Step | Hyp | Ref
| Expression |
1 | | oveq1 7262 |
. . . 4
⊢ (𝑎 = 𝑐 → (𝑎 +no 𝑏) = (𝑐 +no 𝑏)) |
2 | 1 | eleq1d 2823 |
. . 3
⊢ (𝑎 = 𝑐 → ((𝑎 +no 𝑏) ∈ On ↔ (𝑐 +no 𝑏) ∈ On)) |
3 | | sneq 4568 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑐 → {𝑎} = {𝑐}) |
4 | 3 | xpeq1d 5609 |
. . . . . . . . 9
⊢ (𝑎 = 𝑐 → ({𝑎} × 𝑏) = ({𝑐} × 𝑏)) |
5 | 4 | imaeq2d 5958 |
. . . . . . . 8
⊢ (𝑎 = 𝑐 → ( +no “ ({𝑎} × 𝑏)) = ( +no “ ({𝑐} × 𝑏))) |
6 | 5 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑎 = 𝑐 → (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥)) |
7 | | xpeq1 5594 |
. . . . . . . . 9
⊢ (𝑎 = 𝑐 → (𝑎 × {𝑏}) = (𝑐 × {𝑏})) |
8 | 7 | imaeq2d 5958 |
. . . . . . . 8
⊢ (𝑎 = 𝑐 → ( +no “ (𝑎 × {𝑏})) = ( +no “ (𝑐 × {𝑏}))) |
9 | 8 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑎 = 𝑐 → (( +no “ (𝑎 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)) |
10 | 6, 9 | anbi12d 630 |
. . . . . 6
⊢ (𝑎 = 𝑐 → ((( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥))) |
11 | 10 | rabbidv 3404 |
. . . . 5
⊢ (𝑎 = 𝑐 → {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) |
12 | 11 | inteqd 4881 |
. . . 4
⊢ (𝑎 = 𝑐 → ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) |
13 | 1, 12 | eqeq12d 2754 |
. . 3
⊢ (𝑎 = 𝑐 → ((𝑎 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} ↔ (𝑐 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)})) |
14 | 2, 13 | anbi12d 630 |
. 2
⊢ (𝑎 = 𝑐 → (((𝑎 +no 𝑏) ∈ On ∧ (𝑎 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)}) ↔ ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}))) |
15 | | oveq2 7263 |
. . . 4
⊢ (𝑏 = 𝑑 → (𝑐 +no 𝑏) = (𝑐 +no 𝑑)) |
16 | 15 | eleq1d 2823 |
. . 3
⊢ (𝑏 = 𝑑 → ((𝑐 +no 𝑏) ∈ On ↔ (𝑐 +no 𝑑) ∈ On)) |
17 | | xpeq2 5601 |
. . . . . . . . 9
⊢ (𝑏 = 𝑑 → ({𝑐} × 𝑏) = ({𝑐} × 𝑑)) |
18 | 17 | imaeq2d 5958 |
. . . . . . . 8
⊢ (𝑏 = 𝑑 → ( +no “ ({𝑐} × 𝑏)) = ( +no “ ({𝑐} × 𝑑))) |
19 | 18 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑏 = 𝑑 → (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥)) |
20 | | sneq 4568 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑑 → {𝑏} = {𝑑}) |
21 | 20 | xpeq2d 5610 |
. . . . . . . . 9
⊢ (𝑏 = 𝑑 → (𝑐 × {𝑏}) = (𝑐 × {𝑑})) |
22 | 21 | imaeq2d 5958 |
. . . . . . . 8
⊢ (𝑏 = 𝑑 → ( +no “ (𝑐 × {𝑏})) = ( +no “ (𝑐 × {𝑑}))) |
23 | 22 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑏 = 𝑑 → (( +no “ (𝑐 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)) |
24 | 19, 23 | anbi12d 630 |
. . . . . 6
⊢ (𝑏 = 𝑑 → ((( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥))) |
25 | 24 | rabbidv 3404 |
. . . . 5
⊢ (𝑏 = 𝑑 → {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}) |
26 | 25 | inteqd 4881 |
. . . 4
⊢ (𝑏 = 𝑑 → ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)} = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}) |
27 | 15, 26 | eqeq12d 2754 |
. . 3
⊢ (𝑏 = 𝑑 → ((𝑐 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)} ↔ (𝑐 +no 𝑑) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)})) |
28 | 16, 27 | anbi12d 630 |
. 2
⊢ (𝑏 = 𝑑 → (((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) ↔ ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}))) |
29 | | oveq1 7262 |
. . . 4
⊢ (𝑎 = 𝑐 → (𝑎 +no 𝑑) = (𝑐 +no 𝑑)) |
30 | 29 | eleq1d 2823 |
. . 3
⊢ (𝑎 = 𝑐 → ((𝑎 +no 𝑑) ∈ On ↔ (𝑐 +no 𝑑) ∈ On)) |
31 | 3 | xpeq1d 5609 |
. . . . . . . . 9
⊢ (𝑎 = 𝑐 → ({𝑎} × 𝑑) = ({𝑐} × 𝑑)) |
32 | 31 | imaeq2d 5958 |
. . . . . . . 8
⊢ (𝑎 = 𝑐 → ( +no “ ({𝑎} × 𝑑)) = ( +no “ ({𝑐} × 𝑑))) |
33 | 32 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑎 = 𝑐 → (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ↔ ( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥)) |
34 | | xpeq1 5594 |
. . . . . . . . 9
⊢ (𝑎 = 𝑐 → (𝑎 × {𝑑}) = (𝑐 × {𝑑})) |
35 | 34 | imaeq2d 5958 |
. . . . . . . 8
⊢ (𝑎 = 𝑐 → ( +no “ (𝑎 × {𝑑})) = ( +no “ (𝑐 × {𝑑}))) |
36 | 35 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑎 = 𝑐 → (( +no “ (𝑎 × {𝑑})) ⊆ 𝑥 ↔ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)) |
