Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddcllem Structured version   Visualization version   GIF version

Theorem naddcllem 33758
Description: Lemma for ordinal addition closure. (Contributed by Scott Fenton, 26-Aug-2024.)
Assertion
Ref Expression
naddcllem ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +no 𝐵) ∈ On ∧ (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem naddcllem
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑓 𝑡 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7262 . . . 4 (𝑎 = 𝑐 → (𝑎 +no 𝑏) = (𝑐 +no 𝑏))
21eleq1d 2823 . . 3 (𝑎 = 𝑐 → ((𝑎 +no 𝑏) ∈ On ↔ (𝑐 +no 𝑏) ∈ On))
3 sneq 4568 . . . . . . . . . 10 (𝑎 = 𝑐 → {𝑎} = {𝑐})
43xpeq1d 5609 . . . . . . . . 9 (𝑎 = 𝑐 → ({𝑎} × 𝑏) = ({𝑐} × 𝑏))
54imaeq2d 5958 . . . . . . . 8 (𝑎 = 𝑐 → ( +no “ ({𝑎} × 𝑏)) = ( +no “ ({𝑐} × 𝑏)))
65sseq1d 3948 . . . . . . 7 (𝑎 = 𝑐 → (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥))
7 xpeq1 5594 . . . . . . . . 9 (𝑎 = 𝑐 → (𝑎 × {𝑏}) = (𝑐 × {𝑏}))
87imaeq2d 5958 . . . . . . . 8 (𝑎 = 𝑐 → ( +no “ (𝑎 × {𝑏})) = ( +no “ (𝑐 × {𝑏})))
98sseq1d 3948 . . . . . . 7 (𝑎 = 𝑐 → (( +no “ (𝑎 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥))
106, 9anbi12d 630 . . . . . 6 (𝑎 = 𝑐 → ((( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)))
1110rabbidv 3404 . . . . 5 (𝑎 = 𝑐 → {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)})
1211inteqd 4881 . . . 4 (𝑎 = 𝑐 {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)})
131, 12eqeq12d 2754 . . 3 (𝑎 = 𝑐 → ((𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} ↔ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}))
142, 13anbi12d 630 . 2 (𝑎 = 𝑐 → (((𝑎 +no 𝑏) ∈ On ∧ (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)}) ↔ ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)})))
15 oveq2 7263 . . . 4 (𝑏 = 𝑑 → (𝑐 +no 𝑏) = (𝑐 +no 𝑑))
1615eleq1d 2823 . . 3 (𝑏 = 𝑑 → ((𝑐 +no 𝑏) ∈ On ↔ (𝑐 +no 𝑑) ∈ On))
17 xpeq2 5601 . . . . . . . . 9 (𝑏 = 𝑑 → ({𝑐} × 𝑏) = ({𝑐} × 𝑑))
1817imaeq2d 5958 . . . . . . . 8 (𝑏 = 𝑑 → ( +no “ ({𝑐} × 𝑏)) = ( +no “ ({𝑐} × 𝑑)))
1918sseq1d 3948 . . . . . . 7 (𝑏 = 𝑑 → (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥))
20 sneq 4568 . . . . . . . . . 10 (𝑏 = 𝑑 → {𝑏} = {𝑑})
2120xpeq2d 5610 . . . . . . . . 9 (𝑏 = 𝑑 → (𝑐 × {𝑏}) = (𝑐 × {𝑑}))
2221imaeq2d 5958 . . . . . . . 8 (𝑏 = 𝑑 → ( +no “ (𝑐 × {𝑏})) = ( +no “ (𝑐 × {𝑑})))
2322sseq1d 3948 . . . . . . 7 (𝑏 = 𝑑 → (( +no “ (𝑐 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥))
2419, 23anbi12d 630 . . . . . 6 (𝑏 = 𝑑 → ((( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)))
2524rabbidv 3404 . . . . 5 (𝑏 = 𝑑 → {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)})
2625inteqd 4881 . . . 4 (𝑏 = 𝑑 {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)})
2715, 26eqeq12d 2754 . . 3 (𝑏 = 𝑑 → ((𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)} ↔ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}))
2816, 27anbi12d 630 . 2 (𝑏 = 𝑑 → (((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) ↔ ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)})))
29 oveq1 7262 . . . 4 (𝑎 = 𝑐 → (𝑎 +no 𝑑) = (𝑐 +no 𝑑))
3029eleq1d 2823 . . 3 (𝑎 = 𝑐 → ((𝑎 +no 𝑑) ∈ On ↔ (𝑐 +no 𝑑) ∈ On))
313xpeq1d 5609 . . . . . . . . 9 (𝑎 = 𝑐 → ({𝑎} × 𝑑) = ({𝑐} × 𝑑))
3231imaeq2d 5958 . . . . . . . 8 (𝑎 = 𝑐 → ( +no “ ({𝑎} × 𝑑)) = ( +no “ ({𝑐} × 𝑑)))
