Step | Hyp | Ref
| Expression |
1 | | isdrng4.b |
. . . 4
β’ π΅ = (Baseβπ
) |
2 | | isdrng4.u |
. . . 4
β’ π = (Unitβπ
) |
3 | | isdrng4.0 |
. . . 4
β’ 0 =
(0gβπ
) |
4 | 1, 2, 3 | isdrng 20576 |
. . 3
β’ (π
β DivRing β (π
β Ring β§ π = (π΅ β { 0 }))) |
5 | | isdrng4.r |
. . . 4
β’ (π β π
β Ring) |
6 | 5 | biantrurd 532 |
. . 3
β’ (π β (π = (π΅ β { 0 }) β (π
β Ring β§ π = (π΅ β { 0 })))) |
7 | 4, 6 | bitr4id 290 |
. 2
β’ (π β (π
β DivRing β π = (π΅ β { 0 }))) |
8 | | isdrng4.1 |
. . . . . . . . 9
β’ 1 =
(1rβπ
) |
9 | 2, 8 | 1unit 20261 |
. . . . . . . 8
β’ (π
β Ring β 1 β π) |
10 | 5, 9 | syl 17 |
. . . . . . 7
β’ (π β 1 β π) |
11 | 10 | adantr 480 |
. . . . . 6
β’ ((π β§ π = (π΅ β { 0 })) β 1 β π) |
12 | | simpr 484 |
. . . . . 6
β’ ((π β§ π = (π΅ β { 0 })) β π = (π΅ β { 0 })) |
13 | 11, 12 | eleqtrd 2827 |
. . . . 5
β’ ((π β§ π = (π΅ β { 0 })) β 1 β (π΅ β { 0 })) |
14 | | eldifsni 4785 |
. . . . 5
β’ ( 1 β (π΅ β { 0 }) β 1 β 0
) |
15 | 13, 14 | syl 17 |
. . . 4
β’ ((π β§ π = (π΅ β { 0 })) β 1 β 0
) |
16 | | simpll 764 |
. . . . . 6
β’ (((π β§ π = (π΅ β { 0 })) β§ π₯ β (π΅ β { 0 })) β π) |
17 | 12 | eleq2d 2811 |
. . . . . . 7
β’ ((π β§ π = (π΅ β { 0 })) β (π₯ β π β π₯ β (π΅ β { 0 }))) |
18 | 17 | biimpar 477 |
. . . . . 6
β’ (((π β§ π = (π΅ β { 0 })) β§ π₯ β (π΅ β { 0 })) β π₯ β π) |
19 | | isdrng4.x |
. . . . . . . . . . . . 13
β’ Β· =
(.rβπ
) |
20 | 5 | ad5antr 731 |
. . . . . . . . . . . . 13
β’
((((((π β§ π₯ β π) β§ π¦ β π΅) β§ (π¦ Β· π₯) = 1 ) β§ π§ β π΅) β§ (π₯ Β· π§) = 1 ) β π
β Ring) |
21 | 1, 2 | unitcl 20262 |
. . . . . . . . . . . . . 14
β’ (π₯ β π β π₯ β π΅) |
22 | 21 | ad5antlr 732 |
. . . . . . . . . . . . 13
β’
((((((π β§ π₯ β π) β§ π¦ β π΅) β§ (π¦ Β· π₯) = 1 ) β§ π§ β π΅) β§ (π₯ Β· π§) = 1 ) β π₯ β π΅) |
23 | | simp-4r 781 |
. . . . . . . . . . . . 13
β’
((((((π β§ π₯ β π) β§ π¦ β π΅) β§ (π¦ Β· π₯) = 1 ) β§ π§ β π΅) β§ (π₯ Β· π§) = 1 ) β π¦ β π΅) |
24 | | simplr 766 |
. . . . . . . . . . . . 13
β’
((((((π β§ π₯ β π) β§ π¦ β π΅) β§ (π¦ Β· π₯) = 1 ) β§ π§ β π΅) β§ (π₯ Β· π§) = 1 ) β π§ β π΅) |
25 | | simpllr 773 |
. . . . . . . . . . . . 13
β’
((((((π β§ π₯ β π) β§ π¦ β π΅) β§ (π¦ Β· π₯) = 1 ) β§ π§ β π΅) β§ (π₯ Β· π§) = 1 ) β (π¦ Β· π₯) = 1 ) |