37 | 33, 36 | anbi12d 630 |
. . . . . 6
⊢ (𝑎 = 𝑐 → ((( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥) ↔ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥))) |
38 | 37 | rabbidv 3404 |
. . . . 5
⊢ (𝑎 = 𝑐 → {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}) |
39 | 38 | inteqd 4881 |
. . . 4
⊢ (𝑎 = 𝑐 → ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)} = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}) |
40 | 29, 39 | eqeq12d 2754 |
. . 3
⊢ (𝑎 = 𝑐 → ((𝑎 +no 𝑑) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)} ↔ (𝑐 +no 𝑑) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)})) |
41 | 30, 40 | anbi12d 630 |
. 2
⊢ (𝑎 = 𝑐 → (((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)}) ↔ ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}))) |
42 | | oveq1 7262 |
. . . 4
⊢ (𝑎 = 𝐴 → (𝑎 +no 𝑏) = (𝐴 +no 𝑏)) |
43 | 42 | eleq1d 2823 |
. . 3
⊢ (𝑎 = 𝐴 → ((𝑎 +no 𝑏) ∈ On ↔ (𝐴 +no 𝑏) ∈ On)) |
44 | | sneq 4568 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) |
45 | 44 | xpeq1d 5609 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → ({𝑎} × 𝑏) = ({𝐴} × 𝑏)) |
46 | 45 | imaeq2d 5958 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → ( +no “ ({𝑎} × 𝑏)) = ( +no “ ({𝐴} × 𝑏))) |
47 | 46 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥)) |
48 | | xpeq1 5594 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → (𝑎 × {𝑏}) = (𝐴 × {𝑏})) |
49 | 48 | imaeq2d 5958 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → ( +no “ (𝑎 × {𝑏})) = ( +no “ (𝐴 × {𝑏}))) |
50 | 49 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (( +no “ (𝑎 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)) |
51 | 47, 50 | anbi12d 630 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ((( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥))) |
52 | 51 | rabbidv 3404 |
. . . . 5
⊢ (𝑎 = 𝐴 → {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)}) |
53 | 52 | inteqd 4881 |
. . . 4
⊢ (𝑎 = 𝐴 → ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)}) |
54 | 42, 53 | eqeq12d 2754 |
. . 3
⊢ (𝑎 = 𝐴 → ((𝑎 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} ↔ (𝐴 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)})) |
55 | 43, 54 | anbi12d 630 |
. 2
⊢ (𝑎 = 𝐴 → (((𝑎 +no 𝑏) ∈ On ∧ (𝑎 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)}) ↔ ((𝐴 +no 𝑏) ∈ On ∧ (𝐴 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)}))) |
56 | | oveq2 7263 |
. . . 4
⊢ (𝑏 = 𝐵 → (𝐴 +no 𝑏) = (𝐴 +no 𝐵)) |
57 | 56 | eleq1d 2823 |
. . 3
⊢ (𝑏 = 𝐵 → ((𝐴 +no 𝑏) ∈ On ↔ (𝐴 +no 𝐵) ∈ On)) |
58 | | xpeq2 5601 |
. . . . . . . . 9
⊢ (𝑏 = 𝐵 → ({𝐴} × 𝑏) = ({𝐴} × 𝐵)) |
59 | 58 | imaeq2d 5958 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → ( +no “ ({𝐴} × 𝑏)) = ( +no “ ({𝐴} × 𝐵))) |
60 | 59 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥)) |
61 | | sneq 4568 |
. . . . . . . . . 10
⊢ (𝑏 = 𝐵 → {𝑏} = {𝐵}) |
62 | 61 | xpeq2d 5610 |
. . . . . . . . 9
⊢ (𝑏 = 𝐵 → (𝐴 × {𝑏}) = (𝐴 × {𝐵})) |
63 | 62 | imaeq2d 5958 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → ( +no “ (𝐴 × {𝑏})) = ( +no “ (𝐴 × {𝐵}))) |
64 | 63 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (( +no “ (𝐴 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)) |
65 | 60, 64 | anbi12d 630 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ((( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥))) |
66 | 65 | rabbidv 3404 |
. . . . 5
⊢ (𝑏 = 𝐵 → {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)}) |
67 | 66 | inteqd 4881 |
. . . 4
⊢ (𝑏 = 𝐵 → ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)} = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)}) |
68 | 56, 67 | eqeq12d 2754 |
. . 3
⊢ (𝑏 = 𝐵 → ((𝐴 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)} ↔ (𝐴 +no 𝐵) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)})) |
69 | 57, 68 | anbi12d 630 |
. 2
