Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  logdivsqrle Structured version   Visualization version   GIF version

Theorem logdivsqrle 32626
Description: Conditions for ((log x ) / ( sqrt 𝑥)) to be decreasing. (Contributed by Thierry Arnoux, 20-Dec-2021.)
Hypotheses
Ref Expression
logdivsqrle.a (𝜑𝐴 ∈ ℝ+)
logdivsqrle.b (𝜑𝐵 ∈ ℝ+)
logdivsqrle.1 (𝜑 → (exp‘2) ≤ 𝐴)
logdivsqrle.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
logdivsqrle (𝜑 → ((log‘𝐵) / (√‘𝐵)) ≤ ((log‘𝐴) / (√‘𝐴)))

Proof of Theorem logdivsqrle
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioorp 13156 . . . 4 (0(,)+∞) = ℝ+
21eqcomi 2749 . . 3 + = (0(,)+∞)
3 logdivsqrle.a . . 3 (𝜑𝐴 ∈ ℝ+)
4 logdivsqrle.b . . 3 (𝜑𝐵 ∈ ℝ+)
5 simpr 485 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
65relogcld 25776 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
75rpsqrtcld 15121 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
87rpred 12771 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ)
9 rpsqrtcl 14974 . . . . . . 7 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
10 rpne0 12745 . . . . . . 7 ((√‘𝑥) ∈ ℝ+ → (√‘𝑥) ≠ 0)
119, 10syl 17 . . . . . 6 (𝑥 ∈ ℝ+ → (√‘𝑥) ≠ 0)
1211adantl 482 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ≠ 0)
136, 8, 12redivcld 11803 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / (√‘𝑥)) ∈ ℝ)
1413fmpttd 6986 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))):ℝ+⟶ℝ)
15 rpcn 12739 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
1615adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
17 rpne0 12745 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ≠ 0)
1817adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
1916, 18logcld 25724 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
2016sqrtcld 15147 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℂ)
2119, 20, 12divrecd 11754 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / (√‘𝑥)) = ((log‘𝑥) · (1 / (√‘𝑥))))
22 2cnd 12051 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℂ)
2322adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
24 2ne0 12077 . . . . . . . . . . . . 13 2 ≠ 0
2524a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 2 ≠ 0)
2623, 25reccld 11744 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (1 / 2) ∈ ℂ)
2716, 18, 26cxpnegd 25868 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐-(1 / 2)) = (1 / (𝑥𝑐(1 / 2))))
28 cxpsqrt 25856 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥𝑐(1 / 2)) = (√‘𝑥))
2916, 28syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐(1 / 2)) = (√‘𝑥))
3029oveq2d 7287 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (1 / (𝑥𝑐(1 / 2))) = (1 / (√‘𝑥)))
3127, 30eqtrd 2780 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐-(1 / 2)) = (1 / (√‘𝑥)))
3231oveq2d 7287 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (𝑥𝑐-(1 / 2))) = ((log‘𝑥) · (1 / (√‘𝑥))))
3321, 32eqtr4d 2783 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / (√‘𝑥)) = ((log‘𝑥) · (𝑥𝑐-(1 / 2))))
3433mpteq2dva 5179 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) · (𝑥𝑐-(1 / 2)))))
3534oveq2d 7287 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))) = (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) · (𝑥𝑐-(1 / 2))))))
36 reelprrecn 10964 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
3736a1i 11 . . . . . 6 (𝜑 → ℝ ∈ {ℝ, ℂ})
385rpreccld 12781 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
39 logf1o 25718 . . . . . . . . . . 11 log:(ℂ ∖ {0})–1-1-onto→ran log
40 f1of 6714 . . . . . . . . . . 11 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
4139, 40ax-mp 5 . . . . . . . . . 10 log:(ℂ ∖ {0})⟶ran log
4241a1i 11 . . . . . . . . 9 (𝜑 → log:(ℂ ∖ {0})⟶ran log)
4315ssriv 3930 . . . . . . . . . . 11 + ⊆ ℂ
44 0nrp 12764 . . . . . . . . . . 11 ¬ 0 ∈ ℝ+
45 ssdifsn 4727 . . . . . . . . . . 11 (ℝ+ ⊆ (ℂ ∖ {0}) ↔ (ℝ+ ⊆ ℂ ∧ ¬ 0 ∈ ℝ+))
4643, 44, 45mpbir2an 708 . . . . . . . . . 10 + ⊆ (ℂ ∖ {0})
4746a1i 11 . . . . . . . . 9 (𝜑 → ℝ+ ⊆ (ℂ ∖ {0}))
4842, 47feqresmpt 6835 . . . . . . . 8 (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