26 | | simpr 484 |
. . . . . . . . . . . . 13
β’
((((((π β§ π₯ β π) β§ π¦ β π΅) β§ (π¦ Β· π₯) = 1 ) β§ π§ β π΅) β§ (π₯ Β· π§) = 1 ) β (π₯ Β· π§) = 1 ) |
27 | 1, 3, 8, 19, 2, 20, 22, 23, 24, 25, 26 | ringinveu 32821 |
. . . . . . . . . . . 12
β’
((((((π β§ π₯ β π) β§ π¦ β π΅) β§ (π¦ Β· π₯) = 1 ) β§ π§ β π΅) β§ (π₯ Β· π§) = 1 ) β π§ = π¦) |
28 | 27 | oveq2d 7417 |
. . . . . . . . . . 11
β’
((((((π β§ π₯ β π) β§ π¦ β π΅) β§ (π¦ Β· π₯) = 1 ) β§ π§ β π΅) β§ (π₯ Β· π§) = 1 ) β (π₯ Β· π§) = (π₯ Β· π¦)) |
29 | 28, 26 | eqtr3d 2766 |
. . . . . . . . . 10
β’
((((((π β§ π₯ β π) β§ π¦ β π΅) β§ (π¦ Β· π₯) = 1 ) β§ π§ β π΅) β§ (π₯ Β· π§) = 1 ) β (π₯ Β· π¦) = 1 ) |
30 | 21 | ad3antlr 728 |
. . . . . . . . . . 11
β’ ((((π β§ π₯ β π) β§ π¦ β π΅) β§ (π¦ Β· π₯) = 1 ) β π₯ β π΅) |
31 | | eqid 2724 |
. . . . . . . . . . . . . 14
β’
(β₯rβπ
) = (β₯rβπ
) |
32 | | eqid 2724 |
. . . . . . . . . . . . . 14
β’
(opprβπ
) = (opprβπ
) |
33 | | eqid 2724 |
. . . . . . . . . . . . . 14
β’
(β₯rβ(opprβπ
)) =
(β₯rβ(opprβπ
)) |
34 | 2, 8, 31, 32, 33 | isunit 20260 |
. . . . . . . . . . . . 13
β’ (π₯ β π β (π₯(β₯rβπ
) 1 β§ π₯(β₯rβ(opprβπ
)) 1 )) |
35 | 34 | simprbi 496 |
. . . . . . . . . . . 12
β’ (π₯ β π β π₯(β₯rβ(opprβπ
)) 1 ) |
36 | 35 | ad3antlr 728 |
. . . . . . . . . . 11
β’ ((((π β§ π₯ β π) β§ π¦ β π΅) β§ (π¦ Β· π₯) = 1 ) β π₯(β₯rβ(opprβπ
)) 1 ) |
37 | 32, 1 | opprbas 20228 |
. . . . . . . . . . . . . . 15
β’ π΅ =
(Baseβ(opprβπ
)) |
38 | | eqid 2724 |
. . . . . . . . . . . . . . 15
β’
(.rβ(opprβπ
)) =
(.rβ(opprβπ
)) |
39 | 37, 33, 38 | dvdsr2 20250 |
. . . . . . . . . . . . . 14
β’ (π₯ β π΅ β (π₯(β₯rβ(opprβπ
)) 1 β βπ¦ β π΅
(π¦(.rβ(opprβπ
))π₯) = 1 )) |
40 | 39 | biimpa 476 |
. . . . . . . . . . . . 13
β’ ((π₯ β π΅ β§ π₯(β₯rβ(opprβπ
)) 1 ) β βπ¦ β π΅
(π¦(.rβ(opprβπ
))π₯) = 1 ) |
41 | 1, 19, 32, 38 | opprmul 20224 |
. . . . . . . . . . . . . . 15
β’ (π¦(.rβ(opprβπ
))π₯) = (π₯ Β· π¦) |
42 | 41 | eqeq1i 2729 |
. . . . . . . . . . . . . 14
β’ ((π¦(.rβ(opprβπ
))π₯) = 1 β (π₯ Β· π¦) = 1 ) |
43 | 42 | rexbii 3086 |
. . . . . . . . . . . . 13
β’
(βπ¦ β
π΅ (π¦(.rβ(opprβπ
))π₯) = 1 β βπ¦ β π΅ (π₯
Β· π¦) = 1 ) |
44 | 40, 43 | sylib 217 |
. . . . . . . . . . . 12
β’ ((π₯ β π΅ β§ π₯(β₯rβ(opprβπ
)) 1 ) β βπ¦ β π΅
