Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  logdivsqrle Structured version   Visualization version   GIF version

Theorem logdivsqrle 34653
Description: Conditions for ((log x ) / ( sqrt 𝑥)) to be decreasing. (Contributed by Thierry Arnoux, 20-Dec-2021.)
Hypotheses
Ref Expression
logdivsqrle.a (𝜑𝐴 ∈ ℝ+)
logdivsqrle.b (𝜑𝐵 ∈ ℝ+)
logdivsqrle.1 (𝜑 → (exp‘2) ≤ 𝐴)
logdivsqrle.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
logdivsqrle (𝜑 → ((log‘𝐵) / (√‘𝐵)) ≤ ((log‘𝐴) / (√‘𝐴)))

Proof of Theorem logdivsqrle
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioorp 13317 . . . 4 (0(,)+∞) = ℝ+
21eqcomi 2739 . . 3 + = (0(,)+∞)
3 logdivsqrle.a . . 3 (𝜑𝐴 ∈ ℝ+)
4 logdivsqrle.b . . 3 (𝜑𝐵 ∈ ℝ+)
5 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
65relogcld 26552 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
75rpsqrtcld 15311 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
87rpred 12926 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ)
9 rpsqrtcl 15163 . . . . . . 7 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
10 rpne0 12899 . . . . . . 7 ((√‘𝑥) ∈ ℝ+ → (√‘𝑥) ≠ 0)
119, 10syl 17 . . . . . 6 (𝑥 ∈ ℝ+ → (√‘𝑥) ≠ 0)
1211adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ≠ 0)
136, 8, 12redivcld 11941 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / (√‘𝑥)) ∈ ℝ)
1413fmpttd 7043 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))):ℝ+⟶ℝ)
15 rpcn 12893 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
1615adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
17 rpne0 12899 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ≠ 0)
1817adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
1916, 18logcld 26499 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
2016sqrtcld 15339 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℂ)
2119, 20, 12divrecd 11892 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / (√‘𝑥)) = ((log‘𝑥) · (1 / (√‘𝑥))))
22 2cnd 12195 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℂ)
2322adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
24 2ne0 12221 . . . . . . . . . . . . 13 2 ≠ 0
2524a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 2 ≠ 0)
2623, 25reccld 11882 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (1 / 2) ∈ ℂ)
2716, 18, 26cxpnegd 26644 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐-(1 / 2)) = (1 / (𝑥𝑐(1 / 2))))
28 cxpsqrt 26632 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥𝑐(1 / 2)) = (√‘𝑥))
2916, 28syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐(1 / 2)) = (√‘𝑥))
3029oveq2d 7357 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (1 / (𝑥𝑐(1 / 2))) = (1 / (√‘𝑥)))
3127, 30eqtrd 2765 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐-(1 / 2)) = (1 / (√‘𝑥)))
3231oveq2d 7357 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (𝑥𝑐-(1 / 2))) = ((log‘𝑥) · (1 / (√‘𝑥))))
3321, 32eqtr4d 2768 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / (√‘𝑥)) = ((log‘𝑥) · (𝑥𝑐-(1 / 2))))
3433mpteq2dva 5182 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) · (𝑥𝑐-(1 / 2)))))
3534oveq2d 7357 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))) = (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) · (𝑥𝑐-(1 / 2))))))
36 reelprrecn 11090 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
3736a1i 11 . . . . . 6 (𝜑 → ℝ ∈ {ℝ, ℂ})
385rpreccld 12936 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
39 logf1o 26493 . . . . . . . . . . 11 log:(ℂ ∖ {0})–1-1-onto→ran log
40 f1of 6759 . . . . . . . . . . 11 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
4139, 40ax-mp 5 . . . . . . . . . 10 log:(ℂ ∖ {0})⟶ran log
4241a1i 11 . . . . . . . . 9 (𝜑 → log:(ℂ ∖ {0})⟶ran log)
4315ssriv 3936 . . . . . . . . . . 11 + ⊆ ℂ
44 0nrp 12919 . . . . . . . . . . 11 ¬ 0 ∈ ℝ+
45 ssdifsn 4738 . . . . . . . . . . 11 (ℝ+ ⊆ (ℂ ∖ {0}) ↔ (ℝ+ ⊆ ℂ ∧ ¬ 0 ∈ ℝ+))
4643, 44, 45mpbir2an 711 . . . . . . . . . 10 + ⊆ (ℂ ∖ {0})