4948oveq2d 7287 . . . . . . 7 (𝜑 → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))))
50 dvrelog 25790 . . . . . . 7 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
5149, 50eqtr3di 2795 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
52 1cnd 10971 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
5352halfcld 12218 . . . . . . . . 9 (𝜑 → (1 / 2) ∈ ℂ)
5453negcld 11319 . . . . . . . 8 (𝜑 → -(1 / 2) ∈ ℂ)
5554adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → -(1 / 2) ∈ ℂ)
5616, 55cxpcld 25861 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐-(1 / 2)) ∈ ℂ)
5752adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℂ)
5855, 57subcld 11332 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (-(1 / 2) − 1) ∈ ℂ)
5916, 58cxpcld 25861 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐(-(1 / 2) − 1)) ∈ ℂ)
6055, 59mulcld 10996 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) ∈ ℂ)
61 dvcxp1 25891 . . . . . . 7 (-(1 / 2) ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥𝑐-(1 / 2)))) = (𝑥 ∈ ℝ+ ↦ (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1)))))
6254, 61syl 17 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥𝑐-(1 / 2)))) = (𝑥 ∈ ℝ+ ↦ (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1)))))
6337, 19, 38, 51, 56, 60, 62dvmptmul 25123 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) · (𝑥𝑐-(1 / 2))))) = (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))))
6435, 63eqtrd 2780 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))))
65 ax-resscn 10929 . . . . . 6 ℝ ⊆ ℂ
6665a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
67 eqid 2740 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6867addcn 24026 . . . . . . 7 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
6968a1i 11 . . . . . 6 (𝜑 → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
7043a1i 11 . . . . . . . . 9 (𝜑 → ℝ+ ⊆ ℂ)
71 ssid 3948 . . . . . . . . . 10 ℂ ⊆ ℂ
7271a1i 11 . . . . . . . . 9 (𝜑 → ℂ ⊆ ℂ)
73 cncfmptc 24073 . . . . . . . . 9 ((1 ∈ ℂ ∧ ℝ+ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℝ+ ↦ 1) ∈ (ℝ+cn→ℂ))
7452, 70, 72, 73syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ 1) ∈ (ℝ+cn→ℂ))
75 difss 4071 . . . . . . . . 9 (ℂ ∖ {0}) ⊆ ℂ
76 cncfmptid 24074 . . . . . . . . 9 ((ℝ+ ⊆ (ℂ ∖ {0}) ∧ (ℂ ∖ {0}) ⊆ ℂ) → (𝑥 ∈ ℝ+𝑥) ∈ (ℝ+cn→(ℂ ∖ {0})))
7747, 75, 76sylancl 586 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+𝑥) ∈ (ℝ+cn→(ℂ ∖ {0})))
7874, 77divcncf 24609 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ∈ (ℝ+cn→ℂ))
79 ax-1 6 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+))
8015, 79jca 512 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
81 eqid 2740 . . . . . . . . . . . 12 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
8281ellogdm 25792 . . . . . . . . . . 11 (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
8380, 82sylibr 233 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ (ℂ ∖ (-∞(,]0)))
8483ssriv 3930 . . . . . . . . 9 + ⊆ (ℂ ∖ (-∞(,]0))
8584a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ (ℂ ∖ (-∞(,]0)))
8654, 85cxpcncf1 32571 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑥𝑐-(1 / 2))) ∈ (ℝ+cn→ℂ))
8778, 86mulcncf 24608 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) · (𝑥𝑐-(1 / 2)))) ∈ (ℝ+cn→ℂ))
88 cncfmptc 24073 . . . . . . . . 9 ((-(1 / 2) ∈ ℂ ∧ ℝ+ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℝ+ ↦ -(1 / 2)) ∈ (ℝ+cn→ℂ))
8954, 70, 72, 88syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ -(1 / 2)) ∈ (ℝ+cn→ℂ))
9054, 52subcld 11332 . . . . . . . . 9 (𝜑 → (-(1 / 2) − 1) ∈ ℂ)
9190, 85cxpcncf1 32571 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑥𝑐(-(1 / 2) − 1))) ∈ (ℝ+cn→ℂ))
9289, 91mulcncf 24608 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1)))) ∈ (ℝ+cn→ℂ))
93 cncfss 24060 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ))
9465, 71, 93mp2an 689 . . . . . . . 8 (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ)
95 relogcn 25791 . . . . . . . . 9 (log ↾ ℝ+) ∈ (ℝ+cn→ℝ)
