MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddcllem Structured version   Visualization version   GIF version

Theorem naddcllem 8681
Description: Lemma for ordinal addition closure. (Contributed by Scott Fenton, 26-Aug-2024.)
Assertion
Ref Expression
naddcllem ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +no 𝐵) ∈ On ∧ (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem naddcllem
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑓 𝑡 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7419 . . . 4 (𝑎 = 𝑐 → (𝑎 +no 𝑏) = (𝑐 +no 𝑏))
21eleq1d 2817 . . 3 (𝑎 = 𝑐 → ((𝑎 +no 𝑏) ∈ On ↔ (𝑐 +no 𝑏) ∈ On))
3 sneq 4638 . . . . . . . . . 10 (𝑎 = 𝑐 → {𝑎} = {𝑐})
43xpeq1d 5705 . . . . . . . . 9 (𝑎 = 𝑐 → ({𝑎} × 𝑏) = ({𝑐} × 𝑏))
54imaeq2d 6059 . . . . . . . 8 (𝑎 = 𝑐 → ( +no “ ({𝑎} × 𝑏)) = ( +no “ ({𝑐} × 𝑏)))
65sseq1d 4013 . . . . . . 7 (𝑎 = 𝑐 → (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥))
7 xpeq1 5690 . . . . . . . . 9 (𝑎 = 𝑐 → (𝑎 × {𝑏}) = (𝑐 × {𝑏}))
87imaeq2d 6059 . . . . . . . 8 (𝑎 = 𝑐 → ( +no “ (𝑎 × {𝑏})) = ( +no “ (𝑐 × {𝑏})))
98sseq1d 4013 . . . . . . 7 (𝑎 = 𝑐 → (( +no “ (𝑎 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥))
106, 9anbi12d 630 . . . . . 6 (𝑎 = 𝑐 → ((( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)))
1110rabbidv 3439 . . . . 5 (𝑎 = 𝑐 → {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)})
1211inteqd 4955 . . . 4 (𝑎 = 𝑐 {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)})
131, 12eqeq12d 2747 . . 3 (𝑎 = 𝑐 → ((𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} ↔ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}))
142, 13anbi12d 630 . 2 (𝑎 = 𝑐 → (((𝑎 +no 𝑏) ∈ On ∧ (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)}) ↔ ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)})))
15 oveq2 7420 . . . 4 (𝑏 = 𝑑 → (𝑐 +no 𝑏) = (𝑐 +no 𝑑))
1615eleq1d 2817 . . 3 (𝑏 = 𝑑 → ((𝑐 +no 𝑏) ∈ On ↔ (𝑐 +no 𝑑) ∈ On))
17 xpeq2 5697 . . . . . . . . 9 (𝑏 = 𝑑 → ({𝑐} × 𝑏) = ({𝑐} × 𝑑))
1817imaeq2d 6059 . . . . . . . 8 (𝑏 = 𝑑 → ( +no “ ({𝑐} × 𝑏)) = ( +no “ ({𝑐} × 𝑑)))
1918sseq1d 4013 . . . . . . 7 (𝑏 = 𝑑 → (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥))
20 sneq 4638 . . . . . . . . . 10 (𝑏 = 𝑑 → {𝑏} = {𝑑})
2120xpeq2d 5706 . . . . . . . . 9 (𝑏 = 𝑑 → (𝑐 × {𝑏}) = (𝑐 × {𝑑}))
2221imaeq2d 6059 . . . . . . . 8 (𝑏 = 𝑑 → ( +no “ (𝑐 × {𝑏})) = ( +no “ (𝑐 × {𝑑})))
2322sseq1d 4013 . . . . . . 7 (𝑏 = 𝑑 → (( +no “ (𝑐 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥))
2419, 23anbi12d 630 . . . . . 6 (𝑏 = 𝑑 → ((( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)))
2524rabbidv 3439 . . . . 5 (𝑏 = 𝑑 → {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)})
2625inteqd 4955 . . . 4 (𝑏 = 𝑑 {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)})
2715, 26eqeq12d 2747 . . 3 (𝑏 = 𝑑 → ((𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)} ↔ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}))
2816, 27anbi12d 630 . 2 (𝑏 = 𝑑 → (((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) ↔ ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)})))
29 oveq1 7419 . . . 4 (𝑎 = 𝑐 → (𝑎 +no 𝑑) = (𝑐 +no 𝑑))
3029eleq1d 2817 . . 3 (𝑎 = 𝑐 → ((𝑎 +no 𝑑) ∈ On ↔ (𝑐 +no 𝑑) ∈ On))
313xpeq1d 5705 . . . . . . . . 9 (𝑎 = 𝑐 → ({𝑎} × 𝑑) = ({𝑐} × 𝑑))
3231imaeq2d 6059 . . . . . . . 8 (𝑎 = 𝑐 → ( +no “ ({𝑎} × 𝑑)) = ( +no “ ({𝑐} × 𝑑)))