4746a1i 11 . . . . . . . . 9 (𝜑 → ℝ+ ⊆ (ℂ ∖ {0}))
4842, 47feqresmpt 6886 . . . . . . . 8 (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
4948oveq2d 7357 . . . . . . 7 (𝜑 → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))))
50 dvrelog 26566 . . . . . . 7 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
5149, 50eqtr3di 2780 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
52 1cnd 11099 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
5352halfcld 12358 . . . . . . . . 9 (𝜑 → (1 / 2) ∈ ℂ)
5453negcld 11451 . . . . . . . 8 (𝜑 → -(1 / 2) ∈ ℂ)
5554adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → -(1 / 2) ∈ ℂ)
5616, 55cxpcld 26637 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐-(1 / 2)) ∈ ℂ)
5752adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℂ)
5855, 57subcld 11464 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (-(1 / 2) − 1) ∈ ℂ)
5916, 58cxpcld 26637 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐(-(1 / 2) − 1)) ∈ ℂ)
6055, 59mulcld 11124 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) ∈ ℂ)
61 dvcxp1 26669 . . . . . . 7 (-(1 / 2) ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥𝑐-(1 / 2)))) = (𝑥 ∈ ℝ+ ↦ (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1)))))
6254, 61syl 17 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥𝑐-(1 / 2)))) = (𝑥 ∈ ℝ+ ↦ (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1)))))
6337, 19, 38, 51, 56, 60, 62dvmptmul 25885 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) · (𝑥𝑐-(1 / 2))))) = (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))))
6435, 63eqtrd 2765 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))))
65 ax-resscn 11055 . . . . . 6 ℝ ⊆ ℂ
6665a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
67 eqid 2730 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6867addcn 24774 . . . . . . 7 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
6968a1i 11 . . . . . 6 (𝜑 → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
7043a1i 11 . . . . . . . . 9 (𝜑 → ℝ+ ⊆ ℂ)
71 ssid 3955 . . . . . . . . . 10 ℂ ⊆ ℂ
7271a1i 11 . . . . . . . . 9 (𝜑 → ℂ ⊆ ℂ)
73 cncfmptc 24825 . . . . . . . . 9 ((1 ∈ ℂ ∧ ℝ+ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℝ+ ↦ 1) ∈ (ℝ+cn→ℂ))
7452, 70, 72, 73syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ 1) ∈ (ℝ+cn→ℂ))
75 difss 4084 . . . . . . . . 9 (ℂ ∖ {0}) ⊆ ℂ
76 cncfmptid 24826 . . . . . . . . 9 ((ℝ+ ⊆ (ℂ ∖ {0}) ∧ (ℂ ∖ {0}) ⊆ ℂ) → (𝑥 ∈ ℝ+𝑥) ∈ (ℝ+cn→(ℂ ∖ {0})))
7747, 75, 76sylancl 586 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+𝑥) ∈ (ℝ+cn→(ℂ ∖ {0})))
7874, 77divcncf 25368 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ∈ (ℝ+cn→ℂ))
79 ax-1 6 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+))
8015, 79jca 511 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
81 eqid 2730 . . . . . . . . . . . 12 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
8281ellogdm 26568 . . . . . . . . . . 11 (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
8380, 82sylibr 234 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ (ℂ ∖ (-∞(,]0)))
8483ssriv 3936 . . . . . . . . 9 + ⊆ (ℂ ∖ (-∞(,]0))
8584a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ (ℂ ∖ (-∞(,]0)))
8654, 85cxpcncf1 34598 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑥𝑐-(1 / 2))) ∈ (ℝ+cn→ℂ))
8778, 86mulcncf 25366 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) · (𝑥𝑐-(1 / 2)))) ∈ (ℝ+cn→ℂ))
88 cncfmptc 24825 . . . . . . . . 9 ((-(1 / 2) ∈ ℂ ∧ ℝ+ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℝ+ ↦ -(1 / 2)) ∈ (ℝ+cn→ℂ))
8954, 70, 72, 88syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ -(1 / 2)) ∈ (ℝ+cn→ℂ))
9054, 52subcld 11464 . . . . . . . . 9 (𝜑 → (-(1 / 2) − 1) ∈ ℂ)
9190, 85cxpcncf1 34598 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑥𝑐(-(1 / 2) − 1))) ∈ (ℝ+cn→ℂ))
9289, 91mulcncf 25366 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1)))) ∈ (ℝ+cn→ℂ))