9648, 95eqeltrrdi 2850 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ (ℝ+cn→ℝ))
9794, 96sselid 3924 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ (ℝ+cn→ℂ))
9892, 97mulcncf 24608 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) ∈ (ℝ+cn→ℂ))
9967, 69, 87, 98cncfmpt2f 24076 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℂ))
100 rpre 12737 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
101100, 17rereccld 11802 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ)
102 rpge0 12742 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
103 halfre 12187 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
104103renegcli 11282 . . . . . . . . . . 11 -(1 / 2) ∈ ℝ
105104a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → -(1 / 2) ∈ ℝ)
106100, 102, 105recxpcld 25876 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥𝑐-(1 / 2)) ∈ ℝ)
107101, 106remulcld 11006 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((1 / 𝑥) · (𝑥𝑐-(1 / 2))) ∈ ℝ)
108 1re 10976 . . . . . . . . . . . . 13 1 ∈ ℝ
109104, 108resubcli 11283 . . . . . . . . . . . 12 (-(1 / 2) − 1) ∈ ℝ
110109a1i 11 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (-(1 / 2) − 1) ∈ ℝ)
111100, 102, 110recxpcld 25876 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥𝑐(-(1 / 2) − 1)) ∈ ℝ)
112105, 111remulcld 11006 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) ∈ ℝ)
113 relogcl 25729 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
114112, 113remulcld 11006 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)) ∈ ℝ)
115107, 114readdcld 11005 . . . . . . 7 (𝑥 ∈ ℝ+ → (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) ∈ ℝ)
116115adantl 482 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) ∈ ℝ)
117116fmpttd 6986 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))):ℝ+⟶ℝ)
118 cncffvrn 24059 . . . . . 6 ((ℝ ⊆ ℂ ∧ (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℂ)) → ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℝ) ↔ (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))):ℝ+⟶ℝ))
119118biimpar 478 . . . . 5 (((ℝ ⊆ ℂ ∧ (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℂ)) ∧ (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))):ℝ+⟶ℝ) → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℝ))
12066, 99, 117, 119syl21anc 835 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℝ))
12164, 120eqeltrd 2841 . . 3 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))) ∈ (ℝ+cn→ℝ))
122 logdivsqrle.2 . . 3 (𝜑𝐴𝐵)
12364fveq1d 6773 . . . . 5 (𝜑 → ((ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦))
124123adantr 481 . . . 4 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦))
12557negcld 11319 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → -1 ∈ ℂ)
126 cxpadd 25832 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ -(1 / 2) ∈ ℂ ∧ -1 ∈ ℂ) → (𝑥𝑐(-(1 / 2) + -1)) = ((𝑥𝑐-(1 / 2)) · (𝑥𝑐-1)))
12716, 18, 55, 125, 126syl211anc 1375 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐(-(1 / 2) + -1)) = ((𝑥𝑐-(1 / 2)) · (𝑥𝑐-1)))
12859mulid2d 10994 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (1 · (𝑥𝑐(-(1 / 2) − 1))) = (𝑥𝑐(-(1 / 2) − 1)))
12955, 57negsubd 11338 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (-(1 / 2) + -1) = (-(1 / 2) − 1))
130129oveq2d 7287 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐(-(1 / 2) + -1)) = (𝑥𝑐(-(1 / 2) − 1)))
131128, 130eqtr4d 2783 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (1 · (𝑥𝑐(-(1 / 2) − 1))) = (𝑥𝑐(-(1 / 2) + -1)))
13243, 38sselid 3924 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
133132, 56mulcomd 10997 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → ((1 / 𝑥) · (𝑥𝑐-(1 / 2))) = ((𝑥𝑐-(1 / 2)) · (1 / 𝑥)))
134 cxpneg 25834 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ∧ 1 ∈ ℂ) → (𝑥𝑐-1) = (1 / (𝑥𝑐1)))
13516, 18, 57, 134syl3anc 1370 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐-1) = (1 / (𝑥𝑐1)))
13616cxp1d 25859 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐1) = 𝑥)
137136oveq2d 7287 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (1 / (𝑥𝑐1)) = (1 / 𝑥))