⊢ (𝑏 = 𝐵 → (((𝐴 +no 𝑏) ∈ On ∧ (𝐴 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)}) ↔ ((𝐴 +no 𝐵) ∈ On ∧ (𝐴 +no 𝐵) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)}))) |
70 | | simpl 482 |
. . . . . 6
⊢ (((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) → (𝑐 +no 𝑏) ∈ On) |
71 | 70 | ralimi 3086 |
. . . . 5
⊢
(∀𝑐 ∈
𝑎 ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) → ∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On) |
72 | 71 | 3ad2ant2 1132 |
. . . 4
⊢
((∀𝑐 ∈
𝑎 ∀𝑑 ∈ 𝑏 ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}) ∧ ∀𝑐 ∈ 𝑎 ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) ∧ ∀𝑑 ∈ 𝑏 ((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)})) → ∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On) |
73 | | simpl 482 |
. . . . . 6
⊢ (((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)}) → (𝑎 +no 𝑑) ∈ On) |
74 | 73 | ralimi 3086 |
. . . . 5
⊢
(∀𝑑 ∈
𝑏 ((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)}) → ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On) |
75 | 74 | 3ad2ant3 1133 |
. . . 4
⊢
((∀𝑐 ∈
𝑎 ∀𝑑 ∈ 𝑏 ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}) ∧ ∀𝑐 ∈ 𝑎 ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) ∧ ∀𝑑 ∈ 𝑏 ((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)})) → ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On) |
76 | 72, 75 | jca 511 |
. . 3
⊢
((∀𝑐 ∈
𝑎 ∀𝑑 ∈ 𝑏 ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}) ∧ ∀𝑐 ∈ 𝑎 ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) ∧ ∀𝑑 ∈ 𝑏 ((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)})) → (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) |
77 | | df-nadd 33752 |
. . . . . . . . 9
⊢ +no =
frecs({〈𝑝, 𝑞〉 ∣ (𝑝 ∈ (On × On) ∧
𝑞 ∈ (On × On)
∧ (((1st ‘𝑝) E (1st ‘𝑞) ∨ (1st ‘𝑝) = (1st ‘𝑞)) ∧ ((2nd
‘𝑝) E (2nd
‘𝑞) ∨
(2nd ‘𝑝) =
(2nd ‘𝑞))
∧ 𝑝 ≠ 𝑞))}, (On × On), (𝑡 ∈ V, 𝑓 ∈ V ↦ ∩ {𝑥
∈ On ∣ ((𝑓
“ ({(1st ‘𝑡)} × (2nd ‘𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st ‘𝑡) × {(2nd
‘𝑡)})) ⊆ 𝑥)})) |
78 | 77 | on2recsov 33754 |
. . . . . . . 8
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 +no 𝑏) = (〈𝑎, 𝑏〉(𝑡 ∈ V, 𝑓 ∈ V ↦ ∩ {𝑥
∈ On ∣ ((𝑓
“ ({(1st ‘𝑡)} × (2nd ‘𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st ‘𝑡) × {(2nd
‘𝑡)})) ⊆ 𝑥)})( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})))) |
79 | 78 | adantr 480 |
. . . . . . 7
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 +no 𝑏) = (〈𝑎, 𝑏〉(𝑡 ∈ V, 𝑓 ∈ V ↦ ∩ {𝑥
∈ On ∣ ((𝑓
“ ({(1st ‘𝑡)} × (2nd ‘𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st ‘𝑡) × {(2nd
‘𝑡)})) ⊆ 𝑥)})( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})))) |
80 | | opex 5373 |
. . . . . . . 8
⊢
〈𝑎, 𝑏〉 ∈ V |
81 | | naddfn 33757 |
. . . . . . . . . 10
⊢ +no Fn
(On × On) |
82 | | fnfun 6517 |
. . . . . . . . . 10
⊢ ( +no Fn
(On × On) → Fun +no ) |
83 | 81, 82 | ax-mp 5 |
. . . . . . . . 9
⊢ Fun
+no |
84 | | vex 3426 |
. . . . . . . . . . . 12
⊢ 𝑎 ∈ V |
85 | 84 | sucex 7633 |
. . . . . . . . . . 11
⊢ suc 𝑎 ∈ V |
86 | | vex 3426 |
. . . . . . . . . . . 12
⊢ 𝑏 ∈ V |
87 | 86 | sucex 7633 |
. . . . . . . . . . 11
⊢ suc 𝑏 ∈ V |
88 | 85, 87 | xpex 7581 |
. . . . . . . . . 10
⊢ (suc
𝑎 × suc 𝑏) ∈ V |
89 | 88 | difexi 5247 |
. . . . . . . . 9
⊢ ((suc
𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉}) ∈ V |
90 | | resfunexg 7073 |
. . . . . . . . 9
⊢ ((Fun +no
∧ ((suc 𝑎 × suc
𝑏) ∖ {〈𝑎, 𝑏〉}) ∈ V) → ( +no ↾ ((suc
𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) ∈ V) |
91 | 83, 89, 90 | mp2an 688 |
. . . . . . . 8
⊢ ( +no
↾ ((suc 𝑎 × suc
𝑏) ∖ {〈𝑎, 𝑏〉})) ∈ V |
92 | | eloni 6261 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 ∈ On → Ord 𝑏) |
93 | 92 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → Ord 𝑏) |
94 | | ordirr 6269 |
. . . . . . . . . . . . . . . . . 18
⊢ (Ord
𝑏 → ¬ 𝑏 ∈ 𝑏) |
95 | 93, 94 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ¬ 𝑏 ∈ 𝑏) |
96 | 95 | olcd 870 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → (¬ 𝑎 ∈ {𝑎} ∨ ¬ 𝑏 ∈ 𝑏)) |
