Step | Hyp | Ref
| Expression |
1 | | ioorp 13157 |
. . . 4
⊢
(0(,)+∞) = ℝ+ |
2 | 1 | eqcomi 2747 |
. . 3
⊢
ℝ+ = (0(,)+∞) |
3 | | logdivsqrle.a |
. . 3
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
4 | | logdivsqrle.b |
. . 3
⊢ (𝜑 → 𝐵 ∈
ℝ+) |
5 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ+) |
6 | 5 | relogcld 25778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(log‘𝑥) ∈
ℝ) |
7 | 5 | rpsqrtcld 15123 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(√‘𝑥) ∈
ℝ+) |
8 | 7 | rpred 12772 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(√‘𝑥) ∈
ℝ) |
9 | | rpsqrtcl 14976 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (√‘𝑥)
∈ ℝ+) |
10 | | rpne0 12746 |
. . . . . . 7
⊢
((√‘𝑥)
∈ ℝ+ → (√‘𝑥) ≠ 0) |
11 | 9, 10 | syl 17 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (√‘𝑥)
≠ 0) |
12 | 11 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(√‘𝑥) ≠
0) |
13 | 6, 8, 12 | redivcld 11803 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((log‘𝑥) /
(√‘𝑥)) ∈
ℝ) |
14 | 13 | fmpttd 6989 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
((log‘𝑥) /
(√‘𝑥))):ℝ+⟶ℝ) |
15 | | rpcn 12740 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℂ) |
16 | 15 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℂ) |
17 | | rpne0 12746 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ≠
0) |
18 | 17 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0) |
19 | 16, 18 | logcld 25726 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(log‘𝑥) ∈
ℂ) |
20 | 16 | sqrtcld 15149 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(√‘𝑥) ∈
ℂ) |
21 | 19, 20, 12 | divrecd 11754 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((log‘𝑥) /
(√‘𝑥)) =
((log‘𝑥) · (1
/ (√‘𝑥)))) |
22 | | 2cnd 12051 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 2 ∈
ℂ) |
23 | 22 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 2 ∈
ℂ) |
24 | | 2ne0 12077 |
. . . . . . . . . . . . 13
⊢ 2 ≠
0 |
25 | 24 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 2 ≠
0) |
26 | 23, 25 | reccld 11744 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1 / 2)
∈ ℂ) |
27 | 16, 18, 26 | cxpnegd 25870 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥↑𝑐-(1 /
2)) = (1 / (𝑥↑𝑐(1 /
2)))) |
28 | | cxpsqrt 25858 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℂ → (𝑥↑𝑐(1 /
2)) = (√‘𝑥)) |
29 | 16, 28 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥↑𝑐(1 /
2)) = (√‘𝑥)) |
30 | 29 | oveq2d 7291 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1 /
(𝑥↑𝑐(1 / 2))) = (1 /
(√‘𝑥))) |
31 | 27, 30 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥↑𝑐-(1 /
2)) = (1 / (√‘𝑥))) |
32 | 31 | oveq2d 7291 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((log‘𝑥) ·
(𝑥↑𝑐-(1 / 2))) =
((log‘𝑥) · (1
/ (√‘𝑥)))) |
33 | 21, 32 | eqtr4d 2781 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((log‘𝑥) /
(√‘𝑥)) =
((log‘𝑥) ·
(𝑥↑𝑐-(1 /
2)))) |
34 | 33 | mpteq2dva 5174 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
((log‘𝑥) /
(√‘𝑥))) =
(𝑥 ∈
ℝ+ ↦ ((log‘𝑥) · (𝑥↑𝑐-(1 /
2))))) |
35 | 34 | oveq2d 7291 |
. . . . 5
⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ+
↦ ((log‘𝑥) /
(√‘𝑥)))) =
(ℝ D (𝑥 ∈
ℝ+ ↦ ((log‘𝑥) · (𝑥↑𝑐-(1 /
2)))))) |
36 | | reelprrecn 10963 |
. . . . . . 7
⊢ ℝ
∈ {ℝ, ℂ} |
37 | 36 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