3332sseq1d 4013 . . . . . . 7 (𝑎 = 𝑐 → (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ↔ ( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥))
34 xpeq1 5690 . . . . . . . . 9 (𝑎 = 𝑐 → (𝑎 × {𝑑}) = (𝑐 × {𝑑}))
3534imaeq2d 6059 . . . . . . . 8 (𝑎 = 𝑐 → ( +no “ (𝑎 × {𝑑})) = ( +no “ (𝑐 × {𝑑})))
3635sseq1d 4013 . . . . . . 7 (𝑎 = 𝑐 → (( +no “ (𝑎 × {𝑑})) ⊆ 𝑥 ↔ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥))
3733, 36anbi12d 630 . . . . . 6 (𝑎 = 𝑐 → ((( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥) ↔ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)))
3837rabbidv 3439 . . . . 5 (𝑎 = 𝑐 → {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)})
3938inteqd 4955 . . . 4 (𝑎 = 𝑐 {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)})
4029, 39eqeq12d 2747 . . 3 (𝑎 = 𝑐 → ((𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)} ↔ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}))
4130, 40anbi12d 630 . 2 (𝑎 = 𝑐 → (((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)}) ↔ ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)})))
42 oveq1 7419 . . . 4 (𝑎 = 𝐴 → (𝑎 +no 𝑏) = (𝐴 +no 𝑏))
4342eleq1d 2817 . . 3 (𝑎 = 𝐴 → ((𝑎 +no 𝑏) ∈ On ↔ (𝐴 +no 𝑏) ∈ On))
44 sneq 4638 . . . . . . . . . 10 (𝑎 = 𝐴 → {𝑎} = {𝐴})
4544xpeq1d 5705 . . . . . . . . 9 (𝑎 = 𝐴 → ({𝑎} × 𝑏) = ({𝐴} × 𝑏))
4645imaeq2d 6059 . . . . . . . 8 (𝑎 = 𝐴 → ( +no “ ({𝑎} × 𝑏)) = ( +no “ ({𝐴} × 𝑏)))
4746sseq1d 4013 . . . . . . 7 (𝑎 = 𝐴 → (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥))
48 xpeq1 5690 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑎 × {𝑏}) = (𝐴 × {𝑏}))
4948imaeq2d 6059 . . . . . . . 8 (𝑎 = 𝐴 → ( +no “ (𝑎 × {𝑏})) = ( +no “ (𝐴 × {𝑏})))
5049sseq1d 4013 . . . . . . 7 (𝑎 = 𝐴 → (( +no “ (𝑎 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥))
5147, 50anbi12d 630 . . . . . 6 (𝑎 = 𝐴 → ((( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)))
5251rabbidv 3439 . . . . 5 (𝑎 = 𝐴 → {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)})
5352inteqd 4955 . . . 4 (𝑎 = 𝐴 {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)})
5442, 53eqeq12d 2747 . . 3 (𝑎 = 𝐴 → ((𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} ↔ (𝐴 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)}))
5543, 54anbi12d 630 . 2 (𝑎 = 𝐴 → (((𝑎 +no 𝑏) ∈ On ∧ (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)}) ↔ ((𝐴 +no 𝑏) ∈ On ∧ (𝐴 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)})))
56 oveq2 7420 . . . 4 (𝑏 = 𝐵 → (𝐴 +no 𝑏) = (𝐴 +no 𝐵))
5756eleq1d 2817 . . 3 (𝑏 = 𝐵 → ((𝐴 +no 𝑏) ∈ On ↔ (𝐴 +no 𝐵) ∈ On))
58 xpeq2 5697 . . . . . . . . 9 (𝑏 = 𝐵 → ({𝐴} × 𝑏) = ({𝐴} × 𝐵))
5958imaeq2d 6059 . . . . . . . 8 (𝑏 = 𝐵 → ( +no “ ({𝐴} × 𝑏)) = ( +no “ ({𝐴} × 𝐵)))
6059sseq1d 4013 . . . . . . 7 (𝑏 = 𝐵 → (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥))
61 sneq 4638 . . . . . . . . . 10 (𝑏 = 𝐵 → {𝑏} = {𝐵})
6261xpeq2d 5706 . . . . . . . . 9 (𝑏 = 𝐵 → (𝐴 × {𝑏}) = (𝐴 × {𝐵}))
6362imaeq2d 6059 . . . . . . . 8 (𝑏 = 𝐵 → ( +no “ (𝐴 × {𝑏})) = ( +no “ (𝐴 × {𝐵})))
6463sseq1d 4013 . . . . . . 7 (𝑏 = 𝐵 → (( +no “ (𝐴 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥))
6560, 64anbi12d 630 . . . . . 6 (𝑏 = 𝐵 → ((( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)))
6665rabbidv 3439 . . . . 5 (𝑏 = 𝐵 → {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)})
6766inteqd 4955 . . . 4 (𝑏 = 𝐵 {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)})
6856, 67eqeq12d 2747 . . 3 (𝑏 = 𝐵 → ((𝐴 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)} ↔ (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)}))