138135, 137eqtr2d 2781 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) = (𝑥𝑐-1))
139138oveq2d 7287 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → ((𝑥𝑐-(1 / 2)) · (1 / 𝑥)) = ((𝑥𝑐-(1 / 2)) · (𝑥𝑐-1)))
140133, 139eqtrd 2780 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((1 / 𝑥) · (𝑥𝑐-(1 / 2))) = ((𝑥𝑐-(1 / 2)) · (𝑥𝑐-1)))
141127, 131, 1403eqtr4rd 2791 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((1 / 𝑥) · (𝑥𝑐-(1 / 2))) = (1 · (𝑥𝑐(-(1 / 2) − 1))))
14255, 59, 19mul32d 11185 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)) = ((-(1 / 2) · (log‘𝑥)) · (𝑥𝑐(-(1 / 2) − 1))))
143141, 142oveq12d 7289 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) = ((1 · (𝑥𝑐(-(1 / 2) − 1))) + ((-(1 / 2) · (log‘𝑥)) · (𝑥𝑐(-(1 / 2) − 1)))))
14455, 19mulcld 10996 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (-(1 / 2) · (log‘𝑥)) ∈ ℂ)
14557, 144, 59adddird 11001 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))) = ((1 · (𝑥𝑐(-(1 / 2) − 1))) + ((-(1 / 2) · (log‘𝑥)) · (𝑥𝑐(-(1 / 2) − 1)))))
146143, 145eqtr4d 2783 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) = ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))
147146mpteq2dva 5179 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1)))))
148147fveq1d 6773 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))‘𝑦))
149148adantr 481 . . . . 5 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))‘𝑦))
150 eqidd 2741 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1)))) = (𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1)))))
151 simpr 485 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
152151fveq2d 6775 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (log‘𝑥) = (log‘𝑦))
153152oveq2d 7287 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (-(1 / 2) · (log‘𝑥)) = (-(1 / 2) · (log‘𝑦)))
154153oveq2d 7287 . . . . . . . 8 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (1 + (-(1 / 2) · (log‘𝑥))) = (1 + (-(1 / 2) · (log‘𝑦))))
155151oveq1d 7286 . . . . . . . 8 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (𝑥𝑐(-(1 / 2) − 1)) = (𝑦𝑐(-(1 / 2) − 1)))
156154, 155oveq12d 7289 . . . . . . 7 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))) = ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))))
157 ioossicc 13164 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
158157a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
1592, 3, 4fct2relem 32573 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ+)
160158, 159sstrd 3936 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ+)
161160sselda 3926 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ+)
162 ovexd 7306 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))) ∈ V)
163150, 156, 161, 162fvmptd 6879 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))‘𝑦) = ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))))
164108a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
165104a1i 11 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → -(1 / 2) ∈ ℝ)
166161relogcld 25776 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (log‘𝑦) ∈ ℝ)
167165, 166remulcld 11006 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (-(1 / 2) · (log‘𝑦)) ∈ ℝ)
168164, 167readdcld 11005 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (1 + (-(1 / 2) · (log‘𝑦))) ∈ ℝ)
169 0red 10979 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
170 rpcxpcl 25829 . . . . . . . . . 10 ((𝑦 ∈ ℝ+ ∧ (-(1 / 2) − 1) ∈ ℝ) → (𝑦𝑐(-(1 / 2) − 1)) ∈ ℝ+)
171161, 109, 170sylancl 586 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑦𝑐(-(1 / 2) − 1)) ∈ ℝ+)
172171rpred 12771 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑦𝑐(-(1 / 2) − 1)) ∈ ℝ)
173171rpge0d 12775 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 ≤ (𝑦𝑐(-(1 / 2) − 1)))
174 2cn 12048 . . . . . . . . . . . . . 14 2 ∈ ℂ
175174mulid2i 10981 . . . . . . . . . . . . 13 (1 · 2) = 2
176 2re 12047 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
177176a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ)