38 | 5 | rpreccld 12782 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1 /
𝑥) ∈
ℝ+) |
39 | | logf1o 25720 |
. . . . . . . . . . 11
⊢
log:(ℂ ∖ {0})–1-1-onto→ran
log |
40 | | f1of 6716 |
. . . . . . . . . . 11
⊢
(log:(ℂ ∖ {0})–1-1-onto→ran
log → log:(ℂ ∖ {0})⟶ran log) |
41 | 39, 40 | ax-mp 5 |
. . . . . . . . . 10
⊢
log:(ℂ ∖ {0})⟶ran log |
42 | 41 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → log:(ℂ ∖
{0})⟶ran log) |
43 | 15 | ssriv 3925 |
. . . . . . . . . . 11
⊢
ℝ+ ⊆ ℂ |
44 | | 0nrp 12765 |
. . . . . . . . . . 11
⊢ ¬ 0
∈ ℝ+ |
45 | | ssdifsn 4721 |
. . . . . . . . . . 11
⊢
(ℝ+ ⊆ (ℂ ∖ {0}) ↔
(ℝ+ ⊆ ℂ ∧ ¬ 0 ∈
ℝ+)) |
46 | 43, 44, 45 | mpbir2an 708 |
. . . . . . . . . 10
⊢
ℝ+ ⊆ (ℂ ∖ {0}) |
47 | 46 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ℝ+
⊆ (ℂ ∖ {0})) |
48 | 42, 47 | feqresmpt 6838 |
. . . . . . . 8
⊢ (𝜑 → (log ↾
ℝ+) = (𝑥
∈ ℝ+ ↦ (log‘𝑥))) |
49 | 48 | oveq2d 7291 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (log ↾
ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦
(log‘𝑥)))) |
50 | | dvrelog 25792 |
. . . . . . 7
⊢ (ℝ
D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 /
𝑥)) |
51 | 49, 50 | eqtr3di 2793 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ+
↦ (log‘𝑥))) =
(𝑥 ∈
ℝ+ ↦ (1 / 𝑥))) |
52 | | 1cnd 10970 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℂ) |
53 | 52 | halfcld 12218 |
. . . . . . . . 9
⊢ (𝜑 → (1 / 2) ∈
ℂ) |
54 | 53 | negcld 11319 |
. . . . . . . 8
⊢ (𝜑 → -(1 / 2) ∈
ℂ) |
55 | 54 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → -(1 / 2)
∈ ℂ) |
56 | 16, 55 | cxpcld 25863 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥↑𝑐-(1 /
2)) ∈ ℂ) |
57 | 52 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 1 ∈
ℂ) |
58 | 55, 57 | subcld 11332 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (-(1 / 2)
− 1) ∈ ℂ) |
59 | 16, 58 | cxpcld 25863 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥↑𝑐(-(1 /
2) − 1)) ∈ ℂ) |
60 | 55, 59 | mulcld 10995 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (-(1 / 2)
· (𝑥↑𝑐(-(1 / 2) −
1))) ∈ ℂ) |
61 | | dvcxp1 25893 |
. . . . . . 7
⊢ (-(1 / 2)
∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥↑𝑐-(1 /
2)))) = (𝑥 ∈
ℝ+ ↦ (-(1 / 2) · (𝑥↑𝑐(-(1 / 2) −
1))))) |
62 | 54, 61 | syl 17 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ+
↦ (𝑥↑𝑐-(1 / 2)))) =
(𝑥 ∈
ℝ+ ↦ (-(1 / 2) · (𝑥↑𝑐(-(1 / 2) −
1))))) |
63 | 37, 19, 38, 51, 56, 60, 62 | dvmptmul 25125 |
. . . . 5
⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ+
↦ ((log‘𝑥)
· (𝑥↑𝑐-(1 / 2))))) =
(𝑥 ∈
ℝ+ ↦ (((1 / 𝑥) · (𝑥↑𝑐-(1 / 2))) + ((-(1
/ 2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥))))) |
64 | 35, 63 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ+
↦ ((log‘𝑥) /
(√‘𝑥)))) =
(𝑥 ∈
ℝ+ ↦ (((1 / 𝑥) · (𝑥↑𝑐-(1 / 2))) + ((-(1
/ 2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥))))) |
65 | | ax-resscn 10928 |
. . . . . 6
⊢ ℝ
⊆ ℂ |
66 | 65 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ⊆
ℂ) |
67 | | eqid 2738 |
. . . . . 6
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
68 | 67 | addcn 24028 |
. . . . . . 7
⊢ + ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
69 | 68 | a1i 11 |
. . . . . 6
⊢ (𝜑 → + ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
70 | 43 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ℝ+
⊆ ℂ) |
71 | | ssid 3943 |
. . . . . . . . . 10
⊢ ℂ
⊆ ℂ |
