Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  logdivsqrle Structured version   Visualization version   GIF version

Theorem logdivsqrle 32031
Description: Conditions for ((log x ) / ( sqrt 𝑥)) to be decreasing. (Contributed by Thierry Arnoux, 20-Dec-2021.)
Hypotheses
Ref Expression
logdivsqrle.a (𝜑𝐴 ∈ ℝ+)
logdivsqrle.b (𝜑𝐵 ∈ ℝ+)
logdivsqrle.1 (𝜑 → (exp‘2) ≤ 𝐴)
logdivsqrle.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
logdivsqrle (𝜑 → ((log‘𝐵) / (√‘𝐵)) ≤ ((log‘𝐴) / (√‘𝐴)))

Proof of Theorem logdivsqrle
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioorp 12803 . . . 4 (0(,)+∞) = ℝ+
21eqcomi 2807 . . 3 + = (0(,)+∞)
3 logdivsqrle.a . . 3 (𝜑𝐴 ∈ ℝ+)
4 logdivsqrle.b . . 3 (𝜑𝐵 ∈ ℝ+)
5 simpr 488 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
65relogcld 25214 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
75rpsqrtcld 14763 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
87rpred 12419 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ)
9 rpsqrtcl 14616 . . . . . . 7 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
10 rpne0 12393 . . . . . . 7 ((√‘𝑥) ∈ ℝ+ → (√‘𝑥) ≠ 0)
119, 10syl 17 . . . . . 6 (𝑥 ∈ ℝ+ → (√‘𝑥) ≠ 0)
1211adantl 485 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ≠ 0)
136, 8, 12redivcld 11457 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / (√‘𝑥)) ∈ ℝ)
1413fmpttd 6856 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))):ℝ+⟶ℝ)
15 rpcn 12387 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
1615adantl 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
17 rpne0 12393 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ≠ 0)
1817adantl 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
1916, 18logcld 25162 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
2016sqrtcld 14789 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℂ)
2119, 20, 12divrecd 11408 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / (√‘𝑥)) = ((log‘𝑥) · (1 / (√‘𝑥))))
22 2cnd 11703 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℂ)
2322adantr 484 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
24 2ne0 11729 . . . . . . . . . . . . 13 2 ≠ 0
2524a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 2 ≠ 0)
2623, 25reccld 11398 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (1 / 2) ∈ ℂ)
2716, 18, 26cxpnegd 25306 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐-(1 / 2)) = (1 / (𝑥𝑐(1 / 2))))
28 cxpsqrt 25294 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥𝑐(1 / 2)) = (√‘𝑥))
2916, 28syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐(1 / 2)) = (√‘𝑥))
3029oveq2d 7151 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (1 / (𝑥𝑐(1 / 2))) = (1 / (√‘𝑥)))
3127, 30eqtrd 2833 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐-(1 / 2)) = (1 / (√‘𝑥)))
3231oveq2d 7151 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (𝑥𝑐-(1 / 2))) = ((log‘𝑥) · (1 / (√‘𝑥))))
3321, 32eqtr4d 2836 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / (√‘𝑥)) = ((log‘𝑥) · (𝑥𝑐-(1 / 2))))
3433mpteq2dva 5125 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) · (𝑥𝑐-(1 / 2)))))
3534oveq2d 7151 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))) = (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) · (𝑥𝑐-(1 / 2))))))
36 reelprrecn 10618 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
3736a1i 11 . . . . . 6 (𝜑 → ℝ ∈ {ℝ, ℂ})
385rpreccld 12429 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
39 dvrelog 25228 . . . . . . 7 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
40 logf1o 25156 . . . . . . . . . . 11 log:(ℂ ∖ {0})–1-1-onto→ran log
41 f1of 6590 . . . . . . . . . . 11 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
4240, 41ax-mp 5 . . . . . . . . . 10 log:(ℂ ∖ {0})⟶ran log
4342a1i 11 . . . . . . . . 9 (𝜑 → log:(ℂ ∖ {0})⟶ran log)
