Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  logdivsqrle Structured version   Visualization version   GIF version

Theorem logdivsqrle 34687
Description: Conditions for ((log x ) / ( sqrt 𝑥)) to be decreasing. (Contributed by Thierry Arnoux, 20-Dec-2021.)
Hypotheses
Ref Expression
logdivsqrle.a (𝜑𝐴 ∈ ℝ+)
logdivsqrle.b (𝜑𝐵 ∈ ℝ+)
logdivsqrle.1 (𝜑 → (exp‘2) ≤ 𝐴)
logdivsqrle.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
logdivsqrle (𝜑 → ((log‘𝐵) / (√‘𝐵)) ≤ ((log‘𝐴) / (√‘𝐴)))

Proof of Theorem logdivsqrle
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioorp 13447 . . . 4 (0(,)+∞) = ℝ+
21eqcomi 2745 . . 3 + = (0(,)+∞)
3 logdivsqrle.a . . 3 (𝜑𝐴 ∈ ℝ+)
4 logdivsqrle.b . . 3 (𝜑𝐵 ∈ ℝ+)
5 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
65relogcld 26589 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
75rpsqrtcld 15435 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
87rpred 13056 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ)
9 rpsqrtcl 15288 . . . . . . 7 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
10 rpne0 13030 . . . . . . 7 ((√‘𝑥) ∈ ℝ+ → (√‘𝑥) ≠ 0)
119, 10syl 17 . . . . . 6 (𝑥 ∈ ℝ+ → (√‘𝑥) ≠ 0)
1211adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ≠ 0)
136, 8, 12redivcld 12074 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / (√‘𝑥)) ∈ ℝ)
1413fmpttd 7110 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))):ℝ+⟶ℝ)
15 rpcn 13024 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
1615adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
17 rpne0 13030 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ≠ 0)
1817adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
1916, 18logcld 26536 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
2016sqrtcld 15461 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℂ)
2119, 20, 12divrecd 12025 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / (√‘𝑥)) = ((log‘𝑥) · (1 / (√‘𝑥))))
22 2cnd 12323 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℂ)
2322adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
24 2ne0 12349 . . . . . . . . . . . . 13 2 ≠ 0
2524a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 2 ≠ 0)
2623, 25reccld 12015 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (1 / 2) ∈ ℂ)
2716, 18, 26cxpnegd 26681 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐-(1 / 2)) = (1 / (𝑥𝑐(1 / 2))))
28 cxpsqrt 26669 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥𝑐(1 / 2)) = (√‘𝑥))
2916, 28syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐(1 / 2)) = (√‘𝑥))
3029oveq2d 7426 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (1 / (𝑥𝑐(1 / 2))) = (1 / (√‘𝑥)))
3127, 30eqtrd 2771 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐-(1 / 2)) = (1 / (√‘𝑥)))
3231oveq2d 7426 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (𝑥𝑐-(1 / 2))) = ((log‘𝑥) · (1 / (√‘𝑥))))
3321, 32eqtr4d 2774 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / (√‘𝑥)) = ((log‘𝑥) · (𝑥𝑐-(1 / 2))))
3433mpteq2dva 5219 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) · (𝑥𝑐-(1 / 2)))))
3534oveq2d 7426 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))) = (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) · (𝑥𝑐-(1 / 2))))))
36 reelprrecn 11226 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
3736a1i 11 . . . . . 6 (𝜑 → ℝ ∈ {ℝ, ℂ})
385rpreccld 13066 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
39 logf1o 26530 . . . . . . . . . . 11 log:(ℂ ∖ {0})–1-1-onto→ran log
40 f1of 6823 . . . . . . . . . . 11 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
4139, 40ax-mp 5 . . . . . . . . . 10 log:(ℂ ∖ {0})⟶ran log
4241a1i 11 . . . . . . . . 9 (𝜑 → log:(ℂ ∖ {0})⟶ran log)
4315ssriv 3967 . . . . . . . . . . 11 + ⊆ ℂ
44 0nrp 13049 . . . . . . . . . . 11 ¬ 0 ∈ ℝ+
45 ssdifsn 4769 . . . . . . . . . . 11 (ℝ+ ⊆ (ℂ ∖ {0}) ↔ (ℝ+ ⊆ ℂ ∧ ¬ 0 ∈ ℝ+))
