Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  logdivsqrle Structured version   Visualization version   GIF version

Theorem logdivsqrle 34641
Description: Conditions for ((log x ) / ( sqrt 𝑥)) to be decreasing. (Contributed by Thierry Arnoux, 20-Dec-2021.)
Hypotheses
Ref Expression
logdivsqrle.a (𝜑𝐴 ∈ ℝ+)
logdivsqrle.b (𝜑𝐵 ∈ ℝ+)
logdivsqrle.1 (𝜑 → (exp‘2) ≤ 𝐴)
logdivsqrle.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
logdivsqrle (𝜑 → ((log‘𝐵) / (√‘𝐵)) ≤ ((log‘𝐴) / (√‘𝐴)))

Proof of Theorem logdivsqrle
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioorp 13386 . . . 4 (0(,)+∞) = ℝ+
21eqcomi 2738 . . 3 + = (0(,)+∞)
3 logdivsqrle.a . . 3 (𝜑𝐴 ∈ ℝ+)
4 logdivsqrle.b . . 3 (𝜑𝐵 ∈ ℝ+)
5 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
65relogcld 26532 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
75rpsqrtcld 15378 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
87rpred 12995 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ)
9 rpsqrtcl 15230 . . . . . . 7 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
10 rpne0 12968 . . . . . . 7 ((√‘𝑥) ∈ ℝ+ → (√‘𝑥) ≠ 0)
119, 10syl 17 . . . . . 6 (𝑥 ∈ ℝ+ → (√‘𝑥) ≠ 0)
1211adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ≠ 0)
136, 8, 12redivcld 12010 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / (√‘𝑥)) ∈ ℝ)
1413fmpttd 7087 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))):ℝ+⟶ℝ)
15 rpcn 12962 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
1615adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
17 rpne0 12968 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ≠ 0)
1817adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
1916, 18logcld 26479 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
2016sqrtcld 15406 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℂ)
2119, 20, 12divrecd 11961 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / (√‘𝑥)) = ((log‘𝑥) · (1 / (√‘𝑥))))
22 2cnd 12264 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℂ)
2322adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
24 2ne0 12290 . . . . . . . . . . . . 13 2 ≠ 0
2524a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 2 ≠ 0)
2623, 25reccld 11951 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (1 / 2) ∈ ℂ)
2716, 18, 26cxpnegd 26624 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐-(1 / 2)) = (1 / (𝑥𝑐(1 / 2))))
28 cxpsqrt 26612 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥𝑐(1 / 2)) = (√‘𝑥))
2916, 28syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐(1 / 2)) = (√‘𝑥))
3029oveq2d 7403 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (1 / (𝑥𝑐(1 / 2))) = (1 / (√‘𝑥)))
3127, 30eqtrd 2764 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐-(1 / 2)) = (1 / (√‘𝑥)))
3231oveq2d 7403 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (𝑥𝑐-(1 / 2))) = ((log‘𝑥) · (1 / (√‘𝑥))))
3321, 32eqtr4d 2767 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / (√‘𝑥)) = ((log‘𝑥) · (𝑥𝑐-(1 / 2))))
3433mpteq2dva 5200 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) · (𝑥𝑐-(1 / 2)))))
3534oveq2d 7403 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))) = (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) · (𝑥𝑐-(1 / 2))))))
36 reelprrecn 11160 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
3736a1i 11 . . . . . 6 (𝜑 → ℝ ∈ {ℝ, ℂ})
385rpreccld 13005 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
39 logf1o 26473 . . . . . . . . . . 11 log:(ℂ ∖ {0})–1-1-onto→ran log
40 f1of 6800 . . . . . . . . . . 11 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
4139, 40ax-mp 5 . . . . . . . . . 10 log:(ℂ ∖ {0})⟶ran log
4241a1i 11 . . . . . . . . 9 (𝜑 → log:(ℂ ∖ {0})⟶ran log)
4315ssriv 3950 . . . . . . . . . . 11 + ⊆ ℂ
44 0nrp 12988 . . . . . . . . . . 11 ¬ 0 ∈ ℝ+