4415ssriv 3919 . . . . . . . . . . 11 + ⊆ ℂ
45 0nrp 12412 . . . . . . . . . . 11 ¬ 0 ∈ ℝ+
46 ssdifsn 4681 . . . . . . . . . . 11 (ℝ+ ⊆ (ℂ ∖ {0}) ↔ (ℝ+ ⊆ ℂ ∧ ¬ 0 ∈ ℝ+))
4744, 45, 46mpbir2an 710 . . . . . . . . . 10 + ⊆ (ℂ ∖ {0})
4847a1i 11 . . . . . . . . 9 (𝜑 → ℝ+ ⊆ (ℂ ∖ {0}))
4943, 48feqresmpt 6709 . . . . . . . 8 (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
5049oveq2d 7151 . . . . . . 7 (𝜑 → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))))
5139, 50syl5reqr 2848 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
52 1cnd 10625 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
5352halfcld 11870 . . . . . . . . 9 (𝜑 → (1 / 2) ∈ ℂ)
5453negcld 10973 . . . . . . . 8 (𝜑 → -(1 / 2) ∈ ℂ)
5554adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → -(1 / 2) ∈ ℂ)
5616, 55cxpcld 25299 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐-(1 / 2)) ∈ ℂ)
5752adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℂ)
5855, 57subcld 10986 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (-(1 / 2) − 1) ∈ ℂ)
5916, 58cxpcld 25299 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐(-(1 / 2) − 1)) ∈ ℂ)
6055, 59mulcld 10650 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) ∈ ℂ)
61 dvcxp1 25329 . . . . . . 7 (-(1 / 2) ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥𝑐-(1 / 2)))) = (𝑥 ∈ ℝ+ ↦ (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1)))))
6254, 61syl 17 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥𝑐-(1 / 2)))) = (𝑥 ∈ ℝ+ ↦ (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1)))))
6337, 19, 38, 51, 56, 60, 62dvmptmul 24564 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) · (𝑥𝑐-(1 / 2))))) = (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))))
6435, 63eqtrd 2833 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))))
65 ax-resscn 10583 . . . . . 6 ℝ ⊆ ℂ
6665a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
67 eqid 2798 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6867addcn 23470 . . . . . . 7 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
6968a1i 11 . . . . . 6 (𝜑 → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
7044a1i 11 . . . . . . . . 9 (𝜑 → ℝ+ ⊆ ℂ)
71 ssid 3937 . . . . . . . . . 10 ℂ ⊆ ℂ
7271a1i 11 . . . . . . . . 9 (𝜑 → ℂ ⊆ ℂ)
73 cncfmptc 23517 . . . . . . . . 9 ((1 ∈ ℂ ∧ ℝ+ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℝ+ ↦ 1) ∈ (ℝ+cn→ℂ))
7452, 70, 72, 73syl3anc 1368 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ 1) ∈ (ℝ+cn→ℂ))
75 difss 4059 . . . . . . . . 9 (ℂ ∖ {0}) ⊆ ℂ
76 cncfmptid 23518 . . . . . . . . 9 ((ℝ+ ⊆ (ℂ ∖ {0}) ∧ (ℂ ∖ {0}) ⊆ ℂ) → (𝑥 ∈ ℝ+𝑥) ∈ (ℝ+cn→(ℂ ∖ {0})))
7748, 75, 76sylancl 589 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+𝑥) ∈ (ℝ+cn→(ℂ ∖ {0})))
7874, 77divcncf 24051 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ∈ (ℝ+cn→ℂ))
79 ax-1 6 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+))
8015, 79jca 515 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
81 eqid 2798 . . . . . . . . . . . 12 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
8281ellogdm 25230 . . . . . . . . . . 11 (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
8380, 82sylibr 237 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ (ℂ ∖ (-∞(,]0)))
8483ssriv 3919 . . . . . . . . 9 + ⊆ (ℂ ∖ (-∞(,]0))
8584a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ (ℂ ∖ (-∞(,]0)))
8654, 85cxpcncf1 31976 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑥𝑐-(1 / 2))) ∈ (ℝ+cn→ℂ))
8778, 86mulcncf 24050 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) · (𝑥𝑐-(1 / 2)))) ∈ (ℝ+cn→ℂ))
88 cncfmptc 23517 . . . . . . . . 9 ((-(1 / 2) ∈ ℂ ∧ ℝ+ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℝ+ ↦ -(1 / 2)) ∈ (ℝ+cn→ℂ))
8954, 70, 72, 88syl3anc 1368 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ -(1 / 2)) ∈ (ℝ+cn→ℂ))