(π₯ Β· π¦) = 1 ) |
45 | | oveq2 7409 |
. . . . . . . . . . . . . 14
β’ (π¦ = π§ β (π₯ Β· π¦) = (π₯ Β· π§)) |
46 | 45 | eqeq1d 2726 |
. . . . . . . . . . . . 13
β’ (π¦ = π§ β ((π₯ Β· π¦) = 1 β (π₯ Β· π§) = 1 )) |
47 | 46 | cbvrexvw 3227 |
. . . . . . . . . . . 12
β’
(βπ¦ β
π΅ (π₯ Β· π¦) = 1 β βπ§ β π΅ (π₯ Β· π§) = 1 ) |
48 | 44, 47 | sylib 217 |
. . . . . . . . . . 11
β’ ((π₯ β π΅ β§ π₯(β₯rβ(opprβπ
)) 1 ) β βπ§ β π΅
(π₯ Β· π§) = 1 ) |
49 | 30, 36, 48 | syl2anc 583 |
. . . . . . . . . 10
β’ ((((π β§ π₯ β π) β§ π¦ β π΅) β§ (π¦ Β· π₯) = 1 ) β βπ§ β π΅ (π₯ Β· π§) = 1 ) |
50 | 29, 49 | r19.29a 3154 |
. . . . . . . . 9
β’ ((((π β§ π₯ β π) β§ π¦ β π΅) β§ (π¦ Β· π₯) = 1 ) β (π₯ Β· π¦) = 1 ) |
51 | | simpr 484 |
. . . . . . . . 9
β’ ((((π β§ π₯ β π) β§ π¦ β π΅) β§ (π¦ Β· π₯) = 1 ) β (π¦ Β· π₯) = 1 ) |
52 | 50, 51 | jca 511 |
. . . . . . . 8
β’ ((((π β§ π₯ β π) β§ π¦ β π΅) β§ (π¦ Β· π₯) = 1 ) β ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 )) |
53 | 52 | anasss 466 |
. . . . . . 7
β’ (((π β§ π₯ β π) β§ (π¦ β π΅ β§ (π¦ Β· π₯) = 1 )) β ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 )) |
54 | 21 | adantl 481 |
. . . . . . . 8
β’ ((π β§ π₯ β π) β π₯ β π΅) |
55 | 34 | simplbi 497 |
. . . . . . . . 9
β’ (π₯ β π β π₯(β₯rβπ
) 1 ) |
56 | 55 | adantl 481 |
. . . . . . . 8
β’ ((π β§ π₯ β π) β π₯(β₯rβπ
) 1 ) |
57 | 1, 31, 19 | dvdsr2 20250 |
. . . . . . . . 9
β’ (π₯ β π΅ β (π₯(β₯rβπ
) 1 β βπ¦ β π΅ (π¦ Β· π₯) = 1 )) |
58 | 57 | biimpa 476 |
. . . . . . . 8
β’ ((π₯ β π΅ β§ π₯(β₯rβπ
) 1 ) β βπ¦ β π΅ (π¦ Β· π₯) = 1 ) |
59 | 54, 56, 58 | syl2anc 583 |
. . . . . . 7
β’ ((π β§ π₯ β π) β βπ¦ β π΅ (π¦ Β· π₯) = 1 ) |
60 | 53, 59 | reximddv 3163 |
. . . . . 6
β’ ((π β§ π₯ β π) β βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 )) |
61 | 16, 18, 60 | syl2anc 583 |
. . . . 5
β’ (((π β§ π = (π΅ β { 0 })) β§ π₯ β (π΅ β { 0 })) β βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 )) |
62 | 61 | ralrimiva 3138 |
. . . 4
β’ ((π β§ π = (π΅ β { 0 })) β βπ₯ β (π΅ β { 0 })βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 )) |
63 | 15, 62 | jca 511 |
. . 3
β’ ((π β§ π = (π΅ β { 0 })) β ( 1 β 0 β§
βπ₯ β (π΅ β { 0 })βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 ))) |