97 | | ianor 978 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑎 ∈ {𝑎} ∧ 𝑏 ∈ 𝑏) ↔ (¬ 𝑎 ∈ {𝑎} ∨ ¬ 𝑏 ∈ 𝑏)) |
98 | | opelxp 5616 |
. . . . . . . . . . . . . . . . 17
⊢
(〈𝑎, 𝑏〉 ∈ ({𝑎} × 𝑏) ↔ (𝑎 ∈ {𝑎} ∧ 𝑏 ∈ 𝑏)) |
99 | 97, 98 | xchnxbir 332 |
. . . . . . . . . . . . . . . 16
⊢ (¬
〈𝑎, 𝑏〉 ∈ ({𝑎} × 𝑏) ↔ (¬ 𝑎 ∈ {𝑎} ∨ ¬ 𝑏 ∈ 𝑏)) |
100 | 96, 99 | sylibr 233 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ¬ 〈𝑎, 𝑏〉 ∈ ({𝑎} × 𝑏)) |
101 | 84 | sucid 6330 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑎 ∈ suc 𝑎 |
102 | | snssi 4738 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 ∈ suc 𝑎 → {𝑎} ⊆ suc 𝑎) |
103 | 101, 102 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑎} ⊆ suc 𝑎 |
104 | | sssucid 6328 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑏 ⊆ suc 𝑏 |
105 | | xpss12 5595 |
. . . . . . . . . . . . . . . . 17
⊢ (({𝑎} ⊆ suc 𝑎 ∧ 𝑏 ⊆ suc 𝑏) → ({𝑎} × 𝑏) ⊆ (suc 𝑎 × suc 𝑏)) |
106 | 103, 104,
105 | mp2an 688 |
. . . . . . . . . . . . . . . 16
⊢ ({𝑎} × 𝑏) ⊆ (suc 𝑎 × suc 𝑏) |
107 | | ssdifsn 4718 |
. . . . . . . . . . . . . . . 16
⊢ (({𝑎} × 𝑏) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉}) ↔ (({𝑎} × 𝑏) ⊆ (suc 𝑎 × suc 𝑏) ∧ ¬ 〈𝑎, 𝑏〉 ∈ ({𝑎} × 𝑏))) |
108 | 106, 107 | mpbiran 705 |
. . . . . . . . . . . . . . 15
⊢ (({𝑎} × 𝑏) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉}) ↔ ¬ 〈𝑎, 𝑏〉 ∈ ({𝑎} × 𝑏)) |
109 | 100, 108 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ({𝑎} × 𝑏) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) |
110 | | resima2 5915 |
. . . . . . . . . . . . . 14
⊢ (({𝑎} × 𝑏) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉}) → (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ ({𝑎} × 𝑏)) = ( +no “ ({𝑎} × 𝑏))) |
111 | 109, 110 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no ↾ ((suc
𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ ({𝑎} × 𝑏)) = ( +no “ ({𝑎} × 𝑏))) |
112 | 111 | sseq1d 3948 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ((( +no ↾ ((suc
𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥)) |
113 | | eloni 6261 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 ∈ On → Ord 𝑎) |
114 | 113 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → Ord 𝑎) |
115 | | ordirr 6269 |
. . . . . . . . . . . . . . . . . 18
⊢ (Ord
𝑎 → ¬ 𝑎 ∈ 𝑎) |
116 | 114, 115 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ¬ 𝑎 ∈ 𝑎) |
117 | 116 | orcd 869 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → (¬ 𝑎 ∈ 𝑎 ∨ ¬ 𝑏 ∈ {𝑏})) |
118 | | ianor 978 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑎 ∈ 𝑎 ∧ 𝑏 ∈ {𝑏}) ↔ (¬ 𝑎 ∈ 𝑎 ∨ ¬ 𝑏 ∈ {𝑏})) |
119 | | opelxp 5616 |
. . . . . . . . . . . . . . . . 17
⊢
(〈𝑎, 𝑏〉 ∈ (𝑎 × {𝑏}) ↔ (𝑎 ∈ 𝑎 ∧ 𝑏 ∈ {𝑏})) |
120 | 118, 119 | xchnxbir 332 |
. . . . . . . . . . . . . . . 16
⊢ (¬
〈𝑎, 𝑏〉 ∈ (𝑎 × {𝑏}) ↔ (¬ 𝑎 ∈ 𝑎 ∨ ¬ 𝑏 ∈ {𝑏})) |
121 | 117, 120 | sylibr 233 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ¬ 〈𝑎, 𝑏〉 ∈ (𝑎 × {𝑏})) |
122 | | sssucid 6328 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑎 ⊆ suc 𝑎 |
123 | 86 | sucid 6330 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑏 ∈ suc 𝑏 |
124 | | snssi 4738 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 ∈ suc 𝑏 → {𝑏} ⊆ suc 𝑏) |
125 | 123, 124 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑏} ⊆ suc 𝑏 |
126 | | xpss12 5595 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 ⊆ suc 𝑎 ∧ {𝑏} ⊆ suc 𝑏) → (𝑎 × {𝑏}) ⊆ (suc 𝑎 × suc 𝑏)) |
127 | 122, 125,
126 | mp2an 688 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 × {𝑏}) ⊆ (suc 𝑎 × suc 𝑏) |
128 | | ssdifsn 4718 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 × {𝑏}) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉}) ↔ ((𝑎 × {𝑏}) ⊆ (suc 𝑎 × suc 𝑏) ∧ ¬ 〈𝑎, 𝑏〉 ∈ (𝑎 × {𝑏}))) |
129 | 127, 128 | mpbiran 705 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 × {𝑏}) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉}) ↔ ¬ 〈𝑎, 𝑏〉 ∈ (𝑎 × {𝑏})) |