9054, 52subcld 10986 . . . . . . . . 9 (𝜑 → (-(1 / 2) − 1) ∈ ℂ)
9190, 85cxpcncf1 31976 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑥𝑐(-(1 / 2) − 1))) ∈ (ℝ+cn→ℂ))
9289, 91mulcncf 24050 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1)))) ∈ (ℝ+cn→ℂ))
93 cncfss 23504 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ))
9465, 71, 93mp2an 691 . . . . . . . 8 (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ)
95 relogcn 25229 . . . . . . . . 9 (log ↾ ℝ+) ∈ (ℝ+cn→ℝ)
9649, 95eqeltrrdi 2899 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ (ℝ+cn→ℝ))
9794, 96sseldi 3913 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ (ℝ+cn→ℂ))
9892, 97mulcncf 24050 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) ∈ (ℝ+cn→ℂ))
9967, 69, 87, 98cncfmpt2f 23520 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℂ))
100 rpre 12385 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
101100, 17rereccld 11456 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ)
102 rpge0 12390 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
103 halfre 11839 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
104103renegcli 10936 . . . . . . . . . . 11 -(1 / 2) ∈ ℝ
105104a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → -(1 / 2) ∈ ℝ)
106100, 102, 105recxpcld 25314 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥𝑐-(1 / 2)) ∈ ℝ)
107101, 106remulcld 10660 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((1 / 𝑥) · (𝑥𝑐-(1 / 2))) ∈ ℝ)
108 1re 10630 . . . . . . . . . . . . 13 1 ∈ ℝ
109104, 108resubcli 10937 . . . . . . . . . . . 12 (-(1 / 2) − 1) ∈ ℝ
110109a1i 11 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (-(1 / 2) − 1) ∈ ℝ)
111100, 102, 110recxpcld 25314 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥𝑐(-(1 / 2) − 1)) ∈ ℝ)
112105, 111remulcld 10660 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) ∈ ℝ)
113 relogcl 25167 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
114112, 113remulcld 10660 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)) ∈ ℝ)
115107, 114readdcld 10659 . . . . . . 7 (𝑥 ∈ ℝ+ → (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) ∈ ℝ)
116115adantl 485 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) ∈ ℝ)
117116fmpttd 6856 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))):ℝ+⟶ℝ)
118 cncffvrn 23503 . . . . . 6 ((ℝ ⊆ ℂ ∧ (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℂ)) → ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℝ) ↔ (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))):ℝ+⟶ℝ))
119118biimpar 481 . . . . 5 (((ℝ ⊆ ℂ ∧ (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℂ)) ∧ (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))):ℝ+⟶ℝ) → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℝ))
12066, 99, 117, 119syl21anc 836 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℝ))
12164, 120eqeltrd 2890 . . 3 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))) ∈ (ℝ+cn→ℝ))
122 logdivsqrle.2 . . 3 (𝜑𝐴𝐵)
12364fveq1d 6647 . . . . 5 (𝜑 → ((ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦))
124123adantr 484 . . . 4 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦))
12557negcld 10973 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → -1 ∈ ℂ)
126 cxpadd 25270 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ -(1 / 2) ∈ ℂ ∧ -1 ∈ ℂ) → (𝑥𝑐(-(1 / 2) + -1)) = ((𝑥𝑐-(1 / 2)) · (𝑥𝑐-1)))
12716, 18, 55, 125, 126syl211anc 1373 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐(-(1 / 2) + -1)) = ((𝑥𝑐-(1 / 2)) · (𝑥𝑐-1)))
12859mulid2d 10648 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (1 · (𝑥𝑐(-(1 / 2) − 1))) = (𝑥𝑐(-(1 / 2) − 1)))
12955, 57negsubd 10992 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (-(1 / 2) + -1) = (-(1 / 2) − 1))