3332sseq1d 3948 . . . . . . 7 (𝑎 = 𝑐 → (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ↔ ( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥))
34 xpeq1 5594 . . . . . . . . 9 (𝑎 = 𝑐 → (𝑎 × {𝑑}) = (𝑐 × {𝑑}))
3534imaeq2d 5958 . . . . . . . 8 (𝑎 = 𝑐 → ( +no “ (𝑎 × {𝑑})) = ( +no “ (𝑐 × {𝑑})))
3635sseq1d 3948 . . . . . . 7 (𝑎 = 𝑐 → (( +no “ (𝑎 × {𝑑})) ⊆ 𝑥 ↔ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥))
3733, 36anbi12d 630 . . . . . 6 (𝑎 = 𝑐 → ((( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥) ↔ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)))
3837rabbidv 3404 . . . . 5 (𝑎 = 𝑐 → {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)})
3938inteqd 4881 . . . 4 (𝑎 = 𝑐 {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)})
4029, 39eqeq12d 2754 . . 3 (𝑎 = 𝑐 → ((𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)} ↔ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}))
4130, 40anbi12d 630 . 2 (𝑎 = 𝑐 → (((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)}) ↔ ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)})))
42 oveq1 7262 . . . 4 (𝑎 = 𝐴 → (𝑎 +no 𝑏) = (𝐴 +no 𝑏))
4342eleq1d 2823 . . 3 (𝑎 = 𝐴 → ((𝑎 +no 𝑏) ∈ On ↔ (𝐴 +no 𝑏) ∈ On))
44 sneq 4568 . . . . . . . . . 10 (𝑎 = 𝐴 → {𝑎} = {𝐴})
4544xpeq1d 5609 . . . . . . . . 9 (𝑎 = 𝐴 → ({𝑎} × 𝑏) = ({𝐴} × 𝑏))
4645imaeq2d 5958 . . . . . . . 8 (𝑎 = 𝐴 → ( +no “ ({𝑎} × 𝑏)) = ( +no “ ({𝐴} × 𝑏)))
4746sseq1d 3948 . . . . . . 7 (𝑎 = 𝐴 → (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥))
48 xpeq1 5594 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑎 × {𝑏}) = (𝐴 × {𝑏}))
4948imaeq2d 5958 . . . . . . . 8 (𝑎 = 𝐴 → ( +no “ (𝑎 × {𝑏})) = ( +no “ (𝐴 × {𝑏})))
5049sseq1d 3948 . . . . . . 7 (𝑎 = 𝐴 → (( +no “ (𝑎 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥))
5147, 50anbi12d 630 . . . . . 6 (𝑎 = 𝐴 → ((( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)))
5251rabbidv 3404 . . . . 5 (𝑎 = 𝐴 → {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)})
5352inteqd 4881 . . . 4 (𝑎 = 𝐴 {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)})
5442, 53eqeq12d 2754 . . 3 (𝑎 = 𝐴 → ((𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} ↔ (𝐴 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)}))
5543, 54anbi12d 630 . 2 (𝑎 = 𝐴 → (((𝑎 +no 𝑏) ∈ On ∧ (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)}) ↔ ((𝐴 +no 𝑏) ∈ On ∧ (𝐴 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)})))
56 oveq2 7263 . . . 4 (𝑏 = 𝐵 → (𝐴 +no 𝑏) = (𝐴 +no 𝐵))
5756eleq1d 2823 . . 3 (𝑏 = 𝐵 → ((𝐴 +no 𝑏) ∈ On ↔ (𝐴 +no 𝐵) ∈ On))
58 xpeq2 5601 . . . . . . . . 9 (𝑏 = 𝐵 → ({𝐴} × 𝑏) = ({𝐴} × 𝐵))
5958imaeq2d 5958 . . . . . . . 8 (𝑏 = 𝐵 → ( +no “ ({𝐴} × 𝑏)) = ( +no “ ({𝐴} × 𝐵)))
6059sseq1d 3948 . . . . . . 7 (𝑏 = 𝐵 → (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥))
61 sneq 4568 . . . . . . . . . 10 (𝑏 = 𝐵 → {𝑏} = {𝐵})
6261xpeq2d 5610 . . . . . . . . 9 (𝑏 = 𝐵 → (𝐴 × {𝑏}) = (𝐴 × {𝐵}))
6362imaeq2d 5958 . . . . . . . 8 (𝑏 = 𝐵 → ( +no “ (𝐴 × {𝑏})) = ( +no “ (𝐴 × {𝐵})))
6463sseq1d 3948 . . . . . . 7 (𝑏 = 𝐵 → (( +no “ (𝐴 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥))
6560, 64anbi12d 630 . . . . . 6 (𝑏 = 𝐵 → ((( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)))
6665rabbidv 3404 . . . . 5 (𝑏 = 𝐵 → {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)})
6766inteqd 4881 . . . 4 (𝑏 = 𝐵 {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)})