130 | 121, 129 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 × {𝑏}) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) |
131 | | resima2 5915 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 × {𝑏}) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉}) → (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ (𝑎 × {𝑏})) = ( +no “ (𝑎 × {𝑏}))) |
132 | 130, 131 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no ↾ ((suc
𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ (𝑎 × {𝑏})) = ( +no “ (𝑎 × {𝑏}))) |
133 | 132 | sseq1d 3948 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ((( +no ↾ ((suc
𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ (𝑎 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)) |
134 | 112, 133 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → (((( +no ↾ ((suc
𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥))) |
135 | 134 | rabbidv 3404 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → {𝑥 ∈ On ∣ ((( +no ↾ ((suc
𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)}) |
136 | 135 | inteqd 4881 |
. . . . . . . . 9
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ∩ {𝑥
∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ (𝑎 × {𝑏})) ⊆ 𝑥)} = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)}) |
137 | | simprr 769 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On) |
138 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑎 → (𝑡 +no 𝑑) = (𝑎 +no 𝑑)) |
139 | 138 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑎 → ((𝑡 +no 𝑑) ∈ On ↔ (𝑎 +no 𝑑) ∈ On)) |
140 | 139 | ralbidv 3120 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑎 → (∀𝑑 ∈ 𝑏 (𝑡 +no 𝑑) ∈ On ↔ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) |
141 | 84, 140 | ralsn 4614 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑡 ∈
{𝑎}∀𝑑 ∈ 𝑏 (𝑡 +no 𝑑) ∈ On ↔ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On) |
142 | 137, 141 | sylibr 233 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ∀𝑡 ∈ {𝑎}∀𝑑 ∈ 𝑏 (𝑡 +no 𝑑) ∈ On) |
143 | | snssi 4738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ On → {𝑎} ⊆ On) |
144 | | onss 7611 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ On → 𝑏 ⊆ On) |
145 | | xpss12 5595 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (({𝑎} ⊆ On ∧ 𝑏 ⊆ On) → ({𝑎} × 𝑏) ⊆ (On × On)) |
146 | 143, 144,
145 | syl2an 595 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ({𝑎} × 𝑏) ⊆ (On × On)) |
147 | 146 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ({𝑎} × 𝑏) ⊆ (On × On)) |
148 | 81 | fndmi 6521 |
. . . . . . . . . . . . . . . . . 18
⊢ dom +no =
(On × On) |
149 | 147, 148 | sseqtrrdi 3968 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ({𝑎} × 𝑏) ⊆ dom +no ) |
150 | | funimassov 7427 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun +no
∧ ({𝑎} × 𝑏) ⊆ dom +no ) → ((
+no “ ({𝑎} ×
𝑏)) ⊆ On ↔
∀𝑡 ∈ {𝑎}∀𝑑 ∈ 𝑏 (𝑡 +no 𝑑) ∈ On)) |
151 | 83, 149, 150 | sylancr 586 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no “ ({𝑎} × 𝑏)) ⊆ On ↔ ∀𝑡 ∈ {𝑎}∀𝑑 ∈ 𝑏 (𝑡 +no 𝑑) ∈ On)) |
152 | 142, 151 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ( +no “ ({𝑎} × 𝑏)) ⊆ On) |
153 | | simprl 767 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On) |
154 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑏 → (𝑐 +no 𝑡) = (𝑐 +no 𝑏)) |
155 | 154 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑏 → ((𝑐 +no 𝑡) ∈ On ↔ (𝑐 +no 𝑏) ∈ On)) |
156 | 86, 155 | ralsn 4614 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑡 ∈
{𝑏} (𝑐 +no 𝑡) ∈ On ↔ (𝑐 +no 𝑏) ∈ On) |
157 | 156 | ralbii 3090 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑐 ∈
𝑎 ∀𝑡 ∈ {𝑏} (𝑐 +no 𝑡) ∈ On ↔ ∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On) |
158 | 153, 157 | sylibr 233 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ∀𝑐 ∈ 𝑎 ∀𝑡 ∈ {𝑏} (𝑐 +no 𝑡) ∈ On) |
159 | | onss 7611 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ On → 𝑎 ⊆ On) |