6957, 68anbi12d 630 . 2 (𝑏 = 𝐵 → (((𝐴 +no 𝑏) ∈ On ∧ (𝐴 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)}) ↔ ((𝐴 +no 𝐵) ∈ On ∧ (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)})))
70 simpl 482 . . . . . 6 (((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) → (𝑐 +no 𝑏) ∈ On)
7170ralimi 3082 . . . . 5 (∀𝑐𝑎 ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) → ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On)
72713ad2ant2 1133 . . . 4 ((∀𝑐𝑎𝑑𝑏 ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}) ∧ ∀𝑐𝑎 ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) ∧ ∀𝑑𝑏 ((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)})) → ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On)
73 simpl 482 . . . . . 6 (((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)}) → (𝑎 +no 𝑑) ∈ On)
7473ralimi 3082 . . . . 5 (∀𝑑𝑏 ((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)}) → ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)
75743ad2ant3 1134 . . . 4 ((∀𝑐𝑎𝑑𝑏 ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}) ∧ ∀𝑐𝑎 ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) ∧ ∀𝑑𝑏 ((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)})) → ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)
7672, 75jca 511 . . 3 ((∀𝑐𝑎𝑑𝑏 ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}) ∧ ∀𝑐𝑎 ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) ∧ ∀𝑑𝑏 ((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)})) → (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On))
77 df-nadd 8671 . . . . . . . . 9 +no = frecs({⟨𝑝, 𝑞⟩ ∣ (𝑝 ∈ (On × On) ∧ 𝑞 ∈ (On × On) ∧ (((1st𝑝) E (1st𝑞) ∨ (1st𝑝) = (1st𝑞)) ∧ ((2nd𝑝) E (2nd𝑞) ∨ (2nd𝑝) = (2nd𝑞)) ∧ 𝑝𝑞))}, (On × On), (𝑡 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)}))
7877on2recsov 8673 . . . . . . . 8 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 +no 𝑏) = (⟨𝑎, 𝑏⟩(𝑡 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)})( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}))))
7978adantr 480 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 +no 𝑏) = (⟨𝑎, 𝑏⟩(𝑡 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)})( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}))))
80 opex 5464 . . . . . . . 8 𝑎, 𝑏⟩ ∈ V
81 naddfn 8680 . . . . . . . . . 10 +no Fn (On × On)
82 fnfun 6649 . . . . . . . . . 10 ( +no Fn (On × On) → Fun +no )
8381, 82ax-mp 5 . . . . . . . . 9 Fun +no
84 vex 3477 . . . . . . . . . . . 12 𝑎 ∈ V
8584sucex 7798 . . . . . . . . . . 11 suc 𝑎 ∈ V
86 vex 3477 . . . . . . . . . . . 12 𝑏 ∈ V
8786sucex 7798 . . . . . . . . . . 11 suc 𝑏 ∈ V
8885, 87xpex 7744 . . . . . . . . . 10 (suc 𝑎 × suc 𝑏) ∈ V
8988difexi 5328 . . . . . . . . 9 ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) ∈ V
90 resfunexg 7219 . . . . . . . . 9 ((Fun +no ∧ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) ∈ V) → ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) ∈ V)
9183, 89, 90mp2an 689 . . . . . . . 8 ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) ∈ V
92 eloni 6374 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ On → Ord 𝑏)
9392ad2antlr 724 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → Ord 𝑏)
94 ordirr 6382 . . . . . . . . . . . . . . . . . 18 (Ord 𝑏 → ¬ 𝑏𝑏)
9593, 94syl 17 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ¬ 𝑏𝑏)
