MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddcllem Structured version   Visualization version   GIF version

Theorem naddcllem 8732
Description: Lemma for ordinal addition closure. (Contributed by Scott Fenton, 26-Aug-2024.)
Assertion
Ref Expression
naddcllem ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +no 𝐵) ∈ On ∧ (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem naddcllem
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑓 𝑡 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7455 . . . 4 (𝑎 = 𝑐 → (𝑎 +no 𝑏) = (𝑐 +no 𝑏))
21eleq1d 2829 . . 3 (𝑎 = 𝑐 → ((𝑎 +no 𝑏) ∈ On ↔ (𝑐 +no 𝑏) ∈ On))
3 sneq 4658 . . . . . . . . . 10 (𝑎 = 𝑐 → {𝑎} = {𝑐})
43xpeq1d 5729 . . . . . . . . 9 (𝑎 = 𝑐 → ({𝑎} × 𝑏) = ({𝑐} × 𝑏))
54imaeq2d 6089 . . . . . . . 8 (𝑎 = 𝑐 → ( +no “ ({𝑎} × 𝑏)) = ( +no “ ({𝑐} × 𝑏)))
65sseq1d 4040 . . . . . . 7 (𝑎 = 𝑐 → (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥))
7 xpeq1 5714 . . . . . . . . 9 (𝑎 = 𝑐 → (𝑎 × {𝑏}) = (𝑐 × {𝑏}))
87imaeq2d 6089 . . . . . . . 8 (𝑎 = 𝑐 → ( +no “ (𝑎 × {𝑏})) = ( +no “ (𝑐 × {𝑏})))
98sseq1d 4040 . . . . . . 7 (𝑎 = 𝑐 → (( +no “ (𝑎 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥))
106, 9anbi12d 631 . . . . . 6 (𝑎 = 𝑐 → ((( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)))
1110rabbidv 3451 . . . . 5 (𝑎 = 𝑐 → {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)})
1211inteqd 4975 . . . 4 (𝑎 = 𝑐 {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)})
131, 12eqeq12d 2756 . . 3 (𝑎 = 𝑐 → ((𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} ↔ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}))
142, 13anbi12d 631 . 2 (𝑎 = 𝑐 → (((𝑎 +no 𝑏) ∈ On ∧ (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)}) ↔ ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)})))
15 oveq2 7456 . . . 4 (𝑏 = 𝑑 → (𝑐 +no 𝑏) = (𝑐 +no 𝑑))
1615eleq1d 2829 . . 3 (𝑏 = 𝑑 → ((𝑐 +no 𝑏) ∈ On ↔ (𝑐 +no 𝑑) ∈ On))
17 xpeq2 5721 . . . . . . . . 9 (𝑏 = 𝑑 → ({𝑐} × 𝑏) = ({𝑐} × 𝑑))
1817imaeq2d 6089 . . . . . . . 8 (𝑏 = 𝑑 → ( +no “ ({𝑐} × 𝑏)) = ( +no “ ({𝑐} × 𝑑)))
1918sseq1d 4040 . . . . . . 7 (𝑏 = 𝑑 → (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥))
20 sneq 4658 . . . . . . . . . 10 (𝑏 = 𝑑 → {𝑏} = {𝑑})
2120xpeq2d 5730 . . . . . . . . 9 (𝑏 = 𝑑 → (𝑐 × {𝑏}) = (𝑐 × {𝑑}))
2221imaeq2d 6089 . . . . . . . 8 (𝑏 = 𝑑 → ( +no “ (𝑐 × {𝑏})) = ( +no “ (𝑐 × {𝑑})))
2322sseq1d 4040 . . . . . . 7 (𝑏 = 𝑑 → (( +no “ (𝑐 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥))
2419, 23anbi12d 631 . . . . . 6 (𝑏 = 𝑑 → ((( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)))
2524rabbidv 3451 . . . . 5 (𝑏 = 𝑑 → {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)})
2625inteqd 4975 . . . 4 (𝑏 = 𝑑 {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)})
2715, 26eqeq12d 2756 . . 3 (𝑏 = 𝑑 → ((𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)} ↔ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}))
2816, 27anbi12d 631 . 2 (𝑏 = 𝑑 → (((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) ↔ ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)})))
29 oveq1 7455 . . . 4 (𝑎 = 𝑐 → (𝑎 +no 𝑑) = (𝑐 +no 𝑑))
3029eleq1d 2829 . . 3 (𝑎 = 𝑐 → ((𝑎 +no 𝑑) ∈ On ↔ (𝑐 +no 𝑑) ∈ On))
313xpeq1d 5729 . . . . . . . . 9 (𝑎 = 𝑐 → ({𝑎} × 𝑑) = ({𝑐} × 𝑑))
3231imaeq2d 6089 . . . . . . . 8 (𝑎 = 𝑐 → ( +no “ ({𝑎} × 𝑑)) = ( +no “ ({𝑐} × 𝑑)))
3332sseq1d 4040 . . . . . . 7 (𝑎 = 𝑐 → (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ↔ ( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥))