72 | 71 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ℂ ⊆
ℂ) |
73 | | cncfmptc 24075 |
. . . . . . . . 9
⊢ ((1
∈ ℂ ∧ ℝ+ ⊆ ℂ ∧ ℂ ⊆
ℂ) → (𝑥 ∈
ℝ+ ↦ 1) ∈ (ℝ+–cn→ℂ)) |
74 | 52, 70, 72, 73 | syl3anc 1370 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ 1) ∈
(ℝ+–cn→ℂ)) |
75 | | difss 4066 |
. . . . . . . . 9
⊢ (ℂ
∖ {0}) ⊆ ℂ |
76 | | cncfmptid 24076 |
. . . . . . . . 9
⊢
((ℝ+ ⊆ (ℂ ∖ {0}) ∧ (ℂ
∖ {0}) ⊆ ℂ) → (𝑥 ∈ ℝ+ ↦ 𝑥) ∈
(ℝ+–cn→(ℂ ∖ {0}))) |
77 | 47, 75, 76 | sylancl 586 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ 𝑥) ∈
(ℝ+–cn→(ℂ ∖ {0}))) |
78 | 74, 77 | divcncf 24611 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (1 /
𝑥)) ∈
(ℝ+–cn→ℂ)) |
79 | | ax-1 6 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℝ
→ 𝑥 ∈
ℝ+)) |
80 | 15, 79 | jca 512 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℂ
∧ (𝑥 ∈ ℝ
→ 𝑥 ∈
ℝ+))) |
81 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (ℂ
∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0)) |
82 | 81 | ellogdm 25794 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (ℂ ∖
(-∞(,]0)) ↔ (𝑥
∈ ℂ ∧ (𝑥
∈ ℝ → 𝑥
∈ ℝ+))) |
83 | 80, 82 | sylibr 233 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈ (ℂ
∖ (-∞(,]0))) |
84 | 83 | ssriv 3925 |
. . . . . . . . 9
⊢
ℝ+ ⊆ (ℂ ∖
(-∞(,]0)) |
85 | 84 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ+
⊆ (ℂ ∖ (-∞(,]0))) |
86 | 54, 85 | cxpcncf1 32575 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑥↑𝑐-(1 /
2))) ∈ (ℝ+–cn→ℂ)) |
87 | 78, 86 | mulcncf 24610 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((1 /
𝑥) · (𝑥↑𝑐-(1 /
2)))) ∈ (ℝ+–cn→ℂ)) |
88 | | cncfmptc 24075 |
. . . . . . . . 9
⊢ ((-(1 /
2) ∈ ℂ ∧ ℝ+ ⊆ ℂ ∧ ℂ
⊆ ℂ) → (𝑥
∈ ℝ+ ↦ -(1 / 2)) ∈
(ℝ+–cn→ℂ)) |
89 | 54, 70, 72, 88 | syl3anc 1370 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ -(1 / 2))
∈ (ℝ+–cn→ℂ)) |
90 | 54, 52 | subcld 11332 |
. . . . . . . . 9
⊢ (𝜑 → (-(1 / 2) − 1)
∈ ℂ) |
91 | 90, 85 | cxpcncf1 32575 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑥↑𝑐(-(1 /
2) − 1))) ∈ (ℝ+–cn→ℂ)) |
92 | 89, 91 | mulcncf 24610 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (-(1 / 2)
· (𝑥↑𝑐(-(1 / 2) −
1)))) ∈ (ℝ+–cn→ℂ)) |
93 | | cncfss 24062 |
. . . . . . . . 9
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) →
(ℝ+–cn→ℝ) ⊆
(ℝ+–cn→ℂ)) |
94 | 65, 71, 93 | mp2an 689 |
. . . . . . . 8
⊢
(ℝ+–cn→ℝ) ⊆
(ℝ+–cn→ℂ) |
95 | | relogcn 25793 |
. . . . . . . . 9
⊢ (log
↾ ℝ+) ∈ (ℝ+–cn→ℝ) |
96 | 48, 95 | eqeltrrdi 2848 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(log‘𝑥)) ∈
(ℝ+–cn→ℝ)) |
97 | 94, 96 | sselid 3919 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(log‘𝑥)) ∈
(ℝ+–cn→ℂ)) |
98 | 92, 97 | mulcncf 24610 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((-(1 /
2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥))) ∈ (ℝ+–cn→ℂ)) |
99 | 67, 69, 87, 98 | cncfmpt2f 24078 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 /
𝑥) · (𝑥↑𝑐-(1 /
2))) + ((-(1 / 2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥)))) ∈ (ℝ+–cn→ℂ)) |
100 | | rpre 12738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
101 | 100, 17 | rereccld 11802 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (1 / 𝑥) ∈
ℝ) |
102 | | rpge0 12743 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ 0 ≤ 𝑥) |
103 | | halfre 12187 |
. . . . . . . . . . . 12
⊢ (1 / 2)
∈ ℝ |
104 | 103 | renegcli 11282 |