130129oveq2d 7151 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐(-(1 / 2) + -1)) = (𝑥𝑐(-(1 / 2) − 1)))
131128, 130eqtr4d 2836 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (1 · (𝑥𝑐(-(1 / 2) − 1))) = (𝑥𝑐(-(1 / 2) + -1)))
13244, 38sseldi 3913 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
133132, 56mulcomd 10651 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → ((1 / 𝑥) · (𝑥𝑐-(1 / 2))) = ((𝑥𝑐-(1 / 2)) · (1 / 𝑥)))
134 cxpneg 25272 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ∧ 1 ∈ ℂ) → (𝑥𝑐-1) = (1 / (𝑥𝑐1)))
13516, 18, 57, 134syl3anc 1368 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐-1) = (1 / (𝑥𝑐1)))
13616cxp1d 25297 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐1) = 𝑥)
137136oveq2d 7151 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (1 / (𝑥𝑐1)) = (1 / 𝑥))
138135, 137eqtr2d 2834 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) = (𝑥𝑐-1))
139138oveq2d 7151 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → ((𝑥𝑐-(1 / 2)) · (1 / 𝑥)) = ((𝑥𝑐-(1 / 2)) · (𝑥𝑐-1)))
140133, 139eqtrd 2833 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((1 / 𝑥) · (𝑥𝑐-(1 / 2))) = ((𝑥𝑐-(1 / 2)) · (𝑥𝑐-1)))
141127, 131, 1403eqtr4rd 2844 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((1 / 𝑥) · (𝑥𝑐-(1 / 2))) = (1 · (𝑥𝑐(-(1 / 2) − 1))))
14255, 59, 19mul32d 10839 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)) = ((-(1 / 2) · (log‘𝑥)) · (𝑥𝑐(-(1 / 2) − 1))))
143141, 142oveq12d 7153 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) = ((1 · (𝑥𝑐(-(1 / 2) − 1))) + ((-(1 / 2) · (log‘𝑥)) · (𝑥𝑐(-(1 / 2) − 1)))))
14455, 19mulcld 10650 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (-(1 / 2) · (log‘𝑥)) ∈ ℂ)
14557, 144, 59adddird 10655 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))) = ((1 · (𝑥𝑐(-(1 / 2) − 1))) + ((-(1 / 2) · (log‘𝑥)) · (𝑥𝑐(-(1 / 2) − 1)))))
146143, 145eqtr4d 2836 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) = ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))
147146mpteq2dva 5125 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1)))))
148147fveq1d 6647 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))‘𝑦))
149148adantr 484 . . . . 5 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))‘𝑦))
150 eqidd 2799 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1)))) = (𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1)))))
151 simpr 488 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
152151fveq2d 6649 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (log‘𝑥) = (log‘𝑦))
153152oveq2d 7151 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (-(1 / 2) · (log‘𝑥)) = (-(1 / 2) · (log‘𝑦)))
154153oveq2d 7151 . . . . . . . 8 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (1 + (-(1 / 2) · (log‘𝑥))) = (1 + (-(1 / 2) · (log‘𝑦))))
155151oveq1d 7150 . . . . . . . 8 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (𝑥𝑐(-(1 / 2) − 1)) = (𝑦𝑐(-(1 / 2) − 1)))
156154, 155oveq12d 7153 . . . . . . 7 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))) = ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))))
157 ioossicc 12811 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
158157a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
1592, 3, 4fct2relem 31978 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ+)
160158, 159sstrd 3925 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ+)
161160sselda 3915 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ+)
162 ovexd 7170 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))) ∈ V)
163150, 156, 161, 162fvmptd 6752 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))‘𝑦) = ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))))
164108a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
165104a1i 11 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → -(1 / 2) ∈ ℝ)