45 ssdifsn 4752 . . . . . . . . . . 11 (ℝ+ ⊆ (ℂ ∖ {0}) ↔ (ℝ+ ⊆ ℂ ∧ ¬ 0 ∈ ℝ+))
4643, 44, 45mpbir2an 711 . . . . . . . . . 10 + ⊆ (ℂ ∖ {0})
4746a1i 11 . . . . . . . . 9 (𝜑 → ℝ+ ⊆ (ℂ ∖ {0}))
4842, 47feqresmpt 6930 . . . . . . . 8 (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
4948oveq2d 7403 . . . . . . 7 (𝜑 → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))))
50 dvrelog 26546 . . . . . . 7 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
5149, 50eqtr3di 2779 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
52 1cnd 11169 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
5352halfcld 12427 . . . . . . . . 9 (𝜑 → (1 / 2) ∈ ℂ)
5453negcld 11520 . . . . . . . 8 (𝜑 → -(1 / 2) ∈ ℂ)
5554adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → -(1 / 2) ∈ ℂ)
5616, 55cxpcld 26617 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐-(1 / 2)) ∈ ℂ)
5752adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℂ)
5855, 57subcld 11533 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (-(1 / 2) − 1) ∈ ℂ)
5916, 58cxpcld 26617 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐(-(1 / 2) − 1)) ∈ ℂ)
6055, 59mulcld 11194 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) ∈ ℂ)
61 dvcxp1 26649 . . . . . . 7 (-(1 / 2) ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥𝑐-(1 / 2)))) = (𝑥 ∈ ℝ+ ↦ (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1)))))
6254, 61syl 17 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥𝑐-(1 / 2)))) = (𝑥 ∈ ℝ+ ↦ (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1)))))
6337, 19, 38, 51, 56, 60, 62dvmptmul 25865 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) · (𝑥𝑐-(1 / 2))))) = (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))))
6435, 63eqtrd 2764 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))))
65 ax-resscn 11125 . . . . . 6 ℝ ⊆ ℂ
6665a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
67 eqid 2729 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6867addcn 24754 . . . . . . 7 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
6968a1i 11 . . . . . 6 (𝜑 → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
7043a1i 11 . . . . . . . . 9 (𝜑 → ℝ+ ⊆ ℂ)
71 ssid 3969 . . . . . . . . . 10 ℂ ⊆ ℂ
7271a1i 11 . . . . . . . . 9 (𝜑 → ℂ ⊆ ℂ)
73 cncfmptc 24805 . . . . . . . . 9 ((1 ∈ ℂ ∧ ℝ+ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℝ+ ↦ 1) ∈ (ℝ+cn→ℂ))
7452, 70, 72, 73syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ 1) ∈ (ℝ+cn→ℂ))
75 difss 4099 . . . . . . . . 9 (ℂ ∖ {0}) ⊆ ℂ
76 cncfmptid 24806 . . . . . . . . 9 ((ℝ+ ⊆ (ℂ ∖ {0}) ∧ (ℂ ∖ {0}) ⊆ ℂ) → (𝑥 ∈ ℝ+𝑥) ∈ (ℝ+cn→(ℂ ∖ {0})))
7747, 75, 76sylancl 586 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+𝑥) ∈ (ℝ+cn→(ℂ ∖ {0})))
7874, 77divcncf 25348 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ∈ (ℝ+cn→ℂ))
79 ax-1 6 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+))
8015, 79jca 511 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
81 eqid 2729 . . . . . . . . . . . 12 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
8281ellogdm 26548 . . . . . . . . . . 11 (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
8380, 82sylibr 234 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ (ℂ ∖ (-∞(,]0)))
8483ssriv 3950 . . . . . . . . 9 + ⊆ (ℂ ∖ (-∞(,]0))
8584a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ (ℂ ∖ (-∞(,]0)))
8654, 85cxpcncf1 34586 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑥𝑐-(1 / 2))) ∈ (ℝ+cn→ℂ))
8778, 86mulcncf 25346 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) · (𝑥𝑐-(1 / 2)))) ∈ (ℝ+cn→ℂ))
88 cncfmptc 24805 . . . . . . . . 9 ((-(1 / 2) ∈ ℂ ∧ ℝ+ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℝ+ ↦ -(1 / 2)) ∈ (ℝ+cn→ℂ))
8954, 70, 72, 88syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ -(1 / 2)) ∈ (ℝ+cn→ℂ))