6856, 67eqeq12d 2754 . . 3 (𝑏 = 𝐵 → ((𝐴 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)} ↔ (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)}))
6957, 68anbi12d 630 . 2 (𝑏 = 𝐵 → (((𝐴 +no 𝑏) ∈ On ∧ (𝐴 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)}) ↔ ((𝐴 +no 𝐵) ∈ On ∧ (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)})))
70 simpl 482 . . . . . 6 (((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) → (𝑐 +no 𝑏) ∈ On)
7170ralimi 3086 . . . . 5 (∀𝑐𝑎 ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) → ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On)
72713ad2ant2 1132 . . . 4 ((∀𝑐𝑎𝑑𝑏 ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}) ∧ ∀𝑐𝑎 ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) ∧ ∀𝑑𝑏 ((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)})) → ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On)
73 simpl 482 . . . . . 6 (((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)}) → (𝑎 +no 𝑑) ∈ On)
7473ralimi 3086 . . . . 5 (∀𝑑𝑏 ((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)}) → ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)
75743ad2ant3 1133 . . . 4 ((∀𝑐𝑎𝑑𝑏 ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}) ∧ ∀𝑐𝑎 ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) ∧ ∀𝑑𝑏 ((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)})) → ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)
7672, 75jca 511 . . 3 ((∀𝑐𝑎𝑑𝑏 ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}) ∧ ∀𝑐𝑎 ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) ∧ ∀𝑑𝑏 ((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)})) → (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On))
77 df-nadd 33752 . . . . . . . . 9 +no = frecs({⟨𝑝, 𝑞⟩ ∣ (𝑝 ∈ (On × On) ∧ 𝑞 ∈ (On × On) ∧ (((1st𝑝) E (1st𝑞) ∨ (1st𝑝) = (1st𝑞)) ∧ ((2nd𝑝) E (2nd𝑞) ∨ (2nd𝑝) = (2nd𝑞)) ∧ 𝑝𝑞))}, (On × On), (𝑡 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)}))
7877on2recsov 33754 . . . . . . . 8 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 +no 𝑏) = (⟨𝑎, 𝑏⟩(𝑡 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)})( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}))))
7978adantr 480 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 +no 𝑏) = (⟨𝑎, 𝑏⟩(𝑡 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)})( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}))))
80 opex 5373 . . . . . . . 8 𝑎, 𝑏⟩ ∈ V
81 naddfn 33757 . . . . . . . . . 10 +no Fn (On × On)
82 fnfun 6517 . . . . . . . . . 10 ( +no Fn (On × On) → Fun +no )
8381, 82ax-mp 5 . . . . . . . . 9 Fun +no
84 vex 3426 . . . . . . . . . . . 12 𝑎 ∈ V
8584sucex 7633 . . . . . . . . . . 11 suc 𝑎 ∈ V
86 vex 3426 . . . . . . . . . . . 12 𝑏 ∈ V
8786sucex 7633 . . . . . . . . . . 11 suc 𝑏 ∈ V
8885, 87xpex 7581 . . . . . . . . . 10 (suc 𝑎 × suc 𝑏) ∈ V
8988difexi 5247 . . . . . . . . 9 ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) ∈ V
90 resfunexg 7073 . . . . . . . . 9 ((Fun +no ∧ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) ∈ V) → ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) ∈ V)
9183, 89, 90mp2an 688 . . . . . . . 8 ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) ∈ V
92 eloni 6261 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ On → Ord 𝑏)
9392ad2antlr 723 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → Ord 𝑏)
94 ordirr 6269 . . . . . . . . . . . . . . . . . 18 (Ord 𝑏 → ¬ 𝑏𝑏)
9593, 94syl 17 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ¬ 𝑏𝑏)