9695olcd 871 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (¬ 𝑎 ∈ {𝑎} ∨ ¬ 𝑏𝑏))
97 ianor 979 . . . . . . . . . . . . . . . . 17 (¬ (𝑎 ∈ {𝑎} ∧ 𝑏𝑏) ↔ (¬ 𝑎 ∈ {𝑎} ∨ ¬ 𝑏𝑏))
98 opelxp 5712 . . . . . . . . . . . . . . . . 17 (⟨𝑎, 𝑏⟩ ∈ ({𝑎} × 𝑏) ↔ (𝑎 ∈ {𝑎} ∧ 𝑏𝑏))
9997, 98xchnxbir 333 . . . . . . . . . . . . . . . 16 (¬ ⟨𝑎, 𝑏⟩ ∈ ({𝑎} × 𝑏) ↔ (¬ 𝑎 ∈ {𝑎} ∨ ¬ 𝑏𝑏))
10096, 99sylibr 233 . . . . . . . . . . . . . . 15 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ¬ ⟨𝑎, 𝑏⟩ ∈ ({𝑎} × 𝑏))
10184sucid 6446 . . . . . . . . . . . . . . . . . 18 𝑎 ∈ suc 𝑎
102 snssi 4811 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ suc 𝑎 → {𝑎} ⊆ suc 𝑎)
103101, 102ax-mp 5 . . . . . . . . . . . . . . . . 17 {𝑎} ⊆ suc 𝑎
104 sssucid 6444 . . . . . . . . . . . . . . . . 17 𝑏 ⊆ suc 𝑏
105 xpss12 5691 . . . . . . . . . . . . . . . . 17 (({𝑎} ⊆ suc 𝑎𝑏 ⊆ suc 𝑏) → ({𝑎} × 𝑏) ⊆ (suc 𝑎 × suc 𝑏))
106103, 104, 105mp2an 689 . . . . . . . . . . . . . . . 16 ({𝑎} × 𝑏) ⊆ (suc 𝑎 × suc 𝑏)
107 ssdifsn 4791 . . . . . . . . . . . . . . . 16 (({𝑎} × 𝑏) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) ↔ (({𝑎} × 𝑏) ⊆ (suc 𝑎 × suc 𝑏) ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ ({𝑎} × 𝑏)))
108106, 107mpbiran 706 . . . . . . . . . . . . . . 15 (({𝑎} × 𝑏) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) ↔ ¬ ⟨𝑎, 𝑏⟩ ∈ ({𝑎} × 𝑏))
109100, 108sylibr 233 . . . . . . . . . . . . . 14 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ({𝑎} × 𝑏) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}))
110 resima2 6016 . . . . . . . . . . . . . 14 (({𝑎} × 𝑏) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) → (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) = ( +no “ ({𝑎} × 𝑏)))
111109, 110syl 17 . . . . . . . . . . . . 13 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) = ( +no “ ({𝑎} × 𝑏)))
112111sseq1d 4013 . . . . . . . . . . . 12 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥))
113 eloni 6374 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ On → Ord 𝑎)
114113ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → Ord 𝑎)
115 ordirr 6382 . . . . . . . . . . . . . . . . . 18 (Ord 𝑎 → ¬ 𝑎𝑎)
116114, 115syl 17 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ¬ 𝑎𝑎)
117116orcd 870 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (¬ 𝑎𝑎 ∨ ¬ 𝑏 ∈ {𝑏}))
118 ianor 979 . . . . . . . . . . . . . . . . 17 (¬ (𝑎𝑎𝑏 ∈ {𝑏}) ↔ (¬ 𝑎𝑎 ∨ ¬ 𝑏 ∈ {𝑏}))
119 opelxp 5712 . . . . . . . . . . . . . . . . 17 (⟨𝑎, 𝑏⟩ ∈ (𝑎 × {𝑏}) ↔ (𝑎𝑎𝑏 ∈ {𝑏}))
120118, 119xchnxbir 333 . . . . . . . . . . . . . . . 16 (¬ ⟨𝑎, 𝑏⟩ ∈ (𝑎 × {𝑏}) ↔ (¬ 𝑎𝑎 ∨ ¬ 𝑏 ∈ {𝑏}))
121117, 120sylibr 233 . . . . . . . . . . . . . . 15 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ¬ ⟨𝑎, 𝑏⟩ ∈ (𝑎 × {𝑏}))
122 sssucid 6444 . . . . . . . . . . . . . . . . 17 𝑎 ⊆ suc 𝑎
12386sucid 6446 . . . . . . . . . . . . . . . . . 18 𝑏 ∈ suc 𝑏
124 snssi 4811 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ suc 𝑏 → {𝑏} ⊆ suc 𝑏)
125123, 124ax-mp 5 . . . . . . . . . . . . . . . . 17 {𝑏} ⊆ suc 𝑏
126 xpss12 5691 . . . . . . . . . . . . . . . . 17 ((𝑎 ⊆ suc 𝑎 ∧ {𝑏} ⊆ suc 𝑏) → (𝑎 × {𝑏}) ⊆ (suc 𝑎 × suc 𝑏))
127122, 125, 126mp2an 689 . . . . . . . . . . . . . . . 16 (𝑎 × {𝑏}) ⊆ (suc 𝑎 × suc 𝑏)
128 ssdifsn 4791 . . . . . . . . . . . . . . . 16 ((𝑎 × {𝑏}) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) ↔ ((𝑎 × {𝑏}) ⊆ (suc 𝑎 × suc 𝑏) ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ (𝑎 × {𝑏})))