160 | | snssi 4738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ On → {𝑏} ⊆ On) |
161 | | xpss12 5595 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑎 ⊆ On ∧ {𝑏} ⊆ On) → (𝑎 × {𝑏}) ⊆ (On × On)) |
162 | 159, 160,
161 | syl2an 595 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 × {𝑏}) ⊆ (On × On)) |
163 | 162 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 × {𝑏}) ⊆ (On × On)) |
164 | 163, 148 | sseqtrrdi 3968 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 × {𝑏}) ⊆ dom +no ) |
165 | | funimassov 7427 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun +no
∧ (𝑎 × {𝑏}) ⊆ dom +no ) → ((
+no “ (𝑎 ×
{𝑏})) ⊆ On ↔
∀𝑐 ∈ 𝑎 ∀𝑡 ∈ {𝑏} (𝑐 +no 𝑡) ∈ On)) |
166 | 83, 164, 165 | sylancr 586 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no “ (𝑎 × {𝑏})) ⊆ On ↔ ∀𝑐 ∈ 𝑎 ∀𝑡 ∈ {𝑏} (𝑐 +no 𝑡) ∈ On)) |
167 | 158, 166 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ( +no “ (𝑎 × {𝑏})) ⊆ On) |
168 | 152, 167 | unssd 4116 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ⊆ On) |
169 | | ssorduni 7606 |
. . . . . . . . . . . . . 14
⊢ ((( +no
“ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ⊆ On → Ord ∪ (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏})))) |
170 | 168, 169 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → Ord ∪ (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏})))) |
171 | | snex 5349 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑎} ∈ V |
172 | 171, 86 | xpex 7581 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝑎} × 𝑏) ∈ V |
173 | | funimaexg 6504 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun +no
∧ ({𝑎} × 𝑏) ∈ V) → ( +no “
({𝑎} × 𝑏)) ∈ V) |
174 | 83, 172, 173 | mp2an 688 |
. . . . . . . . . . . . . . . 16
⊢ ( +no
“ ({𝑎} × 𝑏)) ∈ V |
175 | | snex 5349 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑏} ∈ V |
176 | 84, 175 | xpex 7581 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 × {𝑏}) ∈ V |
177 | | funimaexg 6504 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun +no
∧ (𝑎 × {𝑏}) ∈ V) → ( +no
“ (𝑎 × {𝑏})) ∈ V) |
178 | 83, 176, 177 | mp2an 688 |
. . . . . . . . . . . . . . . 16
⊢ ( +no
“ (𝑎 × {𝑏})) ∈ V |
179 | 174, 178 | unex 7574 |
. . . . . . . . . . . . . . 15
⊢ (( +no
“ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ V |
180 | 179 | uniex 7572 |
. . . . . . . . . . . . . 14
⊢ ∪ (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ V |
181 | 180 | elon 6260 |
. . . . . . . . . . . . 13
⊢ (∪ (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On ↔ Ord ∪ (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏})))) |
182 | 170, 181 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ∪ (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On) |
183 | | sucelon 7639 |
. . . . . . . . . . . 12
⊢ (∪ (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On ↔ suc ∪ (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On) |
184 | 182, 183 | sylib 217 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → suc ∪ (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On) |
185 | | onsucuni 7650 |
. . . . . . . . . . . . 13
⊢ ((( +no
“ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ⊆ On → (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ⊆ suc ∪
(( +no “ ({𝑎} ×
𝑏)) ∪ ( +no “
(𝑎 × {𝑏})))) |
186 | 168, 185 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ⊆ suc ∪
(( +no “ ({𝑎} ×
𝑏)) ∪ ( +no “
(𝑎 × {𝑏})))) |
187 | 186 | unssad 4117 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ( +no “ ({𝑎} × 𝑏)) ⊆ suc ∪
(( +no “ ({𝑎} ×
𝑏)) ∪ ( +no “
(𝑎 × {𝑏})))) |
188 | 186 | unssbd 4118 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ( +no “ (𝑎 × {𝑏})) ⊆ suc ∪
(( +no “ ({𝑎} ×
𝑏)) ∪ ( +no “
(𝑎 × {𝑏})))) |
189 | | sseq2 3943 |
. . . . . . . . . . . . 13
⊢ (𝑥 = suc ∪ (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) → (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝑎} × 𝑏)) ⊆ suc ∪
(( +no “ ({𝑎} ×
𝑏)) ∪ ( +no “