9695olcd 870 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (¬ 𝑎 ∈ {𝑎} ∨ ¬ 𝑏𝑏))
97 ianor 978 . . . . . . . . . . . . . . . . 17 (¬ (𝑎 ∈ {𝑎} ∧ 𝑏𝑏) ↔ (¬ 𝑎 ∈ {𝑎} ∨ ¬ 𝑏𝑏))
98 opelxp 5616 . . . . . . . . . . . . . . . . 17 (⟨𝑎, 𝑏⟩ ∈ ({𝑎} × 𝑏) ↔ (𝑎 ∈ {𝑎} ∧ 𝑏𝑏))
9997, 98xchnxbir 332 . . . . . . . . . . . . . . . 16 (¬ ⟨𝑎, 𝑏⟩ ∈ ({𝑎} × 𝑏) ↔ (¬ 𝑎 ∈ {𝑎} ∨ ¬ 𝑏𝑏))
10096, 99sylibr 233 . . . . . . . . . . . . . . 15 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ¬ ⟨𝑎, 𝑏⟩ ∈ ({𝑎} × 𝑏))
10184sucid 6330 . . . . . . . . . . . . . . . . . 18 𝑎 ∈ suc 𝑎
102 snssi 4738 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ suc 𝑎 → {𝑎} ⊆ suc 𝑎)
103101, 102ax-mp 5 . . . . . . . . . . . . . . . . 17 {𝑎} ⊆ suc 𝑎
104 sssucid 6328 . . . . . . . . . . . . . . . . 17 𝑏 ⊆ suc 𝑏
105 xpss12 5595 . . . . . . . . . . . . . . . . 17 (({𝑎} ⊆ suc 𝑎𝑏 ⊆ suc 𝑏) → ({𝑎} × 𝑏) ⊆ (suc 𝑎 × suc 𝑏))
106103, 104, 105mp2an 688 . . . . . . . . . . . . . . . 16 ({𝑎} × 𝑏) ⊆ (suc 𝑎 × suc 𝑏)
107 ssdifsn 4718 . . . . . . . . . . . . . . . 16 (({𝑎} × 𝑏) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) ↔ (({𝑎} × 𝑏) ⊆ (suc 𝑎 × suc 𝑏) ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ ({𝑎} × 𝑏)))
108106, 107mpbiran 705 . . . . . . . . . . . . . . 15 (({𝑎} × 𝑏) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) ↔ ¬ ⟨𝑎, 𝑏⟩ ∈ ({𝑎} × 𝑏))
109100, 108sylibr 233 . . . . . . . . . . . . . 14 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ({𝑎} × 𝑏) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}))
110 resima2 5915 . . . . . . . . . . . . . 14 (({𝑎} × 𝑏) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) → (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) = ( +no “ ({𝑎} × 𝑏)))
111109, 110syl 17 . . . . . . . . . . . . 13 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) = ( +no “ ({𝑎} × 𝑏)))
112111sseq1d 3948 . . . . . . . . . . . 12 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥))
113 eloni 6261 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ On → Ord 𝑎)
114113ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → Ord 𝑎)
115 ordirr 6269 . . . . . . . . . . . . . . . . . 18 (Ord 𝑎 → ¬ 𝑎𝑎)
116114, 115syl 17 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ¬ 𝑎𝑎)
117116orcd 869 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (¬ 𝑎𝑎 ∨ ¬ 𝑏 ∈ {𝑏}))
118 ianor 978 . . . . . . . . . . . . . . . . 17 (¬ (𝑎𝑎𝑏 ∈ {𝑏}) ↔ (¬ 𝑎𝑎 ∨ ¬ 𝑏 ∈ {𝑏}))
119 opelxp 5616 . . . . . . . . . . . . . . . . 17 (⟨𝑎, 𝑏⟩ ∈ (𝑎 × {𝑏}) ↔ (𝑎𝑎𝑏 ∈ {𝑏}))
120118, 119xchnxbir 332 . . . . . . . . . . . . . . . 16 (¬ ⟨𝑎, 𝑏⟩ ∈ (𝑎 × {𝑏}) ↔ (¬ 𝑎𝑎 ∨ ¬ 𝑏 ∈ {𝑏}))
121117, 120sylibr 233 . . . . . . . . . . . . . . 15 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ¬ ⟨𝑎, 𝑏⟩ ∈ (𝑎 × {𝑏}))
122 sssucid 6328 . . . . . . . . . . . . . . . . 17 𝑎 ⊆ suc 𝑎
12386sucid 6330 . . . . . . . . . . . . . . . . . 18 𝑏 ∈ suc 𝑏
124 snssi 4738 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ suc 𝑏 → {𝑏} ⊆ suc 𝑏)
125123, 124ax-mp 5 . . . . . . . . . . . . . . . . 17 {𝑏} ⊆ suc 𝑏
126 xpss12 5595 . . . . . . . . . . . . . . . . 17 ((𝑎 ⊆ suc 𝑎 ∧ {𝑏} ⊆ suc 𝑏) → (𝑎 × {𝑏}) ⊆ (suc 𝑎 × suc 𝑏))
127122, 125, 126mp2an 688 . . . . . . . . . . . . . . . 16 (𝑎 × {𝑏}) ⊆ (suc 𝑎 × suc 𝑏)
128 ssdifsn 4718 . . . . . . . . . . . . . . . 16 ((𝑎 × {𝑏}) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) ↔ ((𝑎 × {𝑏}) ⊆ (suc 𝑎 × suc 𝑏) ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ (𝑎 × {𝑏})))
