Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdrng4 Structured version   Visualization version   GIF version

Theorem isdrng4 33218
Description: A division ring is a ring in which 1 ≠ 0 and every nonzero element has a left and right inverse. (Contributed by Thierry Arnoux, 2-Mar-2025.)
Hypotheses
Ref Expression
isdrng4.b 𝐵 = (Base‘𝑅)
isdrng4.0 0 = (0g𝑅)
isdrng4.1 1 = (1r𝑅)
isdrng4.x · = (.r𝑅)
isdrng4.u 𝑈 = (Unit‘𝑅)
isdrng4.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
isdrng4 (𝜑 → (𝑅 ∈ DivRing ↔ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))))
Distinct variable groups:   𝑥, 0   𝑥, 1 ,𝑦   𝑥, · ,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦
Allowed substitution hint:   0 (𝑦)

Proof of Theorem isdrng4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 isdrng4.b . . . 4 𝐵 = (Base‘𝑅)
2 isdrng4.u . . . 4 𝑈 = (Unit‘𝑅)
3 isdrng4.0 . . . 4 0 = (0g𝑅)
41, 2, 3isdrng 20618 . . 3 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 })))
5 isdrng4.r . . . 4 (𝜑𝑅 ∈ Ring)
65biantrurd 532 . . 3 (𝜑 → (𝑈 = (𝐵 ∖ { 0 }) ↔ (𝑅 ∈ Ring ∧ 𝑈 = (𝐵 ∖ { 0 }))))
74, 6bitr4id 290 . 2 (𝜑 → (𝑅 ∈ DivRing ↔ 𝑈 = (𝐵 ∖ { 0 })))
8 isdrng4.1 . . . . . . . . 9 1 = (1r𝑅)
92, 81unit 20259 . . . . . . . 8 (𝑅 ∈ Ring → 1𝑈)
105, 9syl 17 . . . . . . 7 (𝜑1𝑈)
1110adantr 480 . . . . . 6 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → 1𝑈)
12 simpr 484 . . . . . 6 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → 𝑈 = (𝐵 ∖ { 0 }))
1311, 12eleqtrd 2830 . . . . 5 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → 1 ∈ (𝐵 ∖ { 0 }))
14 eldifsni 4750 . . . . 5 ( 1 ∈ (𝐵 ∖ { 0 }) → 10 )
1513, 14syl 17 . . . 4 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → 10 )
16 simpll 766 . . . . . 6 (((𝜑𝑈 = (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝜑)
1712eleq2d 2814 . . . . . . 7 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → (𝑥𝑈𝑥 ∈ (𝐵 ∖ { 0 })))
1817biimpar 477 . . . . . 6 (((𝜑𝑈 = (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥𝑈)
19 isdrng4.x . . . . . . . . . . . . 13 · = (.r𝑅)
205ad5antr 734 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑅 ∈ Ring)
211, 2unitcl 20260 . . . . . . . . . . . . . 14 (𝑥𝑈𝑥𝐵)
2221ad5antlr 735 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑥𝐵)
23 simp-4r 783 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑦𝐵)
24 simplr 768 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑧𝐵)
25 simpllr 775 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → (𝑦 · 𝑥) = 1 )
26 simpr 484 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → (𝑥 · 𝑧) = 1 )
271, 3, 8, 19, 2, 20, 22, 23, 24, 25, 26ringinveu 33217 . . . . . . . . . . . 12 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → 𝑧 = 𝑦)
2827oveq2d 7385 . . . . . . . . . . 11 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → (𝑥 · 𝑧) = (𝑥 · 𝑦))
2928, 26eqtr3d 2766 . . . . . . . . . 10 ((((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) ∧ 𝑧𝐵) ∧ (𝑥 · 𝑧) = 1 ) → (𝑥 · 𝑦) = 1 )
3021ad3antlr 731 . . . . . . . . . . 11 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → 𝑥𝐵)
31 eqid 2729 . . . . . . . . . . . . . 14 (∥r𝑅) = (∥r𝑅)
32 eqid 2729 . . . . . . . . . . . . . 14 (oppr𝑅) = (oppr𝑅)