34 xpeq1 5714 . . . . . . . . 9 (𝑎 = 𝑐 → (𝑎 × {𝑑}) = (𝑐 × {𝑑}))
3534imaeq2d 6089 . . . . . . . 8 (𝑎 = 𝑐 → ( +no “ (𝑎 × {𝑑})) = ( +no “ (𝑐 × {𝑑})))
3635sseq1d 4040 . . . . . . 7 (𝑎 = 𝑐 → (( +no “ (𝑎 × {𝑑})) ⊆ 𝑥 ↔ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥))
3733, 36anbi12d 631 . . . . . 6 (𝑎 = 𝑐 → ((( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥) ↔ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)))
3837rabbidv 3451 . . . . 5 (𝑎 = 𝑐 → {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)})
3938inteqd 4975 . . . 4 (𝑎 = 𝑐 {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)})
4029, 39eqeq12d 2756 . . 3 (𝑎 = 𝑐 → ((𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)} ↔ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}))
4130, 40anbi12d 631 . 2 (𝑎 = 𝑐 → (((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)}) ↔ ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)})))
42 oveq1 7455 . . . 4 (𝑎 = 𝐴 → (𝑎 +no 𝑏) = (𝐴 +no 𝑏))
4342eleq1d 2829 . . 3 (𝑎 = 𝐴 → ((𝑎 +no 𝑏) ∈ On ↔ (𝐴 +no 𝑏) ∈ On))
44 sneq 4658 . . . . . . . . . 10 (𝑎 = 𝐴 → {𝑎} = {𝐴})
4544xpeq1d 5729 . . . . . . . . 9 (𝑎 = 𝐴 → ({𝑎} × 𝑏) = ({𝐴} × 𝑏))
4645imaeq2d 6089 . . . . . . . 8 (𝑎 = 𝐴 → ( +no “ ({𝑎} × 𝑏)) = ( +no “ ({𝐴} × 𝑏)))
4746sseq1d 4040 . . . . . . 7 (𝑎 = 𝐴 → (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥))
48 xpeq1 5714 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑎 × {𝑏}) = (𝐴 × {𝑏}))
4948imaeq2d 6089 . . . . . . . 8 (𝑎 = 𝐴 → ( +no “ (𝑎 × {𝑏})) = ( +no “ (𝐴 × {𝑏})))
5049sseq1d 4040 . . . . . . 7 (𝑎 = 𝐴 → (( +no “ (𝑎 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥))
5147, 50anbi12d 631 . . . . . 6 (𝑎 = 𝐴 → ((( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)))
5251rabbidv 3451 . . . . 5 (𝑎 = 𝐴 → {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)})
5352inteqd 4975 . . . 4 (𝑎 = 𝐴 {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)})
5442, 53eqeq12d 2756 . . 3 (𝑎 = 𝐴 → ((𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} ↔ (𝐴 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)}))
5543, 54anbi12d 631 . 2 (𝑎 = 𝐴 → (((𝑎 +no 𝑏) ∈ On ∧ (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)}) ↔ ((𝐴 +no 𝑏) ∈ On ∧ (𝐴 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)})))
56 oveq2 7456 . . . 4 (𝑏 = 𝐵 → (𝐴 +no 𝑏) = (𝐴 +no 𝐵))
5756eleq1d 2829 . . 3 (𝑏 = 𝐵 → ((𝐴 +no 𝑏) ∈ On ↔ (𝐴 +no 𝐵) ∈ On))
58 xpeq2 5721 . . . . . . . . 9 (𝑏 = 𝐵 → ({𝐴} × 𝑏) = ({𝐴} × 𝐵))
5958imaeq2d 6089 . . . . . . . 8 (𝑏 = 𝐵 → ( +no “ ({𝐴} × 𝑏)) = ( +no “ ({𝐴} × 𝐵)))
6059sseq1d 4040 . . . . . . 7 (𝑏 = 𝐵 → (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥))
61 sneq 4658 . . . . . . . . . 10 (𝑏 = 𝐵 → {𝑏} = {𝐵})
6261xpeq2d 5730 . . . . . . . . 9 (𝑏 = 𝐵 → (𝐴 × {𝑏}) = (𝐴 × {𝐵}))
6362imaeq2d 6089 . . . . . . . 8 (𝑏 = 𝐵 → ( +no “ (𝐴 × {𝑏})) = ( +no “ (𝐴 × {𝐵})))
6463sseq1d 4040 . . . . . . 7 (𝑏 = 𝐵 → (( +no “ (𝐴 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥))
6560, 64anbi12d 631 . . . . . 6 (𝑏 = 𝐵 → ((( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)))
6665rabbidv 3451 . . . . 5 (𝑏 = 𝐵 → {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)})
6766inteqd 4975 . . . 4 (𝑏 = 𝐵 {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)})
6856, 67eqeq12d 2756 . . 3 (𝑏 = 𝐵 → ((𝐴 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)} ↔ (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)}))
6957, 68anbi12d 631 . 2 (𝑏 = 𝐵 → (((𝐴 +no 𝑏) ∈ On ∧ (𝐴 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝑏})) ⊆ 𝑥)}) ↔ ((𝐴 +no 𝐵) ∈ On ∧ (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)})))