64 | 1, 2 | unitss 20263 |
. . . . . 6
β’ π β π΅ |
65 | 64 | a1i 11 |
. . . . 5
β’ ((π β§ ( 1 β 0 β§ βπ₯ β (π΅ β { 0 })βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 ))) β π β π΅) |
66 | 5 | adantr 480 |
. . . . . 6
β’ ((π β§ ( 1 β 0 β§ βπ₯ β (π΅ β { 0 })βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 ))) β π
β Ring) |
67 | | simprl 768 |
. . . . . 6
β’ ((π β§ ( 1 β 0 β§ βπ₯ β (π΅ β { 0 })βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 ))) β 1 β 0
) |
68 | 2, 3, 8 | 0unit 20283 |
. . . . . . . 8
β’ (π
β Ring β ( 0 β π β 1 = 0 )) |
69 | 68 | necon3bbid 2970 |
. . . . . . 7
β’ (π
β Ring β (Β¬ 0 β π β 1 β 0 )) |
70 | 69 | biimpar 477 |
. . . . . 6
β’ ((π
β Ring β§ 1 β 0 ) β
Β¬ 0
β π) |
71 | 66, 67, 70 | syl2anc 583 |
. . . . 5
β’ ((π β§ ( 1 β 0 β§ βπ₯ β (π΅ β { 0 })βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 ))) β Β¬ 0 β π) |
72 | | ssdifsn 4783 |
. . . . 5
β’ (π β (π΅ β { 0 }) β (π β π΅ β§ Β¬ 0 β π)) |
73 | 65, 71, 72 | sylanbrc 582 |
. . . 4
β’ ((π β§ ( 1 β 0 β§ βπ₯ β (π΅ β { 0 })βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 ))) β π β (π΅ β { 0 })) |
74 | | simplr 766 |
. . . . . . . . . . 11
β’ ((((π β§ 1 β 0 ) β§ π₯ β (π΅ β { 0 })) β§ βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 )) β π₯ β (π΅ β { 0 })) |
75 | 74 | eldifad 3952 |
. . . . . . . . . 10
β’ ((((π β§ 1 β 0 ) β§ π₯ β (π΅ β { 0 })) β§ βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 )) β π₯ β π΅) |
76 | | simpr 484 |
. . . . . . . . . . . 12
β’ (((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 ) β (π¦ Β· π₯) = 1 ) |
77 | 76 | reximi 3076 |
. . . . . . . . . . 11
β’
(βπ¦ β
π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 ) β βπ¦ β π΅ (π¦ Β· π₯) = 1 ) |
78 | 77 | adantl 481 |
. . . . . . . . . 10
β’ ((((π β§ 1 β 0 ) β§ π₯ β (π΅ β { 0 })) β§ βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 )) β βπ¦ β π΅ (π¦ Β· π₯) = 1 ) |
79 | 57 | biimpar 477 |
. . . . . . . . . 10
β’ ((π₯ β π΅ β§ βπ¦ β π΅ (π¦ Β· π₯) = 1 ) β π₯(β₯rβπ
) 1 ) |
80 | 75, 78, 79 | syl2anc 583 |
. . . . . . . . 9
β’ ((((π β§ 1 β 0 ) β§ π₯ β (π΅ β { 0 })) β§ βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 )) β π₯(β₯rβπ
) 1 ) |
81 | | simpl 482 |
. . . . . . . . . . . . 13