93 cncfss 24812 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ))
9465, 71, 93mp2an 692 . . . . . . . 8 (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ)
95 relogcn 26567 . . . . . . . . 9 (log ↾ ℝ+) ∈ (ℝ+cn→ℝ)
9648, 95eqeltrrdi 2838 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ (ℝ+cn→ℝ))
9794, 96sselid 3930 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ (ℝ+cn→ℂ))
9892, 97mulcncf 25366 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) ∈ (ℝ+cn→ℂ))
9967, 69, 87, 98cncfmpt2f 24828 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℂ))
100 rpre 12891 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
101100, 17rereccld 11940 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ)
102 rpge0 12896 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
103 halfre 12326 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
104103renegcli 11414 . . . . . . . . . . 11 -(1 / 2) ∈ ℝ
105104a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → -(1 / 2) ∈ ℝ)
106100, 102, 105recxpcld 26652 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥𝑐-(1 / 2)) ∈ ℝ)
107101, 106remulcld 11134 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((1 / 𝑥) · (𝑥𝑐-(1 / 2))) ∈ ℝ)
108 1re 11104 . . . . . . . . . . . . 13 1 ∈ ℝ
109104, 108resubcli 11415 . . . . . . . . . . . 12 (-(1 / 2) − 1) ∈ ℝ
110109a1i 11 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (-(1 / 2) − 1) ∈ ℝ)
111100, 102, 110recxpcld 26652 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥𝑐(-(1 / 2) − 1)) ∈ ℝ)
112105, 111remulcld 11134 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) ∈ ℝ)
113 relogcl 26504 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
114112, 113remulcld 11134 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)) ∈ ℝ)
115107, 114readdcld 11133 . . . . . . 7 (𝑥 ∈ ℝ+ → (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) ∈ ℝ)
116115adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) ∈ ℝ)
117116fmpttd 7043 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))):ℝ+⟶ℝ)
118 cncfcdm 24811 . . . . . 6 ((ℝ ⊆ ℂ ∧ (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℂ)) → ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℝ) ↔ (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))):ℝ+⟶ℝ))
119118biimpar 477 . . . . 5 (((ℝ ⊆ ℂ ∧ (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℂ)) ∧ (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))):ℝ+⟶ℝ) → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℝ))
12066, 99, 117, 119syl21anc 837 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℝ))
12164, 120eqeltrd 2829 . . 3 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))) ∈ (ℝ+cn→ℝ))
122 logdivsqrle.2 . . 3 (𝜑𝐴𝐵)
12364fveq1d 6819 . . . . 5 (𝜑 → ((ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦))
124123adantr 480 . . . 4 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦))
12557negcld 11451 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → -1 ∈ ℂ)
126 cxpadd 26608 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ -(1 / 2) ∈ ℂ ∧ -1 ∈ ℂ) → (𝑥𝑐(-(1 / 2) + -1)) = ((𝑥𝑐-(1 / 2)) · (𝑥𝑐-1)))
12716, 18, 55, 125, 126syl211anc 1378 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐(-(1 / 2) + -1)) = ((𝑥𝑐-(1 / 2)) · (𝑥𝑐-1)))
12859mullidd 11122 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (1 · (𝑥𝑐(-(1 / 2) − 1))) = (𝑥𝑐(-(1 / 2) − 1)))
12955, 57negsubd 11470 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (-(1 / 2) + -1) = (-(1 / 2) − 1))
130129oveq2d 7357 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐(-(1 / 2) + -1)) = (𝑥𝑐(-(1 / 2) − 1)))
131128, 130eqtr4d 2768 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (1 · (𝑥𝑐(-(1 / 2) − 1))) = (𝑥𝑐(-(1 / 2) + -1)))
13243, 38sselid 3930 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
133132, 56mulcomd 11125 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → ((1 / 𝑥) · (𝑥𝑐-(1 / 2))) = ((𝑥𝑐-(1 / 2)) · (1 / 𝑥)))