166161relogcld 25214 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (log‘𝑦) ∈ ℝ)
167165, 166remulcld 10660 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (-(1 / 2) · (log‘𝑦)) ∈ ℝ)
168164, 167readdcld 10659 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (1 + (-(1 / 2) · (log‘𝑦))) ∈ ℝ)
169 0red 10633 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
170 rpcxpcl 25267 . . . . . . . . . 10 ((𝑦 ∈ ℝ+ ∧ (-(1 / 2) − 1) ∈ ℝ) → (𝑦𝑐(-(1 / 2) − 1)) ∈ ℝ+)
171161, 109, 170sylancl 589 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑦𝑐(-(1 / 2) − 1)) ∈ ℝ+)
172171rpred 12419 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑦𝑐(-(1 / 2) − 1)) ∈ ℝ)
173171rpge0d 12423 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 ≤ (𝑦𝑐(-(1 / 2) − 1)))
174 2cn 11700 . . . . . . . . . . . . . 14 2 ∈ ℂ
175174mulid2i 10635 . . . . . . . . . . . . 13 (1 · 2) = 2
176 2re 11699 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
177176a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ)
178177reefcld 15433 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ∈ ℝ)
1793rpred 12419 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℝ)
180179adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
181161rpred 12419 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ)
182 logdivsqrle.1 . . . . . . . . . . . . . . . . 17 (𝜑 → (exp‘2) ≤ 𝐴)
183182adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ≤ 𝐴)
184 eliooord 12784 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑦𝑦 < 𝐵))
185184simpld 498 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑦)
186185adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑦)
187180, 181, 186ltled 10777 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴𝑦)
188178, 180, 181, 183, 187letrd 10786 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ≤ 𝑦)
189 reeflog 25172 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ+ → (exp‘(log‘𝑦)) = 𝑦)
190161, 189syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘(log‘𝑦)) = 𝑦)
191188, 190breqtrrd 5058 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ≤ (exp‘(log‘𝑦)))
192 efle 15463 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ ∧ (log‘𝑦) ∈ ℝ) → (2 ≤ (log‘𝑦) ↔ (exp‘2) ≤ (exp‘(log‘𝑦))))
193176, 166, 192sylancr 590 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (2 ≤ (log‘𝑦) ↔ (exp‘2) ≤ (exp‘(log‘𝑦))))
194191, 193mpbird 260 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ≤ (log‘𝑦))
195175, 194eqbrtrid 5065 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (1 · 2) ≤ (log‘𝑦))
196 2rp 12382 . . . . . . . . . . . . . 14 2 ∈ ℝ+
197196a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ+)
198164, 166, 197lemuldivd 12468 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 · 2) ≤ (log‘𝑦) ↔ 1 ≤ ((log‘𝑦) / 2)))
199195, 198mpbid 235 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 1 ≤ ((log‘𝑦) / 2))
20065, 166sseldi 3913 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (log‘𝑦) ∈ ℂ)
20122adantr 484 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
20224a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
203200, 201, 202divrec2d 11409 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((log‘𝑦) / 2) = ((1 / 2) · (log‘𝑦)))
204199, 203breqtrd 5056 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 1 ≤ ((1 / 2) · (log‘𝑦)))
20553adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (1 / 2) ∈ ℂ)
206205, 200mulneg1d 11082 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (-(1 / 2) · (log‘𝑦)) = -((1 / 2) · (log‘𝑦)))
207206oveq2d 7151 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 − (-(1 / 2) · (log‘𝑦))) = (0 − -((1 / 2) · (log‘𝑦))))
20865, 169sseldi 3913 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 ∈ ℂ)