β’ (((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 ) β (π₯ Β· π¦) = 1 ) |
82 | 81 | reximi 3076 |
. . . . . . . . . . . 12
β’
(βπ¦ β
π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 ) β βπ¦ β π΅ (π₯ Β· π¦) = 1 ) |
83 | 82 | adantl 481 |
. . . . . . . . . . 11
β’ ((((π β§ 1 β 0 ) β§ π₯ β (π΅ β { 0 })) β§ βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 )) β βπ¦ β π΅ (π₯ Β· π¦) = 1 ) |
84 | 83, 43 | sylibr 233 |
. . . . . . . . . 10
β’ ((((π β§ 1 β 0 ) β§ π₯ β (π΅ β { 0 })) β§ βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 )) β βπ¦ β π΅ (π¦(.rβ(opprβπ
))π₯) = 1 ) |
85 | 39 | biimpar 477 |
. . . . . . . . . 10
β’ ((π₯ β π΅ β§ βπ¦ β π΅ (π¦(.rβ(opprβπ
))π₯) = 1 ) β π₯(β₯rβ(opprβπ
)) 1 ) |
86 | 75, 84, 85 | syl2anc 583 |
. . . . . . . . 9
β’ ((((π β§ 1 β 0 ) β§ π₯ β (π΅ β { 0 })) β§ βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 )) β π₯(β₯rβ(opprβπ
)) 1 ) |
87 | 80, 86, 34 | sylanbrc 582 |
. . . . . . . 8
β’ ((((π β§ 1 β 0 ) β§ π₯ β (π΅ β { 0 })) β§ βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 )) β π₯ β π) |
88 | 87 | ex 412 |
. . . . . . 7
β’ (((π β§ 1 β 0 ) β§ π₯ β (π΅ β { 0 })) β (βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 ) β π₯ β π)) |
89 | 88 | ralimdva 3159 |
. . . . . 6
β’ ((π β§ 1 β 0 ) β (βπ₯ β (π΅ β { 0 })βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 ) β βπ₯ β (π΅ β { 0 })π₯ β π)) |
90 | 89 | impr 454 |
. . . . 5
β’ ((π β§ ( 1 β 0 β§ βπ₯ β (π΅ β { 0 })βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 ))) β βπ₯ β (π΅ β { 0 })π₯ β π) |
91 | | dfss3 3962 |
. . . . 5
β’ ((π΅ β { 0 }) β π β βπ₯ β (π΅ β { 0 })π₯ β π) |
92 | 90, 91 | sylibr 233 |
. . . 4
β’ ((π β§ ( 1 β 0 β§ βπ₯ β (π΅ β { 0 })βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 ))) β (π΅ β { 0 }) β π) |
93 | 73, 92 | eqssd 3991 |
. . 3
β’ ((π β§ ( 1 β 0 β§ βπ₯ β (π΅ β { 0 })βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 ))) β π = (π΅ β { 0 })) |
94 | 63, 93 | impbida 798 |
. 2
β’ (π β (π = (π΅ β { 0 }) β ( 1 β 0 β§
βπ₯ β (π΅ β { 0 })βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 )))) |
95 | 7, 94 | bitrd 279 |
1
β’ (π β (π
β DivRing β ( 1 β 0 β§ βπ₯ β (π΅ β { 0 })βπ¦ β π΅ ((π₯ Β· π¦) = 1 β§ (π¦ Β· π₯) = 1 )))) |