9054, 52subcld 11533 . . . . . . . . 9 (𝜑 → (-(1 / 2) − 1) ∈ ℂ)
9190, 85cxpcncf1 34586 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑥𝑐(-(1 / 2) − 1))) ∈ (ℝ+cn→ℂ))
9289, 91mulcncf 25346 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1)))) ∈ (ℝ+cn→ℂ))
93 cncfss 24792 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ))
9465, 71, 93mp2an 692 . . . . . . . 8 (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ)
95 relogcn 26547 . . . . . . . . 9 (log ↾ ℝ+) ∈ (ℝ+cn→ℝ)
9648, 95eqeltrrdi 2837 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ (ℝ+cn→ℝ))
9794, 96sselid 3944 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ (ℝ+cn→ℂ))
9892, 97mulcncf 25346 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) ∈ (ℝ+cn→ℂ))
9967, 69, 87, 98cncfmpt2f 24808 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℂ))
100 rpre 12960 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
101100, 17rereccld 12009 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ)
102 rpge0 12965 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
103 halfre 12395 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
104103renegcli 11483 . . . . . . . . . . 11 -(1 / 2) ∈ ℝ
105104a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → -(1 / 2) ∈ ℝ)
106100, 102, 105recxpcld 26632 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥𝑐-(1 / 2)) ∈ ℝ)
107101, 106remulcld 11204 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((1 / 𝑥) · (𝑥𝑐-(1 / 2))) ∈ ℝ)
108 1re 11174 . . . . . . . . . . . . 13 1 ∈ ℝ
109104, 108resubcli 11484 . . . . . . . . . . . 12 (-(1 / 2) − 1) ∈ ℝ
110109a1i 11 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (-(1 / 2) − 1) ∈ ℝ)
111100, 102, 110recxpcld 26632 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥𝑐(-(1 / 2) − 1)) ∈ ℝ)
112105, 111remulcld 11204 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) ∈ ℝ)
113 relogcl 26484 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
114112, 113remulcld 11204 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)) ∈ ℝ)
115107, 114readdcld 11203 . . . . . . 7 (𝑥 ∈ ℝ+ → (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) ∈ ℝ)
116115adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) ∈ ℝ)
117116fmpttd 7087 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))):ℝ+⟶ℝ)
118 cncfcdm 24791 . . . . . 6 ((ℝ ⊆ ℂ ∧ (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℂ)) → ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℝ) ↔ (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))):ℝ+⟶ℝ))
119118biimpar 477 . . . . 5 (((ℝ ⊆ ℂ ∧ (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℂ)) ∧ (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))):ℝ+⟶ℝ) → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℝ))
12066, 99, 117, 119syl21anc 837 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℝ))
12164, 120eqeltrd 2828 . . 3 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))) ∈ (ℝ+cn→ℝ))
122 logdivsqrle.2 . . 3 (𝜑𝐴𝐵)
12364fveq1d 6860 . . . . 5 (𝜑 → ((ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦))
124123adantr 480 . . . 4 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦))
12557negcld 11520 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → -1 ∈ ℂ)
126 cxpadd 26588 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ -(1 / 2) ∈ ℂ ∧ -1 ∈ ℂ) → (𝑥𝑐(-(1 / 2) + -1)) = ((𝑥𝑐-(1 / 2)) · (𝑥𝑐-1)))
12716, 18, 55, 125, 126syl211anc 1378 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐(-(1 / 2) + -1)) = ((𝑥𝑐-(1 / 2)) · (𝑥𝑐-1)))
12859mullidd 11192 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (1 · (𝑥𝑐(-(1 / 2) − 1))) = (𝑥𝑐(-(1 / 2) − 1)))
12955, 57negsubd 11539 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (-(1 / 2) + -1) = (-(1 / 2) − 1))