(𝑎 × {𝑏}))))) |
190 | | sseq2 3943 |
. . . . . . . . . . . . 13
⊢ (𝑥 = suc ∪ (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) → (( +no “ (𝑎 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝑎 × {𝑏})) ⊆ suc ∪
(( +no “ ({𝑎} ×
𝑏)) ∪ ( +no “
(𝑎 × {𝑏}))))) |
191 | 189, 190 | anbi12d 630 |
. . . . . . . . . . . 12
⊢ (𝑥 = suc ∪ (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) → ((( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝑎} × 𝑏)) ⊆ suc ∪
(( +no “ ({𝑎} ×
𝑏)) ∪ ( +no “
(𝑎 × {𝑏}))) ∧ ( +no “ (𝑎 × {𝑏})) ⊆ suc ∪
(( +no “ ({𝑎} ×
𝑏)) ∪ ( +no “
(𝑎 × {𝑏})))))) |
192 | 191 | rspcev 3552 |
. . . . . . . . . . 11
⊢ ((suc
∪ (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On ∧ (( +no “ ({𝑎} × 𝑏)) ⊆ suc ∪
(( +no “ ({𝑎} ×
𝑏)) ∪ ( +no “
(𝑎 × {𝑏}))) ∧ ( +no “ (𝑎 × {𝑏})) ⊆ suc ∪
(( +no “ ({𝑎} ×
𝑏)) ∪ ( +no “
(𝑎 × {𝑏}))))) → ∃𝑥 ∈ On (( +no “
({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)) |
193 | 184, 187,
188, 192 | syl12anc 833 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ∃𝑥 ∈ On (( +no “
({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)) |
194 | | onintrab2 7624 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈ On
(( +no “ ({𝑎} ×
𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} ∈ On) |
195 | 193, 194 | sylib 217 |
. . . . . . . . 9
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ∩ {𝑥
∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} ∈ On) |
196 | 136, 195 | eqeltrd 2839 |
. . . . . . . 8
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ∩ {𝑥
∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ (𝑎 × {𝑏})) ⊆ 𝑥)} ∈ On) |
197 | 84, 86 | op1std 7814 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 〈𝑎, 𝑏〉 → (1st ‘𝑡) = 𝑎) |
198 | 197 | sneqd 4570 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 〈𝑎, 𝑏〉 → {(1st ‘𝑡)} = {𝑎}) |
199 | 84, 86 | op2ndd 7815 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 〈𝑎, 𝑏〉 → (2nd ‘𝑡) = 𝑏) |
200 | 198, 199 | xpeq12d 5611 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 〈𝑎, 𝑏〉 → ({(1st ‘𝑡)} × (2nd
‘𝑡)) = ({𝑎} × 𝑏)) |
201 | 200 | imaeq2d 5958 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 〈𝑎, 𝑏〉 → (𝑓 “ ({(1st ‘𝑡)} × (2nd
‘𝑡))) = (𝑓 “ ({𝑎} × 𝑏))) |
202 | 201 | sseq1d 3948 |
. . . . . . . . . . . 12
⊢ (𝑡 = 〈𝑎, 𝑏〉 → ((𝑓 “ ({(1st ‘𝑡)} × (2nd
‘𝑡))) ⊆ 𝑥 ↔ (𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥)) |
203 | 199 | sneqd 4570 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 〈𝑎, 𝑏〉 → {(2nd ‘𝑡)} = {𝑏}) |
204 | 197, 203 | xpeq12d 5611 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 〈𝑎, 𝑏〉 → ((1st ‘𝑡) × {(2nd
‘𝑡)}) = (𝑎 × {𝑏})) |
205 | 204 | imaeq2d 5958 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 〈𝑎, 𝑏〉 → (𝑓 “ ((1st ‘𝑡) × {(2nd
‘𝑡)})) = (𝑓 “ (𝑎 × {𝑏}))) |
206 | 205 | sseq1d 3948 |
. . . . . . . . . . . 12
⊢ (𝑡 = 〈𝑎, 𝑏〉 → ((𝑓 “ ((1st ‘𝑡) × {(2nd
‘𝑡)})) ⊆ 𝑥 ↔ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥)) |
207 | 202, 206 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑡 = 〈𝑎, 𝑏〉 → (((𝑓 “ ({(1st ‘𝑡)} × (2nd
‘𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st ‘𝑡) × {(2nd
‘𝑡)})) ⊆ 𝑥) ↔ ((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥))) |
208 | 207 | rabbidv 3404 |
. . . . . . . . . 10
⊢ (𝑡 = 〈𝑎, 𝑏〉 → {𝑥 ∈ On ∣ ((𝑓 “ ({(1st ‘𝑡)} × (2nd
‘𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st ‘𝑡) × {(2nd
‘𝑡)})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ ((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥)}) |
209 | 208 | inteqd 4881 |
. . . . . . . . 9
⊢ (𝑡 = 〈𝑎, 𝑏〉 → ∩
{𝑥 ∈ On ∣
((𝑓 “
({(1st ‘𝑡)} × (2nd ‘𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st ‘𝑡) × {(2nd
‘𝑡)})) ⊆ 𝑥)} = ∩ {𝑥
∈ On ∣ ((𝑓
“ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥)}) |
210 | | imaeq1 5953 |
. . . . . . . . . . . . 13
⊢ (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) → (𝑓 “ ({𝑎} × 𝑏)) = (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ ({𝑎} × 𝑏))) |