4643, 44, 45mpbir2an 711 . . . . . . . . . 10 + ⊆ (ℂ ∖ {0})
4746a1i 11 . . . . . . . . 9 (𝜑 → ℝ+ ⊆ (ℂ ∖ {0}))
4842, 47feqresmpt 6953 . . . . . . . 8 (𝜑 → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
4948oveq2d 7426 . . . . . . 7 (𝜑 → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))))
50 dvrelog 26603 . . . . . . 7 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
5149, 50eqtr3di 2786 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
52 1cnd 11235 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
5352halfcld 12491 . . . . . . . . 9 (𝜑 → (1 / 2) ∈ ℂ)
5453negcld 11586 . . . . . . . 8 (𝜑 → -(1 / 2) ∈ ℂ)
5554adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → -(1 / 2) ∈ ℂ)
5616, 55cxpcld 26674 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐-(1 / 2)) ∈ ℂ)
5752adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℂ)
5855, 57subcld 11599 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (-(1 / 2) − 1) ∈ ℂ)
5916, 58cxpcld 26674 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐(-(1 / 2) − 1)) ∈ ℂ)
6055, 59mulcld 11260 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) ∈ ℂ)
61 dvcxp1 26706 . . . . . . 7 (-(1 / 2) ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥𝑐-(1 / 2)))) = (𝑥 ∈ ℝ+ ↦ (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1)))))
6254, 61syl 17 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥𝑐-(1 / 2)))) = (𝑥 ∈ ℝ+ ↦ (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1)))))
6337, 19, 38, 51, 56, 60, 62dvmptmul 25922 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) · (𝑥𝑐-(1 / 2))))) = (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))))
6435, 63eqtrd 2771 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))))
65 ax-resscn 11191 . . . . . 6 ℝ ⊆ ℂ
6665a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
67 eqid 2736 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6867addcn 24810 . . . . . . 7 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
6968a1i 11 . . . . . 6 (𝜑 → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
7043a1i 11 . . . . . . . . 9 (𝜑 → ℝ+ ⊆ ℂ)
71 ssid 3986 . . . . . . . . . 10 ℂ ⊆ ℂ
7271a1i 11 . . . . . . . . 9 (𝜑 → ℂ ⊆ ℂ)
73 cncfmptc 24861 . . . . . . . . 9 ((1 ∈ ℂ ∧ ℝ+ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℝ+ ↦ 1) ∈ (ℝ+cn→ℂ))
7452, 70, 72, 73syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ 1) ∈ (ℝ+cn→ℂ))
75 difss 4116 . . . . . . . . 9 (ℂ ∖ {0}) ⊆ ℂ
76 cncfmptid 24862 . . . . . . . . 9 ((ℝ+ ⊆ (ℂ ∖ {0}) ∧ (ℂ ∖ {0}) ⊆ ℂ) → (𝑥 ∈ ℝ+𝑥) ∈ (ℝ+cn→(ℂ ∖ {0})))
7747, 75, 76sylancl 586 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+𝑥) ∈ (ℝ+cn→(ℂ ∖ {0})))
7874, 77divcncf 25405 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ∈ (ℝ+cn→ℂ))
79 ax-1 6 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+))
8015, 79jca 511 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
81 eqid 2736 . . . . . . . . . . . 12 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
8281ellogdm 26605 . . . . . . . . . . 11 (𝑥 ∈ (ℂ ∖ (-∞(,]0)) ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+)))
8380, 82sylibr 234 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ (ℂ ∖ (-∞(,]0)))
8483ssriv 3967 . . . . . . . . 9 + ⊆ (ℂ ∖ (-∞(,]0))
8584a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ (ℂ ∖ (-∞(,]0)))
8654, 85cxpcncf1 34632 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑥𝑐-(1 / 2))) ∈ (ℝ+cn→ℂ))
8778, 86mulcncf 25403 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) · (𝑥𝑐-(1 / 2)))) ∈ (ℝ+cn→ℂ))
88 cncfmptc 24861 . . . . . . . . 9 ((-(1 / 2) ∈ ℂ ∧ ℝ+ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℝ+ ↦ -(1 / 2)) ∈ (ℝ+cn→ℂ))
8954, 70, 72, 88syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ -(1 / 2)) ∈ (ℝ+cn→ℂ))
9054, 52subcld 11599 . . . . . . . . 9 (𝜑 → (-(1 / 2) − 1) ∈ ℂ)
9190, 85cxpcncf1 34632 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑥𝑐(-(1 / 2) − 1))) ∈ (ℝ+cn→ℂ))