178177reefcld 15795 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ∈ ℝ)
1793rpred 12771 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℝ)
180179adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
181161rpred 12771 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ)
182 logdivsqrle.1 . . . . . . . . . . . . . . . . 17 (𝜑 → (exp‘2) ≤ 𝐴)
183182adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ≤ 𝐴)
184 eliooord 13137 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑦𝑦 < 𝐵))
185184simpld 495 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑦)
186185adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑦)
187180, 181, 186ltled 11123 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴𝑦)
188178, 180, 181, 183, 187letrd 11132 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ≤ 𝑦)
189 reeflog 25734 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ+ → (exp‘(log‘𝑦)) = 𝑦)
190161, 189syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘(log‘𝑦)) = 𝑦)
191188, 190breqtrrd 5107 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ≤ (exp‘(log‘𝑦)))
192 efle 15825 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ ∧ (log‘𝑦) ∈ ℝ) → (2 ≤ (log‘𝑦) ↔ (exp‘2) ≤ (exp‘(log‘𝑦))))
193176, 166, 192sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (2 ≤ (log‘𝑦) ↔ (exp‘2) ≤ (exp‘(log‘𝑦))))
194191, 193mpbird 256 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ≤ (log‘𝑦))
195175, 194eqbrtrid 5114 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (1 · 2) ≤ (log‘𝑦))
196 2rp 12734 . . . . . . . . . . . . . 14 2 ∈ ℝ+
197196a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ+)
198164, 166, 197lemuldivd 12820 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 · 2) ≤ (log‘𝑦) ↔ 1 ≤ ((log‘𝑦) / 2)))
199195, 198mpbid 231 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 1 ≤ ((log‘𝑦) / 2))
20065, 166sselid 3924 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (log‘𝑦) ∈ ℂ)
20122adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
20224a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
203200, 201, 202divrec2d 11755 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((log‘𝑦) / 2) = ((1 / 2) · (log‘𝑦)))
204199, 203breqtrd 5105 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 1 ≤ ((1 / 2) · (log‘𝑦)))
20553adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (1 / 2) ∈ ℂ)
206205, 200mulneg1d 11428 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (-(1 / 2) · (log‘𝑦)) = -((1 / 2) · (log‘𝑦)))
207206oveq2d 7287 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 − (-(1 / 2) · (log‘𝑦))) = (0 − -((1 / 2) · (log‘𝑦))))
20865, 169sselid 3924 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 ∈ ℂ)
209205, 200mulcld 10996 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 / 2) · (log‘𝑦)) ∈ ℂ)
210208, 209subnegd 11339 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 − -((1 / 2) · (log‘𝑦))) = (0 + ((1 / 2) · (log‘𝑦))))
211209addid2d 11176 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 + ((1 / 2) · (log‘𝑦))) = ((1 / 2) · (log‘𝑦)))
212207, 210, 2113eqtrd 2784 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 − (-(1 / 2) · (log‘𝑦))) = ((1 / 2) · (log‘𝑦)))
213204, 212breqtrrd 5107 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 1 ≤ (0 − (-(1 / 2) · (log‘𝑦))))
214 leaddsub 11451 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (-(1 / 2) · (log‘𝑦)) ∈ ℝ ∧ 0 ∈ ℝ) → ((1 + (-(1 / 2) · (log‘𝑦))) ≤ 0 ↔ 1 ≤ (0 − (-(1 / 2) · (log‘𝑦)))))
215164, 167, 169, 214syl3anc 1370 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) · (log‘𝑦))) ≤ 0 ↔ 1 ≤ (0 − (-(1 / 2) · (log‘𝑦)))))
216213, 215mpbird 256 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (1 + (-(1 / 2) · (log‘𝑦))) ≤ 0)
217168, 169, 172, 173, 216lemul1ad 11914 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))) ≤ (0 · (𝑦𝑐(-(1 / 2) − 1))))
21843, 171sselid 3924 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑦𝑐(-(1 / 2) − 1)) ∈ ℂ)
219218mul02d 11173 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 · (𝑦𝑐(-(1 / 2) − 1))) = 0)