134 cxpneg 26610 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ∧ 1 ∈ ℂ) → (𝑥𝑐-1) = (1 / (𝑥𝑐1)))
13516, 18, 57, 134syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐-1) = (1 / (𝑥𝑐1)))
13616cxp1d 26635 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐1) = 𝑥)
137136oveq2d 7357 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (1 / (𝑥𝑐1)) = (1 / 𝑥))
138135, 137eqtr2d 2766 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) = (𝑥𝑐-1))
139138oveq2d 7357 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → ((𝑥𝑐-(1 / 2)) · (1 / 𝑥)) = ((𝑥𝑐-(1 / 2)) · (𝑥𝑐-1)))
140133, 139eqtrd 2765 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((1 / 𝑥) · (𝑥𝑐-(1 / 2))) = ((𝑥𝑐-(1 / 2)) · (𝑥𝑐-1)))
141127, 131, 1403eqtr4rd 2776 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((1 / 𝑥) · (𝑥𝑐-(1 / 2))) = (1 · (𝑥𝑐(-(1 / 2) − 1))))
14255, 59, 19mul32d 11315 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)) = ((-(1 / 2) · (log‘𝑥)) · (𝑥𝑐(-(1 / 2) − 1))))
143141, 142oveq12d 7359 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) = ((1 · (𝑥𝑐(-(1 / 2) − 1))) + ((-(1 / 2) · (log‘𝑥)) · (𝑥𝑐(-(1 / 2) − 1)))))
14455, 19mulcld 11124 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (-(1 / 2) · (log‘𝑥)) ∈ ℂ)
14557, 144, 59adddird 11129 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))) = ((1 · (𝑥𝑐(-(1 / 2) − 1))) + ((-(1 / 2) · (log‘𝑥)) · (𝑥𝑐(-(1 / 2) − 1)))))
146143, 145eqtr4d 2768 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) = ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))
147146mpteq2dva 5182 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1)))))
148147fveq1d 6819 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))‘𝑦))
149148adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))‘𝑦))
150 eqidd 2731 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1)))) = (𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1)))))
151 simpr 484 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
152151fveq2d 6821 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (log‘𝑥) = (log‘𝑦))
153152oveq2d 7357 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (-(1 / 2) · (log‘𝑥)) = (-(1 / 2) · (log‘𝑦)))
154153oveq2d 7357 . . . . . . . 8 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (1 + (-(1 / 2) · (log‘𝑥))) = (1 + (-(1 / 2) · (log‘𝑦))))
155151oveq1d 7356 . . . . . . . 8 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (𝑥𝑐(-(1 / 2) − 1)) = (𝑦𝑐(-(1 / 2) − 1)))
156154, 155oveq12d 7359 . . . . . . 7 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))) = ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))))
157 ioossicc 13325 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
158157a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
1592, 3, 4fct2relem 34600 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ+)
160158, 159sstrd 3943 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ+)
161160sselda 3932 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ+)
162 ovexd 7376 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))) ∈ V)
163150, 156, 161, 162fvmptd 6931 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))‘𝑦) = ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))))
164108a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
165104a1i 11 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → -(1 / 2) ∈ ℝ)
166161relogcld 26552 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (log‘𝑦) ∈ ℝ)
167165, 166remulcld 11134 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (-(1 / 2) · (log‘𝑦)) ∈ ℝ)
168164, 167readdcld 11133 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (1 + (-(1 / 2) · (log‘𝑦))) ∈ ℝ)
169 0red 11107 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
170 rpcxpcl 26605 . . . . . . . . . 10 ((𝑦 ∈ ℝ+ ∧ (-(1 / 2) − 1) ∈ ℝ) → (𝑦𝑐(-(1 / 2) − 1)) ∈ ℝ+)
171161, 109, 170sylancl 586 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑦𝑐(-(1 / 2) − 1)) ∈ ℝ+)