130129oveq2d 7403 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐(-(1 / 2) + -1)) = (𝑥𝑐(-(1 / 2) − 1)))
131128, 130eqtr4d 2767 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (1 · (𝑥𝑐(-(1 / 2) − 1))) = (𝑥𝑐(-(1 / 2) + -1)))
13243, 38sselid 3944 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
133132, 56mulcomd 11195 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → ((1 / 𝑥) · (𝑥𝑐-(1 / 2))) = ((𝑥𝑐-(1 / 2)) · (1 / 𝑥)))
134 cxpneg 26590 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ∧ 1 ∈ ℂ) → (𝑥𝑐-1) = (1 / (𝑥𝑐1)))
13516, 18, 57, 134syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐-1) = (1 / (𝑥𝑐1)))
13616cxp1d 26615 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐1) = 𝑥)
137136oveq2d 7403 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (1 / (𝑥𝑐1)) = (1 / 𝑥))
138135, 137eqtr2d 2765 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) = (𝑥𝑐-1))
139138oveq2d 7403 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → ((𝑥𝑐-(1 / 2)) · (1 / 𝑥)) = ((𝑥𝑐-(1 / 2)) · (𝑥𝑐-1)))
140133, 139eqtrd 2764 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((1 / 𝑥) · (𝑥𝑐-(1 / 2))) = ((𝑥𝑐-(1 / 2)) · (𝑥𝑐-1)))
141127, 131, 1403eqtr4rd 2775 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((1 / 𝑥) · (𝑥𝑐-(1 / 2))) = (1 · (𝑥𝑐(-(1 / 2) − 1))))
14255, 59, 19mul32d 11384 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)) = ((-(1 / 2) · (log‘𝑥)) · (𝑥𝑐(-(1 / 2) − 1))))
143141, 142oveq12d 7405 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) = ((1 · (𝑥𝑐(-(1 / 2) − 1))) + ((-(1 / 2) · (log‘𝑥)) · (𝑥𝑐(-(1 / 2) − 1)))))
14455, 19mulcld 11194 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (-(1 / 2) · (log‘𝑥)) ∈ ℂ)
14557, 144, 59adddird 11199 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))) = ((1 · (𝑥𝑐(-(1 / 2) − 1))) + ((-(1 / 2) · (log‘𝑥)) · (𝑥𝑐(-(1 / 2) − 1)))))
146143, 145eqtr4d 2767 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) = ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))
147146mpteq2dva 5200 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1)))))
148147fveq1d 6860 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))‘𝑦))
149148adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))‘𝑦))
150 eqidd 2730 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1)))) = (𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1)))))
151 simpr 484 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
152151fveq2d 6862 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (log‘𝑥) = (log‘𝑦))
153152oveq2d 7403 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (-(1 / 2) · (log‘𝑥)) = (-(1 / 2) · (log‘𝑦)))
154153oveq2d 7403 . . . . . . . 8 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (1 + (-(1 / 2) · (log‘𝑥))) = (1 + (-(1 / 2) · (log‘𝑦))))
155151oveq1d 7402 . . . . . . . 8 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (𝑥𝑐(-(1 / 2) − 1)) = (𝑦𝑐(-(1 / 2) − 1)))
156154, 155oveq12d 7405 . . . . . . 7 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))) = ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))))
157 ioossicc 13394 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
158157a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
1592, 3, 4fct2relem 34588 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ+)
160158, 159sstrd 3957 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ+)
161160sselda 3946 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ+)
162 ovexd 7422 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))) ∈ V)
163150, 156, 161, 162fvmptd 6975 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))‘𝑦) = ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))))
164108a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
165104a1i 11 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → -(1 / 2) ∈ ℝ)