129127, 128mpbiran 706 . . . . . . . . . . . . . . 15 ((𝑎 × {𝑏}) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) ↔ ¬ ⟨𝑎, 𝑏⟩ ∈ (𝑎 × {𝑏}))
130121, 129sylibr 233 . . . . . . . . . . . . . 14 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 × {𝑏}) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}))
131 resima2 6016 . . . . . . . . . . . . . 14 ((𝑎 × {𝑏}) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) → (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) = ( +no “ (𝑎 × {𝑏})))
132130, 131syl 17 . . . . . . . . . . . . 13 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) = ( +no “ (𝑎 × {𝑏})))
133132sseq1d 4013 . . . . . . . . . . . 12 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥))
134112, 133anbi12d 630 . . . . . . . . . . 11 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)))
135134rabbidv 3439 . . . . . . . . . 10 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)})
136135inteqd 4955 . . . . . . . . 9 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)})
137 simprr 770 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)
138 oveq1 7419 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑎 → (𝑡 +no 𝑑) = (𝑎 +no 𝑑))
139138eleq1d 2817 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑎 → ((𝑡 +no 𝑑) ∈ On ↔ (𝑎 +no 𝑑) ∈ On))
140139ralbidv 3176 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑎 → (∀𝑑𝑏 (𝑡 +no 𝑑) ∈ On ↔ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On))
14184, 140ralsn 4685 . . . . . . . . . . . . . . . . 17 (∀𝑡 ∈ {𝑎}∀𝑑𝑏 (𝑡 +no 𝑑) ∈ On ↔ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)
142137, 141sylibr 233 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ∀𝑡 ∈ {𝑎}∀𝑑𝑏 (𝑡 +no 𝑑) ∈ On)
143 snssi 4811 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ On → {𝑎} ⊆ On)
144 onss 7776 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ On → 𝑏 ⊆ On)
145 xpss12 5691 . . . . . . . . . . . . . . . . . . . 20 (({𝑎} ⊆ On ∧ 𝑏 ⊆ On) → ({𝑎} × 𝑏) ⊆ (On × On))
146143, 144, 145syl2an 595 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ({𝑎} × 𝑏) ⊆ (On × On))
147146adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ({𝑎} × 𝑏) ⊆ (On × On))
14881fndmi 6653 . . . . . . . . . . . . . . . . . 18 dom +no = (On × On)
149147, 148sseqtrrdi 4033 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ({𝑎} × 𝑏) ⊆ dom +no )
150 funimassov 7588 . . . . . . . . . . . . . . . . 17 ((Fun +no ∧ ({𝑎} × 𝑏) ⊆ dom +no ) → (( +no “ ({𝑎} × 𝑏)) ⊆ On ↔ ∀𝑡 ∈ {𝑎}∀𝑑𝑏 (𝑡 +no 𝑑) ∈ On))
15183, 149, 150sylancr 586 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no “ ({𝑎} × 𝑏)) ⊆ On ↔ ∀𝑡 ∈ {𝑎}∀𝑑𝑏 (𝑡 +no 𝑑) ∈ On))
152142, 151mpbird 257 . . . . . . . . . . . . . . 15 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ( +no “ ({𝑎} × 𝑏)) ⊆ On)
153 simprl 768 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On)
154 oveq2 7420 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑏 → (𝑐 +no 𝑡) = (𝑐 +no 𝑏))
155154eleq1d 2817 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑏 → ((𝑐 +no 𝑡) ∈ On ↔ (𝑐 +no 𝑏) ∈ On))
15686, 155ralsn 4685 . . . . . . . . . . . . . . . . . 18 (∀𝑡 ∈ {𝑏} (𝑐 +no 𝑡) ∈ On ↔ (𝑐 +no 𝑏) ∈ On)
157156ralbii 3092 . . . . . . . . . . . . . . . . 17 (∀𝑐𝑎𝑡 ∈ {𝑏} (𝑐 +no 𝑡) ∈ On ↔ ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On)
158153, 157sylibr 233 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ∀𝑐𝑎𝑡 ∈ {𝑏} (𝑐 +no 𝑡) ∈ On)
159 onss 7776 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ On → 𝑎 ⊆ On)