. . . . . . . . . . 11
⊢ -(1 / 2)
∈ ℝ |
105 | 104 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ -(1 / 2) ∈ ℝ) |
106 | 100, 102,
105 | recxpcld 25878 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (𝑥↑𝑐-(1 / 2)) ∈
ℝ) |
107 | 101, 106 | remulcld 11005 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ ((1 / 𝑥) ·
(𝑥↑𝑐-(1 / 2))) ∈
ℝ) |
108 | | 1re 10975 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ |
109 | 104, 108 | resubcli 11283 |
. . . . . . . . . . . 12
⊢ (-(1 / 2)
− 1) ∈ ℝ |
110 | 109 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (-(1 / 2) − 1) ∈ ℝ) |
111 | 100, 102,
110 | recxpcld 25878 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (𝑥↑𝑐(-(1 / 2) −
1)) ∈ ℝ) |
112 | 105, 111 | remulcld 11005 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (-(1 / 2) · (𝑥↑𝑐(-(1 / 2) −
1))) ∈ ℝ) |
113 | | relogcl 25731 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℝ) |
114 | 112, 113 | remulcld 11005 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ ((-(1 / 2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥)) ∈ ℝ) |
115 | 107, 114 | readdcld 11004 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (((1 / 𝑥) ·
(𝑥↑𝑐-(1 / 2))) + ((-(1
/ 2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥))) ∈ ℝ) |
116 | 115 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (((1 /
𝑥) · (𝑥↑𝑐-(1 /
2))) + ((-(1 / 2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥))) ∈ ℝ) |
117 | 116 | fmpttd 6989 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 /
𝑥) · (𝑥↑𝑐-(1 /
2))) + ((-(1 / 2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥)))):ℝ+⟶ℝ) |
118 | | cncffvrn 24061 |
. . . . . 6
⊢ ((ℝ
⊆ ℂ ∧ (𝑥
∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥↑𝑐-(1 / 2))) + ((-(1
/ 2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥)))) ∈ (ℝ+–cn→ℂ)) → ((𝑥 ∈ ℝ+ ↦ (((1 /
𝑥) · (𝑥↑𝑐-(1 /
2))) + ((-(1 / 2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥)))) ∈ (ℝ+–cn→ℝ) ↔ (𝑥 ∈ ℝ+ ↦ (((1 /
𝑥) · (𝑥↑𝑐-(1 /
2))) + ((-(1 / 2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥)))):ℝ+⟶ℝ)) |
119 | 118 | biimpar 478 |
. . . . 5
⊢
(((ℝ ⊆ ℂ ∧ (𝑥 ∈ ℝ+ ↦ (((1 /
𝑥) · (𝑥↑𝑐-(1 /
2))) + ((-(1 / 2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥)))) ∈ (ℝ+–cn→ℂ)) ∧ (𝑥 ∈ ℝ+ ↦ (((1 /
𝑥) · (𝑥↑𝑐-(1 /
2))) + ((-(1 / 2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥)))):ℝ+⟶ℝ)
→ (𝑥 ∈
ℝ+ ↦ (((1 / 𝑥) · (𝑥↑𝑐-(1 / 2))) + ((-(1
/ 2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥)))) ∈ (ℝ+–cn→ℝ)) |
120 | 66, 99, 117, 119 | syl21anc 835 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 /
𝑥) · (𝑥↑𝑐-(1 /
2))) + ((-(1 / 2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥)))) ∈ (ℝ+–cn→ℝ)) |
121 | 64, 120 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → (ℝ D (𝑥 ∈ ℝ+
↦ ((log‘𝑥) /
(√‘𝑥)))) ∈
(ℝ+–cn→ℝ)) |
122 | | logdivsqrle.2 |
. . 3
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
123 | 64 | fveq1d 6776 |
. . . . 5
⊢ (𝜑 → ((ℝ D (𝑥 ∈ ℝ+
↦ ((log‘𝑥) /
(√‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ (((1 /
𝑥) · (𝑥↑𝑐-(1 /
2))) + ((-(1 / 2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥))))‘𝑦)) |
124 | 123 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑥 ∈ ℝ+ ↦
((log‘𝑥) /
(√‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ (((1 /
𝑥) · (𝑥↑𝑐-(1 /