9289, 91mulcncf 25403 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1)))) ∈ (ℝ+cn→ℂ))
93 cncfss 24848 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ))
9465, 71, 93mp2an 692 . . . . . . . 8 (ℝ+cn→ℝ) ⊆ (ℝ+cn→ℂ)
95 relogcn 26604 . . . . . . . . 9 (log ↾ ℝ+) ∈ (ℝ+cn→ℝ)
9648, 95eqeltrrdi 2844 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ (ℝ+cn→ℝ))
9794, 96sselid 3961 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ (ℝ+cn→ℂ))
9892, 97mulcncf 25403 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) ∈ (ℝ+cn→ℂ))
9967, 69, 87, 98cncfmpt2f 24864 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℂ))
100 rpre 13022 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
101100, 17rereccld 12073 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ)
102 rpge0 13027 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
103 halfre 12459 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
104103renegcli 11549 . . . . . . . . . . 11 -(1 / 2) ∈ ℝ
105104a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → -(1 / 2) ∈ ℝ)
106100, 102, 105recxpcld 26689 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥𝑐-(1 / 2)) ∈ ℝ)
107101, 106remulcld 11270 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((1 / 𝑥) · (𝑥𝑐-(1 / 2))) ∈ ℝ)
108 1re 11240 . . . . . . . . . . . . 13 1 ∈ ℝ
109104, 108resubcli 11550 . . . . . . . . . . . 12 (-(1 / 2) − 1) ∈ ℝ
110109a1i 11 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (-(1 / 2) − 1) ∈ ℝ)
111100, 102, 110recxpcld 26689 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥𝑐(-(1 / 2) − 1)) ∈ ℝ)
112105, 111remulcld 11270 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) ∈ ℝ)
113 relogcl 26541 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
114112, 113remulcld 11270 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)) ∈ ℝ)
115107, 114readdcld 11269 . . . . . . 7 (𝑥 ∈ ℝ+ → (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) ∈ ℝ)
116115adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) ∈ ℝ)
117116fmpttd 7110 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))):ℝ+⟶ℝ)
118 cncfcdm 24847 . . . . . 6 ((ℝ ⊆ ℂ ∧ (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℂ)) → ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℝ) ↔ (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))):ℝ+⟶ℝ))
119118biimpar 477 . . . . 5 (((ℝ ⊆ ℂ ∧ (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℂ)) ∧ (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))):ℝ+⟶ℝ) → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℝ))
12066, 99, 117, 119syl21anc 837 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) ∈ (ℝ+cn→ℝ))
12164, 120eqeltrd 2835 . . 3 (𝜑 → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))) ∈ (ℝ+cn→ℝ))
122 logdivsqrle.2 . . 3 (𝜑𝐴𝐵)
12364fveq1d 6883 . . . . 5 (𝜑 → ((ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦))
124123adantr 480 . . . 4 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦))
12557negcld 11586 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → -1 ∈ ℂ)
126 cxpadd 26645 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ -(1 / 2) ∈ ℂ ∧ -1 ∈ ℂ) → (𝑥𝑐(-(1 / 2) + -1)) = ((𝑥𝑐-(1 / 2)) · (𝑥𝑐-1)))
12716, 18, 55, 125, 126syl211anc 1378 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐(-(1 / 2) + -1)) = ((𝑥𝑐-(1 / 2)) · (𝑥𝑐-1)))
12859mullidd 11258 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (1 · (𝑥𝑐(-(1 / 2) − 1))) = (𝑥𝑐(-(1 / 2) − 1)))
12955, 57negsubd 11605 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (-(1 / 2) + -1) = (-(1 / 2) − 1))
130129oveq2d 7426 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐(-(1 / 2) + -1)) = (𝑥𝑐(-(1 / 2) − 1)))
131128, 130eqtr4d 2774 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (1 · (𝑥𝑐(-(1 / 2) − 1))) = (𝑥𝑐(-(1 / 2) + -1)))
13243, 38sselid 3961 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