129127, 128mpbiran 705 . . . . . . . . . . . . . . 15 ((𝑎 × {𝑏}) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) ↔ ¬ ⟨𝑎, 𝑏⟩ ∈ (𝑎 × {𝑏}))
130121, 129sylibr 233 . . . . . . . . . . . . . 14 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 × {𝑏}) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}))
131 resima2 5915 . . . . . . . . . . . . . 14 ((𝑎 × {𝑏}) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) → (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) = ( +no “ (𝑎 × {𝑏})))
132130, 131syl 17 . . . . . . . . . . . . 13 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) = ( +no “ (𝑎 × {𝑏})))
133132sseq1d 3948 . . . . . . . . . . . 12 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥))
134112, 133anbi12d 630 . . . . . . . . . . 11 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)))
135134rabbidv 3404 . . . . . . . . . 10 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)})
136135inteqd 4881 . . . . . . . . 9 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)})
137 simprr 769 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)
138 oveq1 7262 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑎 → (𝑡 +no 𝑑) = (𝑎 +no 𝑑))
139138eleq1d 2823 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑎 → ((𝑡 +no 𝑑) ∈ On ↔ (𝑎 +no 𝑑) ∈ On))
140139ralbidv 3120 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑎 → (∀𝑑𝑏 (𝑡 +no 𝑑) ∈ On ↔ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On))
14184, 140ralsn 4614 . . . . . . . . . . . . . . . . 17 (∀𝑡 ∈ {𝑎}∀𝑑𝑏 (𝑡 +no 𝑑) ∈ On ↔ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)
142137, 141sylibr 233 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ∀𝑡 ∈ {𝑎}∀𝑑𝑏 (𝑡 +no 𝑑) ∈ On)
143 snssi 4738 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ On → {𝑎} ⊆ On)
144 onss 7611 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ On → 𝑏 ⊆ On)
145 xpss12 5595 . . . . . . . . . . . . . . . . . . . 20 (({𝑎} ⊆ On ∧ 𝑏 ⊆ On) → ({𝑎} × 𝑏) ⊆ (On × On))
146143, 144, 145syl2an 595 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ({𝑎} × 𝑏) ⊆ (On × On))
147146adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ({𝑎} × 𝑏) ⊆ (On × On))
14881fndmi 6521 . . . . . . . . . . . . . . . . . 18 dom +no = (On × On)
149147, 148sseqtrrdi 3968 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ({𝑎} × 𝑏) ⊆ dom +no )
150 funimassov 7427 . . . . . . . . . . . . . . . . 17 ((Fun +no ∧ ({𝑎} × 𝑏) ⊆ dom +no ) → (( +no “ ({𝑎} × 𝑏)) ⊆ On ↔ ∀𝑡 ∈ {𝑎}∀𝑑𝑏 (𝑡 +no 𝑑) ∈ On))
15183, 149, 150sylancr 586 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no “ ({𝑎} × 𝑏)) ⊆ On ↔ ∀𝑡 ∈ {𝑎}∀𝑑𝑏 (𝑡 +no 𝑑) ∈ On))
152142, 151mpbird 256 . . . . . . . . . . . . . . 15 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ( +no “ ({𝑎} × 𝑏)) ⊆ On)
153 simprl 767 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On)
154 oveq2 7263 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑏 → (𝑐 +no 𝑡) = (𝑐 +no 𝑏))
155154eleq1d 2823 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑏 → ((𝑐 +no 𝑡) ∈ On ↔ (𝑐 +no 𝑏) ∈ On))
15686, 155ralsn 4614 . . . . . . . . . . . . . . . . . 18 (∀𝑡 ∈ {𝑏} (𝑐 +no 𝑡) ∈ On ↔ (𝑐 +no 𝑏) ∈ On)
157156ralbii 3090 . . . . . . . . . . . . . . . . 17 (∀𝑐𝑎𝑡 ∈ {𝑏} (𝑐 +no 𝑡) ∈ On ↔ ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On)
158153, 157sylibr 233 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ∀𝑐𝑎𝑡 ∈ {𝑏} (𝑐 +no 𝑡) ∈ On)