220217, 219breqtrd 5105 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))) ≤ 0)
221163, 220eqbrtrd 5101 . . . . 5 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))‘𝑦) ≤ 0)
222149, 221eqbrtrd 5101 . . . 4 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦) ≤ 0)
223124, 222eqbrtrd 5101 . . 3 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))))‘𝑦) ≤ 0)
2242, 3, 4, 14, 121, 122, 223fdvnegge 32578 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))‘𝐵) ≤ ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))‘𝐴))
225 eqidd 2741 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))))
226 simpr 485 . . . . 5 ((𝜑𝑥 = 𝐵) → 𝑥 = 𝐵)
227226fveq2d 6775 . . . 4 ((𝜑𝑥 = 𝐵) → (log‘𝑥) = (log‘𝐵))
228226fveq2d 6775 . . . 4 ((𝜑𝑥 = 𝐵) → (√‘𝑥) = (√‘𝐵))
229227, 228oveq12d 7289 . . 3 ((𝜑𝑥 = 𝐵) → ((log‘𝑥) / (√‘𝑥)) = ((log‘𝐵) / (√‘𝐵)))
230 ovex 7304 . . . 4 ((log‘𝐵) / (√‘𝐵)) ∈ V
231230a1i 11 . . 3 (𝜑 → ((log‘𝐵) / (√‘𝐵)) ∈ V)
232225, 229, 4, 231fvmptd 6879 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))‘𝐵) = ((log‘𝐵) / (√‘𝐵)))
233 simpr 485 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐴)
234233fveq2d 6775 . . . 4 ((𝜑𝑥 = 𝐴) → (log‘𝑥) = (log‘𝐴))
235233fveq2d 6775 . . . 4 ((𝜑𝑥 = 𝐴) → (√‘𝑥) = (√‘𝐴))
236234, 235oveq12d 7289 . . 3 ((𝜑𝑥 = 𝐴) → ((log‘𝑥) / (√‘𝑥)) = ((log‘𝐴) / (√‘𝐴)))
237 ovex 7304 . . . 4 ((log‘𝐴) / (√‘𝐴)) ∈ V
238237a1i 11 . . 3 (𝜑 → ((log‘𝐴) / (√‘𝐴)) ∈ V)
239225, 236, 3, 238fvmptd 6879 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))‘𝐴) = ((log‘𝐴) / (√‘𝐴)))
240224, 232, 2393brtr3d 5110 1 (𝜑 → ((log‘𝐵) / (√‘𝐵)) ≤ ((log‘𝐴) / (√‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wne 2945  Vcvv 3431  cdif 3889  wss 3892  {csn 4567  {cpr 4569   class class class wbr 5079  cmpt 5162  ran crn 5591  cres 5592  wf 6428  1-1-ontowf1o 6431  cfv 6432  (class class class)co 7271  cc 10870  cr 10871  0cc0 10872  1c1 10873   + caddc 10875   · cmul 10877  +∞cpnf 11007  -∞cmnf 11008   < clt 11010  cle 11011  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  +crp 12729  (,)cioo 13078  (,]cioc 13079  [,]cicc 13081  csqrt 14942  expce 15769  TopOpenctopn 17130  fldccnfld 20595   Cn ccn 22373   ×t ctx 22709  cnccncf 24037   D cdv 25025  logclog 25708  𝑐ccxp 25709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cc 10192  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951  ax-mulf 10952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-symdif 4182  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-disj 5045  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-ofr 7528  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-oadd 8292  df-omul 8293  df-er 8481  df-map 8600  df-pm 8601  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-dju 9660  df-card 9698  df-acn 9701  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ioo 13082  df-ioc 13083  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-fl 13510  df-mod 13588  df-seq 13720  df-exp 13781  df-fac 13986  df-bc 14015  df-hash 14043  df-shft 14776  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-limsup 15178  df-clim 15195  df-rlim 15196  df-sum 15396  df-ef 15775  df-sin 15777  df-cos 15778  df-tan 15779  df-pi 15780  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-pt 17153  df-prds 17156  df-xrs 17211  df-qtop 17216  df-imas 17217  df-xps 17219  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-mulg 18699  df-cntz 18921  df-cmn 19386  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-fg 20593  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-lp 22285  df-perf 22286  df-cn 22376  df-cnp 22377  df-haus 22464  df-cmp 22536  df-tx 22711  df-hmeo 22904  df-fil 22995  df-fm 23087  df-flim 23088  df-flf 23089  df-xms 23471  df-ms 23472  df-tms 23473  df-cncf 24039  df-ovol 24626  df-vol 24627  df-mbf 24781  df-itg1 24782  df-itg2 24783  df-ibl 24784  df-itg 24785  df-0p 24832  df-limc 25028  df-dv 25029  df-log 25710  df-cxp 25711
This theorem is referenced by:  hgt750lem  32627
  Copyright terms: Public domain W3C validator