33 eqid 2729 . . . . . . . . . . . . . 14 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
342, 8, 31, 32, 33isunit 20258 . . . . . . . . . . . . 13 (𝑥𝑈 ↔ (𝑥(∥r𝑅) 1𝑥(∥r‘(oppr𝑅)) 1 ))
3534simprbi 496 . . . . . . . . . . . 12 (𝑥𝑈𝑥(∥r‘(oppr𝑅)) 1 )
3635ad3antlr 731 . . . . . . . . . . 11 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → 𝑥(∥r‘(oppr𝑅)) 1 )
3732, 1opprbas 20228 . . . . . . . . . . . . . . 15 𝐵 = (Base‘(oppr𝑅))
38 eqid 2729 . . . . . . . . . . . . . . 15 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
3937, 33, 38dvdsr2 20248 . . . . . . . . . . . . . 14 (𝑥𝐵 → (𝑥(∥r‘(oppr𝑅)) 1 ↔ ∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 ))
4039biimpa 476 . . . . . . . . . . . . 13 ((𝑥𝐵𝑥(∥r‘(oppr𝑅)) 1 ) → ∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 )
411, 19, 32, 38opprmul 20225 . . . . . . . . . . . . . . 15 (𝑦(.r‘(oppr𝑅))𝑥) = (𝑥 · 𝑦)
4241eqeq1i 2734 . . . . . . . . . . . . . 14 ((𝑦(.r‘(oppr𝑅))𝑥) = 1 ↔ (𝑥 · 𝑦) = 1 )
4342rexbii 3076 . . . . . . . . . . . . 13 (∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 ↔ ∃𝑦𝐵 (𝑥 · 𝑦) = 1 )
4440, 43sylib 218 . . . . . . . . . . . 12 ((𝑥𝐵𝑥(∥r‘(oppr𝑅)) 1 ) → ∃𝑦𝐵 (𝑥 · 𝑦) = 1 )
45 oveq2 7377 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑥 · 𝑦) = (𝑥 · 𝑧))
4645eqeq1d 2731 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝑥 · 𝑦) = 1 ↔ (𝑥 · 𝑧) = 1 ))
4746cbvrexvw 3214 . . . . . . . . . . . 12 (∃𝑦𝐵 (𝑥 · 𝑦) = 1 ↔ ∃𝑧𝐵 (𝑥 · 𝑧) = 1 )
4844, 47sylib 218 . . . . . . . . . . 11 ((𝑥𝐵𝑥(∥r‘(oppr𝑅)) 1 ) → ∃𝑧𝐵 (𝑥 · 𝑧) = 1 )
4930, 36, 48syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → ∃𝑧𝐵 (𝑥 · 𝑧) = 1 )
5029, 49r19.29a 3141 . . . . . . . . 9 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → (𝑥 · 𝑦) = 1 )
51 simpr 484 . . . . . . . . 9 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → (𝑦 · 𝑥) = 1 )
5250, 51jca 511 . . . . . . . 8 ((((𝜑𝑥𝑈) ∧ 𝑦𝐵) ∧ (𝑦 · 𝑥) = 1 ) → ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
5352anasss 466 . . . . . . 7 (((𝜑𝑥𝑈) ∧ (𝑦𝐵 ∧ (𝑦 · 𝑥) = 1 )) → ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
5421adantl 481 . . . . . . . 8 ((𝜑𝑥𝑈) → 𝑥𝐵)
5534simplbi 497 . . . . . . . . 9 (𝑥𝑈𝑥(∥r𝑅) 1 )
5655adantl 481 . . . . . . . 8 ((𝜑𝑥𝑈) → 𝑥(∥r𝑅) 1 )
571, 31, 19dvdsr2 20248 . . . . . . . . 9 (𝑥𝐵 → (𝑥(∥r𝑅) 1 ↔ ∃𝑦𝐵 (𝑦 · 𝑥) = 1 ))
5857biimpa 476 . . . . . . . 8 ((𝑥𝐵𝑥(∥r𝑅) 1 ) → ∃𝑦𝐵 (𝑦 · 𝑥) = 1 )
5954, 56, 58syl2anc 584 . . . . . . 7 ((𝜑𝑥𝑈) → ∃𝑦𝐵 (𝑦 · 𝑥) = 1 )
6053, 59reximddv 3149 . . . . . 6 ((𝜑𝑥𝑈) → ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
6116, 18, 60syl2anc 584 . . . . 5 (((𝜑𝑈 = (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
6261ralrimiva 3125 . . . 4 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))
6315, 62jca 511 . . 3 ((𝜑𝑈 = (𝐵 ∖ { 0 })) → ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )))
641, 2unitss 20261 . . . . . 6 𝑈𝐵
6564a1i 11 . . . . 5 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 𝑈𝐵)
665adantr 480 . . . . . 6 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 𝑅 ∈ Ring)
67 simprl 770 . . . . . 6 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 10 )
682, 3, 80unit 20281 . . . . . . . 8 (𝑅 ∈ Ring → ( 0𝑈1 = 0 ))
6968necon3bbid 2962 . . . . . . 7 (𝑅 ∈ Ring → (¬ 0𝑈10 ))