172171rpred 12926 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑦𝑐(-(1 / 2) − 1)) ∈ ℝ)
173171rpge0d 12930 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 ≤ (𝑦𝑐(-(1 / 2) − 1)))
174 2cn 12192 . . . . . . . . . . . . . 14 2 ∈ ℂ
175174mullidi 11109 . . . . . . . . . . . . 13 (1 · 2) = 2
176 2re 12191 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
177176a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ)
178177reefcld 15987 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ∈ ℝ)
1793rpred 12926 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℝ)
180179adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
181161rpred 12926 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ)
182 logdivsqrle.1 . . . . . . . . . . . . . . . . 17 (𝜑 → (exp‘2) ≤ 𝐴)
183182adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ≤ 𝐴)
184 eliooord 13297 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑦𝑦 < 𝐵))
185184simpld 494 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑦)
186185adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑦)
187180, 181, 186ltled 11253 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴𝑦)
188178, 180, 181, 183, 187letrd 11262 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ≤ 𝑦)
189 reeflog 26509 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ+ → (exp‘(log‘𝑦)) = 𝑦)
190161, 189syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘(log‘𝑦)) = 𝑦)
191188, 190breqtrrd 5117 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ≤ (exp‘(log‘𝑦)))
192 efle 16019 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ ∧ (log‘𝑦) ∈ ℝ) → (2 ≤ (log‘𝑦) ↔ (exp‘2) ≤ (exp‘(log‘𝑦))))
193176, 166, 192sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (2 ≤ (log‘𝑦) ↔ (exp‘2) ≤ (exp‘(log‘𝑦))))
194191, 193mpbird 257 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ≤ (log‘𝑦))
195175, 194eqbrtrid 5124 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (1 · 2) ≤ (log‘𝑦))
196 2rp 12887 . . . . . . . . . . . . . 14 2 ∈ ℝ+
197196a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ+)
198164, 166, 197lemuldivd 12975 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 · 2) ≤ (log‘𝑦) ↔ 1 ≤ ((log‘𝑦) / 2)))
199195, 198mpbid 232 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 1 ≤ ((log‘𝑦) / 2))
20065, 166sselid 3930 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (log‘𝑦) ∈ ℂ)
20122adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
20224a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
203200, 201, 202divrec2d 11893 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((log‘𝑦) / 2) = ((1 / 2) · (log‘𝑦)))
204199, 203breqtrd 5115 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 1 ≤ ((1 / 2) · (log‘𝑦)))
20553adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (1 / 2) ∈ ℂ)
206205, 200mulneg1d 11562 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (-(1 / 2) · (log‘𝑦)) = -((1 / 2) · (log‘𝑦)))
207206oveq2d 7357 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 − (-(1 / 2) · (log‘𝑦))) = (0 − -((1 / 2) · (log‘𝑦))))
20865, 169sselid 3930 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 ∈ ℂ)
209205, 200mulcld 11124 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 / 2) · (log‘𝑦)) ∈ ℂ)
210208, 209subnegd 11471 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 − -((1 / 2) · (log‘𝑦))) = (0 + ((1 / 2) · (log‘𝑦))))
211209addlidd 11306 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 + ((1 / 2) · (log‘𝑦))) = ((1 / 2) · (log‘𝑦)))
212207, 210, 2113eqtrd 2769 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 − (-(1 / 2) · (log‘𝑦))) = ((1 / 2) · (log‘𝑦)))
213204, 212breqtrrd 5117 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 1 ≤ (0 − (-(1 / 2) · (log‘𝑦))))
214 leaddsub 11585 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (-(1 / 2) · (log‘𝑦)) ∈ ℝ ∧ 0 ∈ ℝ) → ((1 + (-(1 / 2) · (log‘𝑦))) ≤ 0 ↔ 1 ≤ (0 − (-(1 / 2) · (log‘𝑦)))))
215164, 167, 169, 214syl3anc 1373 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) · (log‘𝑦))) ≤ 0 ↔ 1 ≤ (0 − (-(1 / 2) · (log‘𝑦)))))