160 snssi 4811 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ On → {𝑏} ⊆ On)
161 xpss12 5691 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ⊆ On ∧ {𝑏} ⊆ On) → (𝑎 × {𝑏}) ⊆ (On × On))
162159, 160, 161syl2an 595 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 × {𝑏}) ⊆ (On × On))
163162adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 × {𝑏}) ⊆ (On × On))
164163, 148sseqtrrdi 4033 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 × {𝑏}) ⊆ dom +no )
165 funimassov 7588 . . . . . . . . . . . . . . . . 17 ((Fun +no ∧ (𝑎 × {𝑏}) ⊆ dom +no ) → (( +no “ (𝑎 × {𝑏})) ⊆ On ↔ ∀𝑐𝑎𝑡 ∈ {𝑏} (𝑐 +no 𝑡) ∈ On))
16683, 164, 165sylancr 586 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no “ (𝑎 × {𝑏})) ⊆ On ↔ ∀𝑐𝑎𝑡 ∈ {𝑏} (𝑐 +no 𝑡) ∈ On))
167158, 166mpbird 257 . . . . . . . . . . . . . . 15 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ( +no “ (𝑎 × {𝑏})) ⊆ On)
168152, 167unssd 4186 . . . . . . . . . . . . . 14 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ⊆ On)
169 ssorduni 7770 . . . . . . . . . . . . . 14 ((( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ⊆ On → Ord (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))
170168, 169syl 17 . . . . . . . . . . . . 13 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → Ord (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))
171 vsnex 5429 . . . . . . . . . . . . . . . . . 18 {𝑎} ∈ V
172171, 86xpex 7744 . . . . . . . . . . . . . . . . 17 ({𝑎} × 𝑏) ∈ V
173 funimaexg 6634 . . . . . . . . . . . . . . . . 17 ((Fun +no ∧ ({𝑎} × 𝑏) ∈ V) → ( +no “ ({𝑎} × 𝑏)) ∈ V)
17483, 172, 173mp2an 689 . . . . . . . . . . . . . . . 16 ( +no “ ({𝑎} × 𝑏)) ∈ V
175 vsnex 5429 . . . . . . . . . . . . . . . . . 18 {𝑏} ∈ V
17684, 175xpex 7744 . . . . . . . . . . . . . . . . 17 (𝑎 × {𝑏}) ∈ V
177 funimaexg 6634 . . . . . . . . . . . . . . . . 17 ((Fun +no ∧ (𝑎 × {𝑏}) ∈ V) → ( +no “ (𝑎 × {𝑏})) ∈ V)
17883, 176, 177mp2an 689 . . . . . . . . . . . . . . . 16 ( +no “ (𝑎 × {𝑏})) ∈ V
179174, 178unex 7737 . . . . . . . . . . . . . . 15 (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ V
180179uniex 7735 . . . . . . . . . . . . . 14 (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ V
181180elon 6373 . . . . . . . . . . . . 13 ( (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On ↔ Ord (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))
182170, 181sylibr 233 . . . . . . . . . . . 12 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On)
183 onsucb 7809 . . . . . . . . . . . 12 ( (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On ↔ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On)
184182, 183sylib 217 . . . . . . . . . . 11 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On)
185 onsucuni 7820 . . . . . . . . . . . . 13 ((( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ⊆ On → (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))
186168, 185syl 17 . . . . . . . . . . . 12 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))
187186unssad 4187 . . . . . . . . . . 11 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ( +no “ ({𝑎} × 𝑏)) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))
188186unssbd 4188 . . . . . . . . . . 11 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ( +no “ (𝑎 × {𝑏})) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))