211 | 210 | sseq1d 3948 |
. . . . . . . . . . . 12
⊢ (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) → ((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ↔ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ ({𝑎} × 𝑏)) ⊆ 𝑥)) |
212 | | imaeq1 5953 |
. . . . . . . . . . . . 13
⊢ (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) → (𝑓 “ (𝑎 × {𝑏})) = (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ (𝑎 × {𝑏}))) |
213 | 212 | sseq1d 3948 |
. . . . . . . . . . . 12
⊢ (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) → ((𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥 ↔ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ (𝑎 × {𝑏})) ⊆ 𝑥)) |
214 | 211, 213 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) → (((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ (𝑎 × {𝑏})) ⊆ 𝑥))) |
215 | 214 | rabbidv 3404 |
. . . . . . . . . 10
⊢ (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) → {𝑥 ∈ On ∣ ((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ ((( +no ↾ ((suc
𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ (𝑎 × {𝑏})) ⊆ 𝑥)}) |
216 | 215 | inteqd 4881 |
. . . . . . . . 9
⊢ (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) → ∩
{𝑥 ∈ On ∣
((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥)} = ∩ {𝑥 ∈ On ∣ ((( +no
↾ ((suc 𝑎 × suc
𝑏) ∖ {〈𝑎, 𝑏〉})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ (𝑎 × {𝑏})) ⊆ 𝑥)}) |
217 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑡 ∈ V, 𝑓 ∈ V ↦ ∩ {𝑥
∈ On ∣ ((𝑓
“ ({(1st ‘𝑡)} × (2nd ‘𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st ‘𝑡) × {(2nd
‘𝑡)})) ⊆ 𝑥)}) = (𝑡 ∈ V, 𝑓 ∈ V ↦ ∩ {𝑥
∈ On ∣ ((𝑓
“ ({(1st ‘𝑡)} × (2nd ‘𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st ‘𝑡) × {(2nd
‘𝑡)})) ⊆ 𝑥)}) |
218 | 209, 216,
217 | ovmpog 7410 |
. . . . . . . 8
⊢
((〈𝑎, 𝑏〉 ∈ V ∧ ( +no
↾ ((suc 𝑎 × suc
𝑏) ∖ {〈𝑎, 𝑏〉})) ∈ V ∧ ∩ {𝑥
∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ (𝑎 × {𝑏})) ⊆ 𝑥)} ∈ On) → (〈𝑎, 𝑏〉(𝑡 ∈ V, 𝑓 ∈ V ↦ ∩ {𝑥
∈ On ∣ ((𝑓
“ ({(1st ‘𝑡)} × (2nd ‘𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st ‘𝑡) × {(2nd
‘𝑡)})) ⊆ 𝑥)})( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉}))) = ∩
{𝑥 ∈ On ∣ (((
+no ↾ ((suc 𝑎 ×
suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ (𝑎 × {𝑏})) ⊆ 𝑥)}) |
219 | 80, 91, 196, 218 | mp3an12i 1463 |
. . . . . . 7
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → (〈𝑎, 𝑏〉(𝑡 ∈ V, 𝑓 ∈ V ↦ ∩ {𝑥
∈ On ∣ ((𝑓
“ ({(1st ‘𝑡)} × (2nd ‘𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st ‘𝑡) × {(2nd
‘𝑡)})) ⊆ 𝑥)})( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉}))) = ∩
{𝑥 ∈ On ∣ (((
+no ↾ ((suc 𝑎 ×
suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {〈𝑎, 𝑏〉})) “ (𝑎 × {𝑏})) ⊆ 𝑥)}) |
220 | 79, 219, 136 | 3eqtrd 2782 |
. . . . . 6
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)}) |
221 | 220, 195 | eqeltrd 2839 |
. . . . 5
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 +no 𝑏) ∈ On) |
222 | 221, 220 | jca 511 |
. . . 4
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On)) → ((𝑎 +no 𝑏) ∈ On ∧ (𝑎 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)})) |
223 | 222 | ex 412 |
. . 3
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) →
((∀𝑐 ∈ 𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ On) → ((𝑎 +no 𝑏) ∈ On ∧ (𝑎 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)}))) |
224 | 76, 223 | syl5 34 |
. 2
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) →
((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}) ∧ ∀𝑐 ∈ 𝑎 ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) ∧ ∀𝑑 ∈ 𝑏 ((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)})) → ((𝑎 +no 𝑏) ∈ On ∧ (𝑎 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)}))) |
225 | 14, 28, 41, 55, 69, 224 | on2ind 33755 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +no 𝐵) ∈ On ∧ (𝐴 +no 𝐵) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)})) |