216213, 215mpbird 257 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (1 + (-(1 / 2) · (log‘𝑦))) ≤ 0)
217168, 169, 172, 173, 216lemul1ad 12053 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))) ≤ (0 · (𝑦𝑐(-(1 / 2) − 1))))
21843, 171sselid 3930 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑦𝑐(-(1 / 2) − 1)) ∈ ℂ)
219218mul02d 11303 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 · (𝑦𝑐(-(1 / 2) − 1))) = 0)
220217, 219breqtrd 5115 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))) ≤ 0)
221163, 220eqbrtrd 5111 . . . . 5 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))‘𝑦) ≤ 0)
222149, 221eqbrtrd 5111 . . . 4 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦) ≤ 0)
223124, 222eqbrtrd 5111 . . 3 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))))‘𝑦) ≤ 0)
2242, 3, 4, 14, 121, 122, 223fdvnegge 34605 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))‘𝐵) ≤ ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))‘𝐴))
225 eqidd 2731 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))))
226 simpr 484 . . . . 5 ((𝜑𝑥 = 𝐵) → 𝑥 = 𝐵)
227226fveq2d 6821 . . . 4 ((𝜑𝑥 = 𝐵) → (log‘𝑥) = (log‘𝐵))
228226fveq2d 6821 . . . 4 ((𝜑𝑥 = 𝐵) → (√‘𝑥) = (√‘𝐵))
229227, 228oveq12d 7359 . . 3 ((𝜑𝑥 = 𝐵) → ((log‘𝑥) / (√‘𝑥)) = ((log‘𝐵) / (√‘𝐵)))
230 ovex 7374 . . . 4 ((log‘𝐵) / (√‘𝐵)) ∈ V
231230a1i 11 . . 3 (𝜑 → ((log‘𝐵) / (√‘𝐵)) ∈ V)
232225, 229, 4, 231fvmptd 6931 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))‘𝐵) = ((log‘𝐵) / (√‘𝐵)))
233 simpr 484 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐴)
234233fveq2d 6821 . . . 4 ((𝜑𝑥 = 𝐴) → (log‘𝑥) = (log‘𝐴))
235233fveq2d 6821 . . . 4 ((𝜑𝑥 = 𝐴) → (√‘𝑥) = (√‘𝐴))
236234, 235oveq12d 7359 . . 3 ((𝜑𝑥 = 𝐴) → ((log‘𝑥) / (√‘𝑥)) = ((log‘𝐴) / (√‘𝐴)))
237 ovex 7374 . . . 4 ((log‘𝐴) / (√‘𝐴)) ∈ V
238237a1i 11 . . 3 (𝜑 → ((log‘𝐴) / (√‘𝐴)) ∈ V)
239225, 236, 3, 238fvmptd 6931 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))‘𝐴) = ((log‘𝐴) / (√‘𝐴)))
240224, 232, 2393brtr3d 5120 1 (𝜑 → ((log‘𝐵) / (√‘𝐵)) ≤ ((log‘𝐴) / (√‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wne 2926  Vcvv 3434  cdif 3897  wss 3900  {csn 4574  {cpr 4576   class class class wbr 5089  cmpt 5170  ran crn 5615  cres 5616  wf 6473  1-1-ontowf1o 6476  cfv 6477  (class class class)co 7341  cc 10996  cr 10997  0cc0 10998  1c1 10999   + caddc 11001   · cmul 11003  +∞cpnf 11135  -∞cmnf 11136   < clt 11138  cle 11139  cmin 11336  -cneg 11337   / cdiv 11766  2c2 12172  +crp 12882  (,)cioo 13237  (,]cioc 13238  [,]cicc 13240  csqrt 15132  expce 15960  TopOpenctopn 17317  fldccnfld 21284   Cn ccn 23132   ×t ctx 23468  cnccncf 24789   D cdv 25784  logclog 26483  𝑐ccxp 26484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cc 10318  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-symdif 4201  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9786  df-card 9824  df-acn 9827  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ioc 13242  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-fac 14173  df-bc 14202  df-hash 14230  df-shft 14966  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-limsup 15370  df-clim 15387  df-rlim 15388  df-sum 15586  df-ef 15966  df-sin 15968  df-cos 15969  df-tan 15970  df-pi 15971  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-mulg 18973  df-cntz 19222  df-cmn 19687  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-lp 23044  df-perf 23045  df-cn 23135  df-cnp 23136  df-haus 23223  df-cmp 23295  df-tx 23470  df-hmeo 23663  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-xms 24228  df-ms 24229  df-tms 24230  df-cncf 24791  df-ovol 25385  df-vol 25386  df-mbf 25540  df-itg1 25541  df-itg2 25542  df-ibl 25543  df-itg 25544  df-0p 25591  df-limc 25787  df-dv 25788  df-log 26485  df-cxp 26486
This theorem is referenced by:  hgt750lem  34654
  Copyright terms: Public domain W3C validator