159 onss 7611 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ On → 𝑎 ⊆ On)
160 snssi 4738 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ On → {𝑏} ⊆ On)
161 xpss12 5595 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ⊆ On ∧ {𝑏} ⊆ On) → (𝑎 × {𝑏}) ⊆ (On × On))
162159, 160, 161syl2an 595 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 × {𝑏}) ⊆ (On × On))
163162adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 × {𝑏}) ⊆ (On × On))
164163, 148sseqtrrdi 3968 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 × {𝑏}) ⊆ dom +no )
165 funimassov 7427 . . . . . . . . . . . . . . . . 17 ((Fun +no ∧ (𝑎 × {𝑏}) ⊆ dom +no ) → (( +no “ (𝑎 × {𝑏})) ⊆ On ↔ ∀𝑐𝑎𝑡 ∈ {𝑏} (𝑐 +no 𝑡) ∈ On))
16683, 164, 165sylancr 586 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no “ (𝑎 × {𝑏})) ⊆ On ↔ ∀𝑐𝑎𝑡 ∈ {𝑏} (𝑐 +no 𝑡) ∈ On))
167158, 166mpbird 256 . . . . . . . . . . . . . . 15 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ( +no “ (𝑎 × {𝑏})) ⊆ On)
168152, 167unssd 4116 . . . . . . . . . . . . . 14 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ⊆ On)
169 ssorduni 7606 . . . . . . . . . . . . . 14 ((( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ⊆ On → Ord (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))
170168, 169syl 17 . . . . . . . . . . . . 13 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → Ord (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))
171 snex 5349 . . . . . . . . . . . . . . . . . 18 {𝑎} ∈ V
172171, 86xpex 7581 . . . . . . . . . . . . . . . . 17 ({𝑎} × 𝑏) ∈ V
173 funimaexg 6504 . . . . . . . . . . . . . . . . 17 ((Fun +no ∧ ({𝑎} × 𝑏) ∈ V) → ( +no “ ({𝑎} × 𝑏)) ∈ V)
17483, 172, 173mp2an 688 . . . . . . . . . . . . . . . 16 ( +no “ ({𝑎} × 𝑏)) ∈ V
175 snex 5349 . . . . . . . . . . . . . . . . . 18 {𝑏} ∈ V
17684, 175xpex 7581 . . . . . . . . . . . . . . . . 17 (𝑎 × {𝑏}) ∈ V
177 funimaexg 6504 . . . . . . . . . . . . . . . . 17 ((Fun +no ∧ (𝑎 × {𝑏}) ∈ V) → ( +no “ (𝑎 × {𝑏})) ∈ V)
17883, 176, 177mp2an 688 . . . . . . . . . . . . . . . 16 ( +no “ (𝑎 × {𝑏})) ∈ V
179174, 178unex 7574 . . . . . . . . . . . . . . 15 (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ V
180179uniex 7572 . . . . . . . . . . . . . 14 (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ V
181180elon 6260 . . . . . . . . . . . . 13 ( (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On ↔ Ord (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))
182170, 181sylibr 233 . . . . . . . . . . . 12 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On)
183 sucelon 7639 . . . . . . . . . . . 12 ( (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On ↔ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On)
184182, 183sylib 217 . . . . . . . . . . 11 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On)
185 onsucuni 7650 . . . . . . . . . . . . 13 ((( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ⊆ On → (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))
186168, 185syl 17 . . . . . . . . . . . 12 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))
187186unssad 4117 . . . . . . . . . . 11 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ( +no “ ({𝑎} × 𝑏)) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))
188186unssbd 4118 . . . . . . . . . . 11 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ( +no “ (𝑎 × {𝑏})) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))