7069biimpar 477 . . . . . 6 ((𝑅 ∈ Ring ∧ 10 ) → ¬ 0𝑈)
7166, 67, 70syl2anc 584 . . . . 5 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → ¬ 0𝑈)
72 ssdifsn 4748 . . . . 5 (𝑈 ⊆ (𝐵 ∖ { 0 }) ↔ (𝑈𝐵 ∧ ¬ 0𝑈))
7365, 71, 72sylanbrc 583 . . . 4 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 𝑈 ⊆ (𝐵 ∖ { 0 }))
74 simplr 768 . . . . . . . . . . 11 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥 ∈ (𝐵 ∖ { 0 }))
7574eldifad 3923 . . . . . . . . . 10 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥𝐵)
76 simpr 484 . . . . . . . . . . . 12 (((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → (𝑦 · 𝑥) = 1 )
7776reximi 3067 . . . . . . . . . . 11 (∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → ∃𝑦𝐵 (𝑦 · 𝑥) = 1 )
7877adantl 481 . . . . . . . . . 10 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → ∃𝑦𝐵 (𝑦 · 𝑥) = 1 )
7957biimpar 477 . . . . . . . . . 10 ((𝑥𝐵 ∧ ∃𝑦𝐵 (𝑦 · 𝑥) = 1 ) → 𝑥(∥r𝑅) 1 )
8075, 78, 79syl2anc 584 . . . . . . . . 9 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥(∥r𝑅) 1 )
81 simpl 482 . . . . . . . . . . . . 13 (((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → (𝑥 · 𝑦) = 1 )
8281reximi 3067 . . . . . . . . . . . 12 (∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → ∃𝑦𝐵 (𝑥 · 𝑦) = 1 )
8382adantl 481 . . . . . . . . . . 11 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → ∃𝑦𝐵 (𝑥 · 𝑦) = 1 )
8483, 43sylibr 234 . . . . . . . . . 10 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → ∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 )
8539biimpar 477 . . . . . . . . . 10 ((𝑥𝐵 ∧ ∃𝑦𝐵 (𝑦(.r‘(oppr𝑅))𝑥) = 1 ) → 𝑥(∥r‘(oppr𝑅)) 1 )
8675, 84, 85syl2anc 584 . . . . . . . . 9 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥(∥r‘(oppr𝑅)) 1 )
8780, 86, 34sylanbrc 583 . . . . . . . 8 ((((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ ∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )) → 𝑥𝑈)
8887ex 412 . . . . . . 7 (((𝜑10 ) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → 𝑥𝑈))
8988ralimdva 3145 . . . . . 6 ((𝜑10 ) → (∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ) → ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝑈))
9089impr 454 . . . . 5 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝑈)
91 dfss3 3932 . . . . 5 ((𝐵 ∖ { 0 }) ⊆ 𝑈 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥𝑈)
9290, 91sylibr 234 . . . 4 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → (𝐵 ∖ { 0 }) ⊆ 𝑈)
9373, 92eqssd 3961 . . 3 ((𝜑 ∧ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))) → 𝑈 = (𝐵 ∖ { 0 }))
9463, 93impbida 800 . 2 (𝜑 → (𝑈 = (𝐵 ∖ { 0 }) ↔ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))))
957, 94bitrd 279 1 (𝜑 → (𝑅 ∈ DivRing ↔ ( 10 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 ))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3908  wss 3911  {csn 4585   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  .rcmulr 17197  0gc0g 17378  1rcur 20066  Ringcrg 20118  opprcoppr 20221  rcdsr 20239  Unitcui 20240  DivRingcdr 20614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-drng 20616
This theorem is referenced by:  fracfld  33231  drngidl  33377  opprqusdrng  33437  qsdrngi  33439
  Copyright terms: Public domain W3C validator