166161relogcld 26532 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (log‘𝑦) ∈ ℝ)
167165, 166remulcld 11204 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (-(1 / 2) · (log‘𝑦)) ∈ ℝ)
168164, 167readdcld 11203 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (1 + (-(1 / 2) · (log‘𝑦))) ∈ ℝ)
169 0red 11177 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
170 rpcxpcl 26585 . . . . . . . . . 10 ((𝑦 ∈ ℝ+ ∧ (-(1 / 2) − 1) ∈ ℝ) → (𝑦𝑐(-(1 / 2) − 1)) ∈ ℝ+)
171161, 109, 170sylancl 586 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑦𝑐(-(1 / 2) − 1)) ∈ ℝ+)
172171rpred 12995 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑦𝑐(-(1 / 2) − 1)) ∈ ℝ)
173171rpge0d 12999 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 ≤ (𝑦𝑐(-(1 / 2) − 1)))
174 2cn 12261 . . . . . . . . . . . . . 14 2 ∈ ℂ
175174mullidi 11179 . . . . . . . . . . . . 13 (1 · 2) = 2
176 2re 12260 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
177176a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ)
178177reefcld 16054 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ∈ ℝ)
1793rpred 12995 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℝ)
180179adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
181161rpred 12995 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ)
182 logdivsqrle.1 . . . . . . . . . . . . . . . . 17 (𝜑 → (exp‘2) ≤ 𝐴)
183182adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ≤ 𝐴)
184 eliooord 13366 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑦𝑦 < 𝐵))
185184simpld 494 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑦)
186185adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑦)
187180, 181, 186ltled 11322 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴𝑦)
188178, 180, 181, 183, 187letrd 11331 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ≤ 𝑦)
189 reeflog 26489 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ+ → (exp‘(log‘𝑦)) = 𝑦)
190161, 189syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘(log‘𝑦)) = 𝑦)
191188, 190breqtrrd 5135 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ≤ (exp‘(log‘𝑦)))
192 efle 16086 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ ∧ (log‘𝑦) ∈ ℝ) → (2 ≤ (log‘𝑦) ↔ (exp‘2) ≤ (exp‘(log‘𝑦))))
193176, 166, 192sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (2 ≤ (log‘𝑦) ↔ (exp‘2) ≤ (exp‘(log‘𝑦))))
194191, 193mpbird 257 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ≤ (log‘𝑦))
195175, 194eqbrtrid 5142 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (1 · 2) ≤ (log‘𝑦))
196 2rp 12956 . . . . . . . . . . . . . 14 2 ∈ ℝ+
197196a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ+)
198164, 166, 197lemuldivd 13044 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 · 2) ≤ (log‘𝑦) ↔ 1 ≤ ((log‘𝑦) / 2)))
199195, 198mpbid 232 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 1 ≤ ((log‘𝑦) / 2))
20065, 166sselid 3944 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (log‘𝑦) ∈ ℂ)
20122adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
20224a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
203200, 201, 202divrec2d 11962 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((log‘𝑦) / 2) = ((1 / 2) · (log‘𝑦)))
204199, 203breqtrd 5133 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 1 ≤ ((1 / 2) · (log‘𝑦)))
20553adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (1 / 2) ∈ ℂ)
206205, 200mulneg1d 11631 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (-(1 / 2) · (log‘𝑦)) = -((1 / 2) · (log‘𝑦)))
207206oveq2d 7403 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 − (-(1 / 2) · (log‘𝑦))) = (0 − -((1 / 2) · (log‘𝑦))))
20865, 169sselid 3944 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 ∈ ℂ)