189 sseq2 3943 . . . . . . . . . . . . 13 (𝑥 = suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) → (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝑎} × 𝑏)) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏})))))
190 sseq2 3943 . . . . . . . . . . . . 13 (𝑥 = suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) → (( +no “ (𝑎 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝑎 × {𝑏})) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏})))))
191189, 190anbi12d 630 . . . . . . . . . . . 12 (𝑥 = suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) → ((( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝑎} × 𝑏)) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∧ ( +no “ (𝑎 × {𝑏})) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))))
192191rspcev 3552 . . . . . . . . . . 11 ((suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On ∧ (( +no “ ({𝑎} × 𝑏)) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∧ ( +no “ (𝑎 × {𝑏})) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))) → ∃𝑥 ∈ On (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥))
193184, 187, 188, 192syl12anc 833 . . . . . . . . . 10 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ∃𝑥 ∈ On (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥))
194 onintrab2 7624 . . . . . . . . . 10 (∃𝑥 ∈ On (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} ∈ On)
195193, 194sylib 217 . . . . . . . . 9 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} ∈ On)
196136, 195eqeltrd 2839 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)} ∈ On)
19784, 86op1std 7814 . . . . . . . . . . . . . . . 16 (𝑡 = ⟨𝑎, 𝑏⟩ → (1st𝑡) = 𝑎)
198197sneqd 4570 . . . . . . . . . . . . . . 15 (𝑡 = ⟨𝑎, 𝑏⟩ → {(1st𝑡)} = {𝑎})
19984, 86op2ndd 7815 . . . . . . . . . . . . . . 15 (𝑡 = ⟨𝑎, 𝑏⟩ → (2nd𝑡) = 𝑏)
200198, 199xpeq12d 5611 . . . . . . . . . . . . . 14 (𝑡 = ⟨𝑎, 𝑏⟩ → ({(1st𝑡)} × (2nd𝑡)) = ({𝑎} × 𝑏))
201200imaeq2d 5958 . . . . . . . . . . . . 13 (𝑡 = ⟨𝑎, 𝑏⟩ → (𝑓 “ ({(1st𝑡)} × (2nd𝑡))) = (𝑓 “ ({𝑎} × 𝑏)))
202201sseq1d 3948 . . . . . . . . . . . 12 (𝑡 = ⟨𝑎, 𝑏⟩ → ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ↔ (𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥))
203199sneqd 4570 . . . . . . . . . . . . . . 15 (𝑡 = ⟨𝑎, 𝑏⟩ → {(2nd𝑡)} = {𝑏})
204197, 203xpeq12d 5611 . . . . . . . . . . . . . 14 (𝑡 = ⟨𝑎, 𝑏⟩ → ((1st𝑡) × {(2nd𝑡)}) = (𝑎 × {𝑏}))
205204imaeq2d 5958 . . . . . . . . . . . . 13 (𝑡 = ⟨𝑎, 𝑏⟩ → (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) = (𝑓 “ (𝑎 × {𝑏})))
206205sseq1d 3948 . . . . . . . . . . . 12 (𝑡 = ⟨𝑎, 𝑏⟩ → ((𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥 ↔ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥))
207202, 206anbi12d 630 . . . . . . . . . . 11 (𝑡 = ⟨𝑎, 𝑏⟩ → (((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥) ↔ ((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥)))
208207rabbidv 3404 . . . . . . . . . 10 (𝑡 = ⟨𝑎, 𝑏⟩ → {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ ((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥)})
209208inteqd 4881 . . . . . . . . 9 (𝑡 = ⟨𝑎, 𝑏⟩ → {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ ((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥)})
210 imaeq1 5953 . . . . . . . . . . . . 13 (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) → (𝑓 “ ({𝑎} × 𝑏)) = (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)))