189 sseq2 4008 . . . . . . . . . . . . 13 (𝑥 = suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) → (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝑎} × 𝑏)) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏})))))
190 sseq2 4008 . . . . . . . . . . . . 13 (𝑥 = suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) → (( +no “ (𝑎 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝑎 × {𝑏})) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏})))))
191189, 190anbi12d 630 . . . . . . . . . . . 12 (𝑥 = suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) → ((( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝑎} × 𝑏)) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∧ ( +no “ (𝑎 × {𝑏})) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))))
192191rspcev 3612 . . . . . . . . . . 11 ((suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On ∧ (( +no “ ({𝑎} × 𝑏)) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∧ ( +no “ (𝑎 × {𝑏})) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))) → ∃𝑥 ∈ On (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥))
193184, 187, 188, 192syl12anc 834 . . . . . . . . . 10 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ∃𝑥 ∈ On (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥))
194 onintrab2 7789 . . . . . . . . . 10 (∃𝑥 ∈ On (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} ∈ On)
195193, 194sylib 217 . . . . . . . . 9 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} ∈ On)
196136, 195eqeltrd 2832 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)} ∈ On)
19784, 86op1std 7989 . . . . . . . . . . . . . . . 16 (𝑡 = ⟨𝑎, 𝑏⟩ → (1st𝑡) = 𝑎)
198197sneqd 4640 . . . . . . . . . . . . . . 15 (𝑡 = ⟨𝑎, 𝑏⟩ → {(1st𝑡)} = {𝑎})
19984, 86op2ndd 7990 . . . . . . . . . . . . . . 15 (𝑡 = ⟨𝑎, 𝑏⟩ → (2nd𝑡) = 𝑏)
200198, 199xpeq12d 5707 . . . . . . . . . . . . . 14 (𝑡 = ⟨𝑎, 𝑏⟩ → ({(1st𝑡)} × (2nd𝑡)) = ({𝑎} × 𝑏))
201200imaeq2d 6059 . . . . . . . . . . . . 13 (𝑡 = ⟨𝑎, 𝑏⟩ → (𝑓 “ ({(1st𝑡)} × (2nd𝑡))) = (𝑓 “ ({𝑎} × 𝑏)))
202201sseq1d 4013 . . . . . . . . . . . 12 (𝑡 = ⟨𝑎, 𝑏⟩ → ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ↔ (𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥))
203199sneqd 4640 . . . . . . . . . . . . . . 15 (𝑡 = ⟨𝑎, 𝑏⟩ → {(2nd𝑡)} = {𝑏})
204197, 203xpeq12d 5707 . . . . . . . . . . . . . 14 (𝑡 = ⟨𝑎, 𝑏⟩ → ((1st𝑡) × {(2nd𝑡)}) = (𝑎 × {𝑏}))
205204imaeq2d 6059 . . . . . . . . . . . . 13 (𝑡 = ⟨𝑎, 𝑏⟩ → (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) = (𝑓 “ (𝑎 × {𝑏})))
206205sseq1d 4013 . . . . . . . . . . . 12 (𝑡 = ⟨𝑎, 𝑏⟩ → ((𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥 ↔ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥))
207202, 206anbi12d 630 . . . . . . . . . . 11 (𝑡 = ⟨𝑎, 𝑏⟩ → (((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥) ↔ ((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥)))
208207rabbidv 3439 . . . . . . . . . 10 (𝑡 = ⟨𝑎, 𝑏⟩ → {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ ((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥)})
209208inteqd 4955 . . . . . . . . 9 (𝑡 = ⟨𝑎, 𝑏⟩ → {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ ((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥)})
210 imaeq1 6054 . . . . . . . . . . . . 13 (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) → (𝑓 “ ({𝑎} × 𝑏)) = (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)))