2))) + ((-(1 / 2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥))))‘𝑦)) |
125 | 57 | negcld 11319 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → -1 ∈
ℂ) |
126 | | cxpadd 25834 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ -(1 / 2) ∈
ℂ ∧ -1 ∈ ℂ) → (𝑥↑𝑐(-(1 / 2) + -1)) =
((𝑥↑𝑐-(1 / 2)) ·
(𝑥↑𝑐-1))) |
127 | 16, 18, 55, 125, 126 | syl211anc 1375 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥↑𝑐(-(1 /
2) + -1)) = ((𝑥↑𝑐-(1 / 2)) ·
(𝑥↑𝑐-1))) |
128 | 59 | mulid2d 10993 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1
· (𝑥↑𝑐(-(1 / 2) −
1))) = (𝑥↑𝑐(-(1 / 2) −
1))) |
129 | 55, 57 | negsubd 11338 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (-(1 / 2)
+ -1) = (-(1 / 2) − 1)) |
130 | 129 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥↑𝑐(-(1 /
2) + -1)) = (𝑥↑𝑐(-(1 / 2) −
1))) |
131 | 128, 130 | eqtr4d 2781 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1
· (𝑥↑𝑐(-(1 / 2) −
1))) = (𝑥↑𝑐(-(1 / 2) +
-1))) |
132 | 43, 38 | sselid 3919 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1 /
𝑥) ∈
ℂ) |
133 | 132, 56 | mulcomd 10996 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((1 /
𝑥) · (𝑥↑𝑐-(1 /
2))) = ((𝑥↑𝑐-(1 / 2)) ·
(1 / 𝑥))) |
134 | | cxpneg 25836 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ∧ 1 ∈ ℂ)
→ (𝑥↑𝑐-1) = (1 / (𝑥↑𝑐1))) |
135 | 16, 18, 57, 134 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥↑𝑐-1) =
(1 / (𝑥↑𝑐1))) |
136 | 16 | cxp1d 25861 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥↑𝑐1) =
𝑥) |
137 | 136 | oveq2d 7291 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1 /
(𝑥↑𝑐1)) = (1 / 𝑥)) |
138 | 135, 137 | eqtr2d 2779 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1 /
𝑥) = (𝑥↑𝑐-1)) |
139 | 138 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝑥↑𝑐-(1 /
2)) · (1 / 𝑥)) =
((𝑥↑𝑐-(1 / 2)) ·
(𝑥↑𝑐-1))) |
140 | 133, 139 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((1 /
𝑥) · (𝑥↑𝑐-(1 /
2))) = ((𝑥↑𝑐-(1 / 2)) ·
(𝑥↑𝑐-1))) |
141 | 127, 131,
140 | 3eqtr4rd 2789 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((1 /
𝑥) · (𝑥↑𝑐-(1 /
2))) = (1 · (𝑥↑𝑐(-(1 / 2) −
1)))) |
142 | 55, 59, 19 | mul32d 11185 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((-(1 /
2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥)) = ((-(1 / 2) · (log‘𝑥)) · (𝑥↑𝑐(-(1 / 2) −
1)))) |
143 | 141, 142 | oveq12d 7293 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (((1 /
𝑥) · (𝑥↑𝑐-(1 /
2))) + ((-(1 / 2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥))) = ((1 · (𝑥↑𝑐(-(1 / 2) −
1))) + ((-(1 / 2) · (log‘𝑥)) · (𝑥↑𝑐(-(1 / 2) −
1))))) |
144 | 55, 19 | mulcld 10995 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (-(1 / 2)
· (log‘𝑥))
∈ ℂ) |
145 | 57, 144, 59 | adddird 11000 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((1 +
(-(1 / 2) · (log‘𝑥))) · (𝑥↑𝑐(-(1 / 2) −
1))) = ((1 · (𝑥↑𝑐(-(1 / 2) −
1))) + ((-(1 / 2) · (log‘𝑥)) · (𝑥↑𝑐(-(1 / 2) −
1))))) |
146 | 143, 145 | eqtr4d 2781 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (((1 /
𝑥) · (𝑥↑𝑐-(1 /
2))) + ((-(1 / 2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥))) = ((1 + (-(1 / 2) ·
(log‘𝑥))) ·
(𝑥↑𝑐(-(1 / 2) −
1)))) |
147 | 146 | mpteq2dva 5174 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 /
𝑥) · (𝑥↑𝑐-(1 /
2))) + ((-(1 / 2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((1 +
(-(1 / 2) · (log‘𝑥))) · (𝑥↑𝑐(-(1 / 2) −
1))))) |