209205, 200mulcld 10650 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 / 2) · (log‘𝑦)) ∈ ℂ)
210208, 209subnegd 10993 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 − -((1 / 2) · (log‘𝑦))) = (0 + ((1 / 2) · (log‘𝑦))))
211209addid2d 10830 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 + ((1 / 2) · (log‘𝑦))) = ((1 / 2) · (log‘𝑦)))
212207, 210, 2113eqtrd 2837 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 − (-(1 / 2) · (log‘𝑦))) = ((1 / 2) · (log‘𝑦)))
213204, 212breqtrrd 5058 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 1 ≤ (0 − (-(1 / 2) · (log‘𝑦))))
214 leaddsub 11105 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (-(1 / 2) · (log‘𝑦)) ∈ ℝ ∧ 0 ∈ ℝ) → ((1 + (-(1 / 2) · (log‘𝑦))) ≤ 0 ↔ 1 ≤ (0 − (-(1 / 2) · (log‘𝑦)))))
215164, 167, 169, 214syl3anc 1368 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) · (log‘𝑦))) ≤ 0 ↔ 1 ≤ (0 − (-(1 / 2) · (log‘𝑦)))))
216213, 215mpbird 260 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (1 + (-(1 / 2) · (log‘𝑦))) ≤ 0)
217168, 169, 172, 173, 216lemul1ad 11568 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))) ≤ (0 · (𝑦𝑐(-(1 / 2) − 1))))
21844, 171sseldi 3913 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑦𝑐(-(1 / 2) − 1)) ∈ ℂ)
219218mul02d 10827 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 · (𝑦𝑐(-(1 / 2) − 1))) = 0)
220217, 219breqtrd 5056 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))) ≤ 0)
221163, 220eqbrtrd 5052 . . . . 5 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))‘𝑦) ≤ 0)
222149, 221eqbrtrd 5052 . . . 4 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦) ≤ 0)
223124, 222eqbrtrd 5052 . . 3 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))))‘𝑦) ≤ 0)
2242, 3, 4, 14, 121, 122, 223fdvnegge 31983 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))‘𝐵) ≤ ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))‘𝐴))
225 eqidd 2799 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))))
226 simpr 488 . . . . 5 ((𝜑𝑥 = 𝐵) → 𝑥 = 𝐵)
227226fveq2d 6649 . . . 4 ((𝜑𝑥 = 𝐵) → (log‘𝑥) = (log‘𝐵))
228226fveq2d 6649 . . . 4 ((𝜑𝑥 = 𝐵) → (√‘𝑥) = (√‘𝐵))
229227, 228oveq12d 7153 . . 3 ((𝜑𝑥 = 𝐵) → ((log‘𝑥) / (√‘𝑥)) = ((log‘𝐵) / (√‘𝐵)))
230 ovex 7168 . . . 4 ((log‘𝐵) / (√‘𝐵)) ∈ V
231230a1i 11 . . 3 (𝜑 → ((log‘𝐵) / (√‘𝐵)) ∈ V)
232225, 229, 4, 231fvmptd 6752 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))‘𝐵) = ((log‘𝐵) / (√‘𝐵)))
233 simpr 488 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐴)
234233fveq2d 6649 . . . 4 ((𝜑𝑥 = 𝐴) → (log‘𝑥) = (log‘𝐴))
235233fveq2d 6649 . . . 4 ((𝜑𝑥 = 𝐴) → (√‘𝑥) = (√‘𝐴))
236234, 235oveq12d 7153 . . 3 ((𝜑𝑥 = 𝐴) → ((log‘𝑥) / (√‘𝑥)) = ((log‘𝐴) / (√‘𝐴)))
237 ovex 7168 . . . 4 ((log‘𝐴) / (√‘𝐴)) ∈ V
238237a1i 11 . . 3 (𝜑 → ((log‘𝐴) / (√‘𝐴)) ∈ V)
239225, 236, 3, 238fvmptd 6752 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))‘𝐴) = ((log‘𝐴) / (√‘𝐴)))
240224, 232, 2393brtr3d 5061 1 (𝜑 → ((log‘𝐵) / (√‘𝐵)) ≤ ((log‘𝐴) / (√‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  cdif 3878  wss 3881  {csn 4525  {cpr 4527   class class class wbr 5030  cmpt 5110  ran crn 5520  cres 5521  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661  -∞cmnf 10662   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  2c2 11680  +crp 12377  (,)cioo 12726  (,]cioc 12727  [,]cicc 12729  csqrt 14584  expce 15407  TopOpenctopn 16687  fldccnfld 20091   Cn ccn 21829   ×t ctx 22165  cnccncf 23481   D cdv 24466  logclog 25146  𝑐ccxp 25147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-symdif 4169  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-tan 15417  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225  df-ibl 24226  df-itg 24227  df-0p 24274  df-limc 24469  df-dv 24470  df-log 25148  df-cxp 25149
This theorem is referenced by:  hgt750lem  32032
  Copyright terms: Public domain W3C validator