211210sseq1d 4013 . . . . . . . . . . . 12 (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) → ((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ↔ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥))
212 imaeq1 6054 . . . . . . . . . . . . 13 (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) → (𝑓 “ (𝑎 × {𝑏})) = (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})))
213212sseq1d 4013 . . . . . . . . . . . 12 (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) → ((𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥 ↔ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥))
214211, 213anbi12d 630 . . . . . . . . . . 11 (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) → (((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)))
215214rabbidv 3439 . . . . . . . . . 10 (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) → {𝑥 ∈ On ∣ ((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)})
216215inteqd 4955 . . . . . . . . 9 (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) → {𝑥 ∈ On ∣ ((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)})
217 eqid 2731 . . . . . . . . 9 (𝑡 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)}) = (𝑡 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)})
218209, 216, 217ovmpog 7570 . . . . . . . 8 ((⟨𝑎, 𝑏⟩ ∈ V ∧ ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) ∈ V ∧ {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)} ∈ On) → (⟨𝑎, 𝑏⟩(𝑡 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)})( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}))) = {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)})
21980, 91, 196, 218mp3an12i 1464 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (⟨𝑎, 𝑏⟩(𝑡 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)})( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}))) = {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)})
22079, 219, 1363eqtrd 2775 . . . . . 6 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)})
221220, 195eqeltrd 2832 . . . . 5 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 +no 𝑏) ∈ On)
222221, 220jca 511 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ((𝑎 +no 𝑏) ∈ On ∧ (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)}))
223222ex 412 . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On) → ((𝑎 +no 𝑏) ∈ On ∧ (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)})))
22476, 223syl5 34 . 2 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐𝑎𝑑𝑏 ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}) ∧ ∀𝑐𝑎 ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) ∧ ∀𝑑𝑏 ((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)})) → ((𝑎 +no 𝑏) ∈ On ∧ (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)})))
22514, 28, 41, 55, 69, 224on2ind 8674 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +no 𝐵) ∈ On ∧ (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844  w3a 1086   = wceq 1540  wcel 2105  wral 3060  wrex 3069  {crab 3431  Vcvv 3473  cdif 3945  cun 3946  wss 3948  {csn 4628  cop 4634   cuni 4908   cint 4950   × cxp 5674  dom cdm 5676  cres 5678  cima 5679  Ord word 6363  Oncon0 6364  suc csuc 6366  Fun wfun 6537   Fn wfn 6538  cfv 6543  (class class class)co 7412  cmpo 7414  1st c1st 7977  2nd c2nd 7978   +no cnadd 8670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-frecs 8272  df-nadd 8671
This theorem is referenced by:  naddcl  8682  naddov  8683
  Copyright terms: Public domain W3C validator