148 | 147 | fveq1d 6776 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ ℝ+ ↦ (((1 /
𝑥) · (𝑥↑𝑐-(1 /
2))) + ((-(1 / 2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ ((1 +
(-(1 / 2) · (log‘𝑥))) · (𝑥↑𝑐(-(1 / 2) −
1))))‘𝑦)) |
149 | 148 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ (((1 /
𝑥) · (𝑥↑𝑐-(1 /
2))) + ((-(1 / 2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ ((1 +
(-(1 / 2) · (log‘𝑥))) · (𝑥↑𝑐(-(1 / 2) −
1))))‘𝑦)) |
150 | | eqidd 2739 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ ℝ+ ↦ ((1 +
(-(1 / 2) · (log‘𝑥))) · (𝑥↑𝑐(-(1 / 2) −
1)))) = (𝑥 ∈
ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥↑𝑐(-(1 / 2) −
1))))) |
151 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦) |
152 | 151 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (log‘𝑥) = (log‘𝑦)) |
153 | 152 | oveq2d 7291 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (-(1 / 2) · (log‘𝑥)) = (-(1 / 2) ·
(log‘𝑦))) |
154 | 153 | oveq2d 7291 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (1 + (-(1 / 2) ·
(log‘𝑥))) = (1 + (-(1
/ 2) · (log‘𝑦)))) |
155 | 151 | oveq1d 7290 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (𝑥↑𝑐(-(1 / 2) −
1)) = (𝑦↑𝑐(-(1 / 2) −
1))) |
156 | 154, 155 | oveq12d 7293 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → ((1 + (-(1 / 2) ·
(log‘𝑥))) ·
(𝑥↑𝑐(-(1 / 2) −
1))) = ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦↑𝑐(-(1 / 2) −
1)))) |
157 | | ioossicc 13165 |
. . . . . . . . . 10
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
158 | 157 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
159 | 2, 3, 4 | fct2relem 32577 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴[,]𝐵) ⊆
ℝ+) |
160 | 158, 159 | sstrd 3931 |
. . . . . . . 8
⊢ (𝜑 → (𝐴(,)𝐵) ⊆
ℝ+) |
161 | 160 | sselda 3921 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ+) |
162 | | ovexd 7310 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) ·
(log‘𝑦))) ·
(𝑦↑𝑐(-(1 / 2) −
1))) ∈ V) |
163 | 150, 156,
161, 162 | fvmptd 6882 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ ((1 +
(-(1 / 2) · (log‘𝑥))) · (𝑥↑𝑐(-(1 / 2) −
1))))‘𝑦) = ((1 + (-(1
/ 2) · (log‘𝑦))) · (𝑦↑𝑐(-(1 / 2) −
1)))) |
164 | 108 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ) |
165 | 104 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → -(1 / 2) ∈
ℝ) |
166 | 161 | relogcld 25778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (log‘𝑦) ∈ ℝ) |
167 | 165, 166 | remulcld 11005 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (-(1 / 2) ·
(log‘𝑦)) ∈
ℝ) |
168 | 164, 167 | readdcld 11004 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (1 + (-(1 / 2) ·
(log‘𝑦))) ∈
ℝ) |
169 | | 0red 10978 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ) |
170 | | rpcxpcl 25831 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℝ+
∧ (-(1 / 2) − 1) ∈ ℝ) → (𝑦↑𝑐(-(1 / 2) −
1)) ∈ ℝ+) |
171 | 161, 109,
170 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝑦↑𝑐(-(1 / 2) −
1)) ∈ ℝ+) |
172 | 171 | rpred 12772 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝑦↑𝑐(-(1 / 2) −
1)) ∈ ℝ) |
173 | 171 | rpge0d 12776 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 0 ≤ (𝑦↑𝑐(-(1 / 2) −
1))) |
174 | | 2cn 12048 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℂ |
175 | 174 | mulid2i 10980 |
. . . . . . . . . . . . 13
⊢ (1
· 2) = 2 |