133132, 56mulcomd 11261 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → ((1 / 𝑥) · (𝑥𝑐-(1 / 2))) = ((𝑥𝑐-(1 / 2)) · (1 / 𝑥)))
134 cxpneg 26647 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ∧ 1 ∈ ℂ) → (𝑥𝑐-1) = (1 / (𝑥𝑐1)))
13516, 18, 57, 134syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐-1) = (1 / (𝑥𝑐1)))
13616cxp1d 26672 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐1) = 𝑥)
137136oveq2d 7426 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (1 / (𝑥𝑐1)) = (1 / 𝑥))
138135, 137eqtr2d 2772 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝑥) = (𝑥𝑐-1))
139138oveq2d 7426 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → ((𝑥𝑐-(1 / 2)) · (1 / 𝑥)) = ((𝑥𝑐-(1 / 2)) · (𝑥𝑐-1)))
140133, 139eqtrd 2771 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((1 / 𝑥) · (𝑥𝑐-(1 / 2))) = ((𝑥𝑐-(1 / 2)) · (𝑥𝑐-1)))
141127, 131, 1403eqtr4rd 2782 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((1 / 𝑥) · (𝑥𝑐-(1 / 2))) = (1 · (𝑥𝑐(-(1 / 2) − 1))))
14255, 59, 19mul32d 11450 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)) = ((-(1 / 2) · (log‘𝑥)) · (𝑥𝑐(-(1 / 2) − 1))))
143141, 142oveq12d 7428 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) = ((1 · (𝑥𝑐(-(1 / 2) − 1))) + ((-(1 / 2) · (log‘𝑥)) · (𝑥𝑐(-(1 / 2) − 1)))))
14455, 19mulcld 11260 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (-(1 / 2) · (log‘𝑥)) ∈ ℂ)
14557, 144, 59adddird 11265 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))) = ((1 · (𝑥𝑐(-(1 / 2) − 1))) + ((-(1 / 2) · (log‘𝑥)) · (𝑥𝑐(-(1 / 2) − 1)))))
146143, 145eqtr4d 2774 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))) = ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))
147146mpteq2dva 5219 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1)))))
148147fveq1d 6883 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))‘𝑦))
149148adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦) = ((𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))‘𝑦))
150 eqidd 2737 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1)))) = (𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1)))))
151 simpr 484 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
152151fveq2d 6885 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (log‘𝑥) = (log‘𝑦))
153152oveq2d 7426 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (-(1 / 2) · (log‘𝑥)) = (-(1 / 2) · (log‘𝑦)))
154153oveq2d 7426 . . . . . . . 8 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (1 + (-(1 / 2) · (log‘𝑥))) = (1 + (-(1 / 2) · (log‘𝑦))))
155151oveq1d 7425 . . . . . . . 8 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → (𝑥𝑐(-(1 / 2) − 1)) = (𝑦𝑐(-(1 / 2) − 1)))
156154, 155oveq12d 7428 . . . . . . 7 (((𝜑𝑦 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑦) → ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))) = ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))))
157 ioossicc 13455 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
158157a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
1592, 3, 4fct2relem 34634 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ+)
160158, 159sstrd 3974 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ+)
161160sselda 3963 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ+)
162 ovexd 7445 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))) ∈ V)
163150, 156, 161, 162fvmptd 6998 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))‘𝑦) = ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))))
164108a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
165104a1i 11 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → -(1 / 2) ∈ ℝ)
166161relogcld 26589 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (log‘𝑦) ∈ ℝ)
167165, 166remulcld 11270 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (-(1 / 2) · (log‘𝑦)) ∈ ℝ)
