) → ∃𝑦𝐵 (𝑦 · 𝑥) = 1 )
5954, 56, 58syl2anc 583 . . . . . . 7 ((𝜑𝑥𝑈) → ∃𝑦𝐵 (𝑦 · 𝑥) = 1 )
6053, 59reximddv 3177 . . . . . 6 ((𝜑𝑥𝑈) → ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
6116, 18, 60syl2anc 583 . . . . 5 (((𝜑𝑈 = (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
6261ralrimiva 3152 . . . 4 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
6315, 62jca 511 . . 3 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )))
641, 2unitss 20402 . . . . . 6 𝑈𝐵
6564a1i 11 . . . . 5 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 𝑈𝐵)
665adantr 480 . . . . . 6 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 𝑅 ∈ Ring)
67 simprl 770 . . . . . 6 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 10 )
682, 3, 80unit 20422 . . . . . . . 8 (𝑅 ∈ Ring → ( 0𝑈1 = 0 ))
6968necon3bbid 2984 . . . . . . 7 (𝑅 ∈ Ring → (¬ 0𝑈10 ))
7069biimpar 477 . . . . . 6 ((𝑅 ∈ Ring ∧ 10 ) → ¬ 0𝑈)
7166, 67, 70syl2anc 583 . . . . 5 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → ¬ 0𝑈)
72 ssdifsn 4813 . . . . 5 (𝑈 ⊆ (𝐵 ∖ { 0 }) ↔ (𝑈𝐵 ∧ ¬ 0𝑈))
7365, 71, 72sylanbrc 582 . . . 4 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 𝑈 ⊆ (𝐵 ∖ { 0 }))
74 simplr 768 . . . . . . . . . . 11 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥 ∈ (𝐵 ∖ { 0 }))
7574eldifad 3988 . . . . . . . . . 10 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥𝐵)
76 simpr 484 . . . . . . . . . . . 12 (((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → (𝑦 · 𝑥) = 1 )
7776reximi 3090 . . . . . . . . . . 11 (∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → ∃𝑦𝐵 (𝑦 · 𝑥) = 1 )
7877adantl 481 . . . . . . . . . 10 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → ∃𝑦𝐵 (𝑦 · 𝑥) = 1 )
7957biimpar 477 . . . . . . . . . 10 ((𝑥𝐵 ∧ ∃𝑦𝐵 (𝑦 · 𝑥) = 1 ) → 𝑥(∥r𝑅) 1 )
8075, 78, 79syl2anc 583 . . . . . . . . 9 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥(∥r𝑅) 1 )
81 simpl 482 . . . . . . . . . . . . 13 (((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → (𝑥 · 𝑦) = 1 )
8281reximi 3090 . . . . . . . . . . . 12 (∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → ∃𝑦𝐵 (𝑥 · 𝑦) = 1 )
8382adantl 481 . . . . . . . . . . 11 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → ∃𝑦𝐵 (𝑥 · 𝑦) = 1 )
8483, 43sylibr 234 . . . . . . . . . 10 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → ∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 )
8539biimpar 477 . . . . . . . . . 10 ((𝑥𝐵 ∧ ∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 ) → 𝑥(∥r‘(oppr𝑅)) 1 )
8675, 84, 85syl2anc 583 . . . . . . . . 9 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥(∥r‘(oppr𝑅)) 1 )
8780, 86, 34sylanbrc 582 . . . . . . . 8 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥𝑈)
8887ex 412 . . . . . . 7 (((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → 𝑥𝑈))
8988ralimdva 3173 . . . . . 6 ((𝜑10 ) → (∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝑈))
9089impr 454 . . . . 5 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝑈)
91 dfss3 3997 . . . . 5 ((𝐵 ∖ { 0 }) ⊆ 𝑈 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝑈)
9290, 91sylibr 234 . . . 4 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → (𝐵 ∖ { 0 }) ⊆ 𝑈)
9373, 92eqssd 4026 . . 3 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 𝑈 = (𝐵 ∖ { 0 }))
9463, 93impbida 800 . 2 (𝜑 → (𝑈 = (𝐵 ∖ { 0 }) ↔ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))))
957, 94bitrd 279 1 (𝜑 → (𝑅 ∈ DivRing ↔ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cdif 3973  wss 3976  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312  0gc0g 17499  1rcur 20208  Ringcrg 20260  opprcoppr 20359  rcdsr 20380  Unitcui 20381  DivRingcdr 20751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-drng 20753
This theorem is referenced by:  fracfld  33275  drngidl  33426  opprqusdrng  33486  qsdrngi  33488
  Copyright terms: Public domain W3C validator