176 | | 2re 12047 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
ℝ |
177 | 176 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ) |
178 | 177 | reefcld 15797 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ∈
ℝ) |
179 | 3 | rpred 12772 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ∈ ℝ) |
180 | 179 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ) |
181 | 161 | rpred 12772 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ) |
182 | | logdivsqrle.1 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (exp‘2) ≤ 𝐴) |
183 | 182 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ≤ 𝐴) |
184 | | eliooord 13138 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑦 ∧ 𝑦 < 𝐵)) |
185 | 184 | simpld 495 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑦) |
186 | 185 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑦) |
187 | 180, 181,
186 | ltled 11123 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ≤ 𝑦) |
188 | 178, 180,
181, 183, 187 | letrd 11132 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ≤ 𝑦) |
189 | | reeflog 25736 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℝ+
→ (exp‘(log‘𝑦)) = 𝑦) |
190 | 161, 189 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (exp‘(log‘𝑦)) = 𝑦) |
191 | 188, 190 | breqtrrd 5102 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ≤
(exp‘(log‘𝑦))) |
192 | | efle 15827 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℝ ∧ (log‘𝑦) ∈ ℝ) → (2 ≤
(log‘𝑦) ↔
(exp‘2) ≤ (exp‘(log‘𝑦)))) |
193 | 176, 166,
192 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (2 ≤ (log‘𝑦) ↔ (exp‘2) ≤
(exp‘(log‘𝑦)))) |
194 | 191, 193 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 2 ≤ (log‘𝑦)) |
195 | 175, 194 | eqbrtrid 5109 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (1 · 2) ≤
(log‘𝑦)) |
196 | | 2rp 12735 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℝ+ |
197 | 196 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 2 ∈
ℝ+) |
198 | 164, 166,
197 | lemuldivd 12821 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((1 · 2) ≤
(log‘𝑦) ↔ 1 ≤
((log‘𝑦) /
2))) |
199 | 195, 198 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 1 ≤ ((log‘𝑦) / 2)) |
200 | 65, 166 | sselid 3919 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (log‘𝑦) ∈ ℂ) |
201 | 22 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ) |
202 | 24 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 2 ≠ 0) |
203 | 200, 201,
202 | divrec2d 11755 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((log‘𝑦) / 2) = ((1 / 2) · (log‘𝑦))) |
204 | 199, 203 | breqtrd 5100 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 1 ≤ ((1 / 2) ·
(log‘𝑦))) |
205 | 53 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (1 / 2) ∈
ℂ) |
206 | 205, 200 | mulneg1d 11428 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (-(1 / 2) ·
(log‘𝑦)) = -((1 / 2)
· (log‘𝑦))) |
207 | 206 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (0 − (-(1 / 2) ·
(log‘𝑦))) = (0
− -((1 / 2) · (log‘𝑦)))) |
208 | 65, 169 | sselid 3919 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 0 ∈ ℂ) |
209 | 205, 200 | mulcld 10995 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((1 / 2) · (log‘𝑦)) ∈
ℂ) |
210 | 208, 209 | subnegd 11339 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (0 − -((1 / 2) ·
(log‘𝑦))) = (0 + ((1
/ 2) · (log‘𝑦)))) |