211210sseq1d 3948 . . . . . . . . . . . 12 (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) → ((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ↔ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥))
212 imaeq1 5953 . . . . . . . . . . . . 13 (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) → (𝑓 “ (𝑎 × {𝑏})) = (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})))
213212sseq1d 3948 . . . . . . . . . . . 12 (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) → ((𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥 ↔ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥))
214211, 213anbi12d 630 . . . . . . . . . . 11 (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) → (((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)))
215214rabbidv 3404 . . . . . . . . . 10 (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) → {𝑥 ∈ On ∣ ((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)})
216215inteqd 4881 . . . . . . . . 9 (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) → {𝑥 ∈ On ∣ ((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)})
217 eqid 2738 . . . . . . . . 9 (𝑡 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)}) = (𝑡 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)})
218209, 216, 217ovmpog 7410 . . . . . . . 8 ((⟨𝑎, 𝑏⟩ ∈ V ∧ ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) ∈ V ∧ {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)} ∈ On) → (⟨𝑎, 𝑏⟩(𝑡 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)})( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}))) = {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)})
21980, 91, 196, 218mp3an12i 1463 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (⟨𝑎, 𝑏⟩(𝑡 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)})( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}))) = {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)})
22079, 219, 1363eqtrd 2782 . . . . . 6 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)})
221220, 195eqeltrd 2839 . . . . 5 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 +no 𝑏) ∈ On)
222221, 220jca 511 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ((𝑎 +no 𝑏) ∈ On ∧ (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)}))
223222ex 412 . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On) → ((𝑎 +no 𝑏) ∈ On ∧ (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)})))
22476, 223syl5 34 . 2 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐𝑎𝑑𝑏 ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}) ∧ ∀𝑐𝑎 ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) ∧ ∀𝑑𝑏 ((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)})) → ((𝑎 +no 𝑏) ∈ On ∧ (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)})))
22514, 28, 41, 55, 69, 224on2ind 33755 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +no 𝐵) ∈ On ∧ (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  cun 3881  wss 3883  {csn 4558  cop 4564   cuni 4836   cint 4876   × cxp 5578  dom cdm 5580  cres 5582  cima 5583  Ord word 6250  Oncon0 6251  suc csuc 6253  Fun wfun 6412   Fn wfn 6413  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803   +no cnadd 33751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-frecs 8068  df-nadd 33752
This theorem is referenced by:  naddcl  33759  naddov  33760
  Copyright terms: Public domain W3C validator