209205, 200mulcld 11194 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 / 2) · (log‘𝑦)) ∈ ℂ)
210208, 209subnegd 11540 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 − -((1 / 2) · (log‘𝑦))) = (0 + ((1 / 2) · (log‘𝑦))))
211209addlidd 11375 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 + ((1 / 2) · (log‘𝑦))) = ((1 / 2) · (log‘𝑦)))
212207, 210, 2113eqtrd 2768 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 − (-(1 / 2) · (log‘𝑦))) = ((1 / 2) · (log‘𝑦)))
213204, 212breqtrrd 5135 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 1 ≤ (0 − (-(1 / 2) · (log‘𝑦))))
214 leaddsub 11654 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (-(1 / 2) · (log‘𝑦)) ∈ ℝ ∧ 0 ∈ ℝ) → ((1 + (-(1 / 2) · (log‘𝑦))) ≤ 0 ↔ 1 ≤ (0 − (-(1 / 2) · (log‘𝑦)))))
215164, 167, 169, 214syl3anc 1373 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) · (log‘𝑦))) ≤ 0 ↔ 1 ≤ (0 − (-(1 / 2) · (log‘𝑦)))))
216213, 215mpbird 257 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (1 + (-(1 / 2) · (log‘𝑦))) ≤ 0)
217168, 169, 172, 173, 216lemul1ad 12122 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))) ≤ (0 · (𝑦𝑐(-(1 / 2) − 1))))
21843, 171sselid 3944 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑦𝑐(-(1 / 2) − 1)) ∈ ℂ)
219218mul02d 11372 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 · (𝑦𝑐(-(1 / 2) − 1))) = 0)
220217, 219breqtrd 5133 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))) ≤ 0)
221163, 220eqbrtrd 5129 . . . . 5 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))‘𝑦) ≤ 0)
222149, 221eqbrtrd 5129 . . . 4 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦) ≤ 0)
223124, 222eqbrtrd 5129 . . 3 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))))‘𝑦) ≤ 0)
2242, 3, 4, 14, 121, 122, 223fdvnegge 34593 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))‘𝐵) ≤ ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))‘𝐴))
225 eqidd 2730 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))))
226 simpr 484 . . . . 5 ((𝜑𝑥 = 𝐵) → 𝑥 = 𝐵)
227226fveq2d 6862 . . . 4 ((𝜑𝑥 = 𝐵) → (log‘𝑥) = (log‘𝐵))
228226fveq2d 6862 . . . 4 ((𝜑𝑥 = 𝐵) → (√‘𝑥) = (√‘𝐵))
229227, 228oveq12d 7405 . . 3 ((𝜑𝑥 = 𝐵) → ((log‘𝑥) / (√‘𝑥)) = ((log‘𝐵) / (√‘𝐵)))
230 ovex 7420 . . . 4 ((log‘𝐵) / (√‘𝐵)) ∈ V
231230a1i 11 . . 3 (𝜑 → ((log‘𝐵) / (√‘𝐵)) ∈ V)
232225, 229, 4, 231fvmptd 6975 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))‘𝐵) = ((log‘𝐵) / (√‘𝐵)))
233 simpr 484 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐴)
234233fveq2d 6862 . . . 4 ((𝜑𝑥 = 𝐴) → (log‘𝑥) = (log‘𝐴))
235233fveq2d 6862 . . . 4 ((𝜑𝑥 = 𝐴) → (√‘𝑥) = (√‘𝐴))
236234, 235oveq12d 7405 . . 3 ((𝜑𝑥 = 𝐴) → ((log‘𝑥) / (√‘𝑥)) = ((log‘𝐴) / (√‘𝐴)))
237 ovex 7420 . . . 4 ((log‘𝐴) / (√‘𝐴)) ∈ V
238237a1i 11 . . 3 (𝜑 → ((log‘𝐴) / (√‘𝐴)) ∈ V)
239225, 236, 3, 238fvmptd 6975 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))‘𝐴) = ((log‘𝐴) / (√‘𝐴)))
240224, 232, 2393brtr3d 5138 1 (𝜑 → ((log‘𝐵) / (√‘𝐵)) ≤ ((log‘𝐴) / (√‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  cdif 3911  wss 3914  {csn 4589  {cpr 4591   class class class wbr 5107  cmpt 5188  ran crn 5639  cres 5640  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205  -∞cmnf 11206   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  2c2 12241  +crp 12951  (,)cioo 13306  (,]cioc 13307  [,]cicc 13309  csqrt 15199  expce 16027  TopOpenctopn 17384  fldccnfld 21264   Cn ccn 23111   ×t ctx 23447  cnccncf 24769   D cdv 25764  logclog 26463  𝑐ccxp 26464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-symdif 4216  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-tan 16037  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523  df-itg 25524  df-0p 25571  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466
This theorem is referenced by:  hgt750lem  34642
  Copyright terms: Public domain W3C validator