168164, 167readdcld 11269 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (1 + (-(1 / 2) · (log‘𝑦))) ∈ ℝ)
169 0red 11243 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
170 rpcxpcl 26642 . . . . . . . . . 10 ((𝑦 ∈ ℝ+ ∧ (-(1 / 2) − 1) ∈ ℝ) → (𝑦𝑐(-(1 / 2) − 1)) ∈ ℝ+)
171161, 109, 170sylancl 586 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑦𝑐(-(1 / 2) − 1)) ∈ ℝ+)
172171rpred 13056 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑦𝑐(-(1 / 2) − 1)) ∈ ℝ)
173171rpge0d 13060 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 ≤ (𝑦𝑐(-(1 / 2) − 1)))
174 2cn 12320 . . . . . . . . . . . . . 14 2 ∈ ℂ
175174mullidi 11245 . . . . . . . . . . . . 13 (1 · 2) = 2
176 2re 12319 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
177176a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ)
178177reefcld 16109 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ∈ ℝ)
1793rpred 13056 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℝ)
180179adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
181161rpred 13056 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ)
182 logdivsqrle.1 . . . . . . . . . . . . . . . . 17 (𝜑 → (exp‘2) ≤ 𝐴)
183182adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ≤ 𝐴)
184 eliooord 13427 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑦𝑦 < 𝐵))
185184simpld 494 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑦)
186185adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑦)
187180, 181, 186ltled 11388 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴𝑦)
188178, 180, 181, 183, 187letrd 11397 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ≤ 𝑦)
189 reeflog 26546 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ+ → (exp‘(log‘𝑦)) = 𝑦)
190161, 189syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘(log‘𝑦)) = 𝑦)
191188, 190breqtrrd 5152 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (exp‘2) ≤ (exp‘(log‘𝑦)))
192 efle 16141 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ ∧ (log‘𝑦) ∈ ℝ) → (2 ≤ (log‘𝑦) ↔ (exp‘2) ≤ (exp‘(log‘𝑦))))
193176, 166, 192sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (2 ≤ (log‘𝑦) ↔ (exp‘2) ≤ (exp‘(log‘𝑦))))
194191, 193mpbird 257 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ≤ (log‘𝑦))
195175, 194eqbrtrid 5159 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (1 · 2) ≤ (log‘𝑦))
196 2rp 13018 . . . . . . . . . . . . . 14 2 ∈ ℝ+
197196a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ+)
198164, 166, 197lemuldivd 13105 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 · 2) ≤ (log‘𝑦) ↔ 1 ≤ ((log‘𝑦) / 2)))
199195, 198mpbid 232 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 1 ≤ ((log‘𝑦) / 2))
20065, 166sselid 3961 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (log‘𝑦) ∈ ℂ)
20122adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
20224a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
203200, 201, 202divrec2d 12026 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((log‘𝑦) / 2) = ((1 / 2) · (log‘𝑦)))
204199, 203breqtrd 5150 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 1 ≤ ((1 / 2) · (log‘𝑦)))
20553adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (1 / 2) ∈ ℂ)
206205, 200mulneg1d 11695 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (-(1 / 2) · (log‘𝑦)) = -((1 / 2) · (log‘𝑦)))
207206oveq2d 7426 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 − (-(1 / 2) · (log‘𝑦))) = (0 − -((1 / 2) · (log‘𝑦))))
20865, 169sselid 3961 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 0 ∈ ℂ)
209205, 200mulcld 11260 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 / 2) · (log‘𝑦)) ∈ ℂ)
210208, 209subnegd 11606 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 − -((1 / 2) · (log‘𝑦))) = (0 + ((1 / 2) · (log‘𝑦))))
211209addlidd 11441 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 + ((1 / 2) · (log‘𝑦))) = ((1 / 2) · (log‘𝑦)))