211 | 209 | addid2d 11176 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (0 + ((1 / 2) ·
(log‘𝑦))) = ((1 / 2)
· (log‘𝑦))) |
212 | 207, 210,
211 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (0 − (-(1 / 2) ·
(log‘𝑦))) = ((1 / 2)
· (log‘𝑦))) |
213 | 204, 212 | breqtrrd 5102 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 1 ≤ (0 − (-(1 / 2)
· (log‘𝑦)))) |
214 | | leaddsub 11451 |
. . . . . . . . . 10
⊢ ((1
∈ ℝ ∧ (-(1 / 2) · (log‘𝑦)) ∈ ℝ ∧ 0 ∈ ℝ)
→ ((1 + (-(1 / 2) · (log‘𝑦))) ≤ 0 ↔ 1 ≤ (0 − (-(1 / 2)
· (log‘𝑦))))) |
215 | 164, 167,
169, 214 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) ·
(log‘𝑦))) ≤ 0
↔ 1 ≤ (0 − (-(1 / 2) · (log‘𝑦))))) |
216 | 213, 215 | mpbird 256 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (1 + (-(1 / 2) ·
(log‘𝑦))) ≤
0) |
217 | 168, 169,
172, 173, 216 | lemul1ad 11914 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) ·
(log‘𝑦))) ·
(𝑦↑𝑐(-(1 / 2) −
1))) ≤ (0 · (𝑦↑𝑐(-(1 / 2) −
1)))) |
218 | 43, 171 | sselid 3919 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝑦↑𝑐(-(1 / 2) −
1)) ∈ ℂ) |
219 | 218 | mul02d 11173 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (0 · (𝑦↑𝑐(-(1 / 2) −
1))) = 0) |
220 | 217, 219 | breqtrd 5100 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) ·
(log‘𝑦))) ·
(𝑦↑𝑐(-(1 / 2) −
1))) ≤ 0) |
221 | 163, 220 | eqbrtrd 5096 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ ((1 +
(-(1 / 2) · (log‘𝑥))) · (𝑥↑𝑐(-(1 / 2) −
1))))‘𝑦) ≤
0) |
222 | 149, 221 | eqbrtrd 5096 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ (((1 /
𝑥) · (𝑥↑𝑐-(1 /
2))) + ((-(1 / 2) · (𝑥↑𝑐(-(1 / 2) −
1))) · (log‘𝑥))))‘𝑦) ≤ 0) |
223 | 124, 222 | eqbrtrd 5096 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑥 ∈ ℝ+ ↦
((log‘𝑥) /
(√‘𝑥))))‘𝑦) ≤ 0) |
224 | 2, 3, 4, 14, 121, 122, 223 | fdvnegge 32582 |
. 2
⊢ (𝜑 → ((𝑥 ∈ ℝ+ ↦
((log‘𝑥) /
(√‘𝑥)))‘𝐵) ≤ ((𝑥 ∈ ℝ+ ↦
((log‘𝑥) /
(√‘𝑥)))‘𝐴)) |
225 | | eqidd 2739 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
((log‘𝑥) /
(√‘𝑥))) =
(𝑥 ∈
ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))) |
226 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) |
227 | 226 | fveq2d 6778 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (log‘𝑥) = (log‘𝐵)) |
228 | 226 | fveq2d 6778 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (√‘𝑥) = (√‘𝐵)) |
229 | 227, 228 | oveq12d 7293 |
. . 3
⊢ ((𝜑 ∧ 𝑥 = 𝐵) → ((log‘𝑥) / (√‘𝑥)) = ((log‘𝐵) / (√‘𝐵))) |
230 | | ovex 7308 |
. . . 4
⊢
((log‘𝐵) /
(√‘𝐵)) ∈
V |
231 | 230 | a1i 11 |
. . 3
⊢ (𝜑 → ((log‘𝐵) / (√‘𝐵)) ∈ V) |
232 | 225, 229,
4, 231 | fvmptd 6882 |
. 2
⊢ (𝜑 → ((𝑥 ∈ ℝ+ ↦
((log‘𝑥) /
(√‘𝑥)))‘𝐵) = ((log‘𝐵) / (√‘𝐵))) |
233 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴) |
234 | 233 | fveq2d 6778 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (log‘𝑥) = (log‘𝐴)) |
235 | 233 | fveq2d 6778 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (√‘𝑥) = (√‘𝐴)) |
236 | 234, 235 | oveq12d 7293 |
. . 3
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((log‘𝑥) / (√‘𝑥)) = ((log‘𝐴) / (√‘𝐴))) |
237 | | ovex 7308 |
. . . 4
⊢
((log‘𝐴) /
(√‘𝐴)) ∈
V |
238 | 237 | a1i 11 |
. . 3
⊢ (𝜑 → ((log‘𝐴) / (√‘𝐴)) ∈ V) |
239 | 225, 236,
3, 238 | fvmptd 6882 |
. 2
⊢ (𝜑 → ((𝑥 ∈ ℝ+ ↦
((log‘𝑥) /
(√‘𝑥)))‘𝐴) = ((log‘𝐴) / (√‘𝐴))) |
240 | 224, 232,
239 | 3brtr3d 5105 |
1
⊢ (𝜑 → ((log‘𝐵) / (√‘𝐵)) ≤ ((log‘𝐴) / (√‘𝐴))) |