212207, 210, 2113eqtrd 2775 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 − (-(1 / 2) · (log‘𝑦))) = ((1 / 2) · (log‘𝑦)))
213204, 212breqtrrd 5152 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 1 ≤ (0 − (-(1 / 2) · (log‘𝑦))))
214 leaddsub 11718 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (-(1 / 2) · (log‘𝑦)) ∈ ℝ ∧ 0 ∈ ℝ) → ((1 + (-(1 / 2) · (log‘𝑦))) ≤ 0 ↔ 1 ≤ (0 − (-(1 / 2) · (log‘𝑦)))))
215164, 167, 169, 214syl3anc 1373 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) · (log‘𝑦))) ≤ 0 ↔ 1 ≤ (0 − (-(1 / 2) · (log‘𝑦)))))
216213, 215mpbird 257 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (1 + (-(1 / 2) · (log‘𝑦))) ≤ 0)
217168, 169, 172, 173, 216lemul1ad 12186 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))) ≤ (0 · (𝑦𝑐(-(1 / 2) − 1))))
21843, 171sselid 3961 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝑦𝑐(-(1 / 2) − 1)) ∈ ℂ)
219218mul02d 11438 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (0 · (𝑦𝑐(-(1 / 2) − 1))) = 0)
220217, 219breqtrd 5150 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((1 + (-(1 / 2) · (log‘𝑦))) · (𝑦𝑐(-(1 / 2) − 1))) ≤ 0)
221163, 220eqbrtrd 5146 . . . . 5 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ ((1 + (-(1 / 2) · (log‘𝑥))) · (𝑥𝑐(-(1 / 2) − 1))))‘𝑦) ≤ 0)
222149, 221eqbrtrd 5146 . . . 4 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ ℝ+ ↦ (((1 / 𝑥) · (𝑥𝑐-(1 / 2))) + ((-(1 / 2) · (𝑥𝑐(-(1 / 2) − 1))) · (log‘𝑥))))‘𝑦) ≤ 0)
223124, 222eqbrtrd 5146 . . 3 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))))‘𝑦) ≤ 0)
2242, 3, 4, 14, 121, 122, 223fdvnegge 34639 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))‘𝐵) ≤ ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))‘𝐴))
225 eqidd 2737 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥))))
226 simpr 484 . . . . 5 ((𝜑𝑥 = 𝐵) → 𝑥 = 𝐵)
227226fveq2d 6885 . . . 4 ((𝜑𝑥 = 𝐵) → (log‘𝑥) = (log‘𝐵))
228226fveq2d 6885 . . . 4 ((𝜑𝑥 = 𝐵) → (√‘𝑥) = (√‘𝐵))
229227, 228oveq12d 7428 . . 3 ((𝜑𝑥 = 𝐵) → ((log‘𝑥) / (√‘𝑥)) = ((log‘𝐵) / (√‘𝐵)))
230 ovex 7443 . . . 4 ((log‘𝐵) / (√‘𝐵)) ∈ V
231230a1i 11 . . 3 (𝜑 → ((log‘𝐵) / (√‘𝐵)) ∈ V)
232225, 229, 4, 231fvmptd 6998 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))‘𝐵) = ((log‘𝐵) / (√‘𝐵)))
233 simpr 484 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐴)
234233fveq2d 6885 . . . 4 ((𝜑𝑥 = 𝐴) → (log‘𝑥) = (log‘𝐴))
235233fveq2d 6885 . . . 4 ((𝜑𝑥 = 𝐴) → (√‘𝑥) = (√‘𝐴))
236234, 235oveq12d 7428 . . 3 ((𝜑𝑥 = 𝐴) → ((log‘𝑥) / (√‘𝑥)) = ((log‘𝐴) / (√‘𝐴)))
237 ovex 7443 . . . 4 ((log‘𝐴) / (√‘𝐴)) ∈ V
238237a1i 11 . . 3 (𝜑 → ((log‘𝐴) / (√‘𝐴)) ∈ V)
239225, 236, 3, 238fvmptd 6998 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (√‘𝑥)))‘𝐴) = ((log‘𝐴) / (√‘𝐴)))
240224, 232, 2393brtr3d 5155 1 (𝜑 → ((log‘𝐵) / (√‘𝐵)) ≤ ((log‘𝐴) / (√‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  cdif 3928  wss 3931  {csn 4606  {cpr 4608   class class class wbr 5124  cmpt 5206  ran crn 5660  cres 5661  wf 6532  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  +∞cpnf 11271  -∞cmnf 11272   < clt 11274  cle 11275  cmin 11471  -cneg 11472   / cdiv 11899  2c2 12300  +crp 13013  (,)cioo 13367  (,]cioc 13368  [,]cicc 13370  csqrt 15257  expce 16082  TopOpenctopn 17440  fldccnfld 21320   Cn ccn 23167   ×t ctx 23503  cnccncf 24825   D cdv 25821  logclog 26520  𝑐ccxp 26521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cc 10454  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-symdif 4233  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-acn 9961  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-tan 16092  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-ovol 25422  df-vol 25423  df-mbf 25577  df-itg1 25578  df-itg2 25579  df-ibl 25580  df-itg 25581  df-0p 25628  df-limc 25824  df-dv 25825  df-log 26522  df-cxp 26523
This theorem is referenced by:  hgt750lem  34688
  Copyright terms: Public domain W3C validator