70 simpl 482 . . . . . 6 (((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) → (𝑐 +no 𝑏) ∈ On)
7170ralimi 3089 . . . . 5 (∀𝑐𝑎 ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) → ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On)
72713ad2ant2 1134 . . . 4 ((∀𝑐𝑎𝑑𝑏 ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}) ∧ ∀𝑐𝑎 ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) ∧ ∀𝑑𝑏 ((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)})) → ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On)
73 simpl 482 . . . . . 6 (((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)}) → (𝑎 +no 𝑑) ∈ On)
7473ralimi 3089 . . . . 5 (∀𝑑𝑏 ((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)}) → ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)
75743ad2ant3 1135 . . . 4 ((∀𝑐𝑎𝑑𝑏 ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}) ∧ ∀𝑐𝑎 ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) ∧ ∀𝑑𝑏 ((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)})) → ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)
7672, 75jca 511 . . 3 ((∀𝑐𝑎𝑑𝑏 ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}) ∧ ∀𝑐𝑎 ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) ∧ ∀𝑑𝑏 ((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)})) → (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On))
77 df-nadd 8722 . . . . . . . . 9 +no = frecs({⟨𝑝, 𝑞⟩ ∣ (𝑝 ∈ (On × On) ∧ 𝑞 ∈ (On × On) ∧ (((1st𝑝) E (1st𝑞) ∨ (1st𝑝) = (1st𝑞)) ∧ ((2nd𝑝) E (2nd𝑞) ∨ (2nd𝑝) = (2nd𝑞)) ∧ 𝑝𝑞))}, (On × On), (𝑡 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)}))
7877on2recsov 8724 . . . . . . . 8 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 +no 𝑏) = (⟨𝑎, 𝑏⟩(𝑡 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)})( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}))))
7978adantr 480 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 +no 𝑏) = (⟨𝑎, 𝑏⟩(𝑡 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)})( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}))))
80 opex 5484 . . . . . . . 8 𝑎, 𝑏⟩ ∈ V
81 naddfn 8731 . . . . . . . . . 10 +no Fn (On × On)
82 fnfun 6679 . . . . . . . . . 10 ( +no Fn (On × On) → Fun +no )
8381, 82ax-mp 5 . . . . . . . . 9 Fun +no
84 vex 3492 . . . . . . . . . . . 12 𝑎 ∈ V
8584sucex 7842 . . . . . . . . . . 11 suc 𝑎 ∈ V
86 vex 3492 . . . . . . . . . . . 12 𝑏 ∈ V
8786sucex 7842 . . . . . . . . . . 11 suc 𝑏 ∈ V
8885, 87xpex 7788 . . . . . . . . . 10 (suc 𝑎 × suc 𝑏) ∈ V
8988difexi 5348 . . . . . . . . 9 ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) ∈ V
90 resfunexg 7252 . . . . . . . . 9 ((Fun +no ∧ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) ∈ V) → ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) ∈ V)
9183, 89, 90mp2an 691 . . . . . . . 8 ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) ∈ V
92 eloni 6405 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ On → Ord 𝑏)
9392ad2antlr 726 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → Ord 𝑏)
94 ordirr 6413 . . . . . . . . . . . . . . . . . 18 (Ord 𝑏 → ¬ 𝑏𝑏)
9593, 94syl 17 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ¬ 𝑏𝑏)
9695olcd 873 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (¬ 𝑎 ∈ {𝑎} ∨ ¬ 𝑏𝑏))
97 ianor 982 . . . . . . . . . . . . . . . . 17 (¬ (𝑎 ∈ {𝑎} ∧ 𝑏𝑏) ↔ (¬ 𝑎 ∈ {𝑎} ∨ ¬ 𝑏𝑏))
98 opelxp 5736 . . . . . . . . . . . . . . . . 17 (⟨𝑎, 𝑏⟩ ∈ ({𝑎} × 𝑏) ↔ (𝑎 ∈ {𝑎} ∧ 𝑏𝑏))
9997, 98xchnxbir 333 . . . . . . . . . . . . . . . 16 (¬ ⟨𝑎, 𝑏⟩ ∈ ({𝑎} × 𝑏) ↔ (¬ 𝑎 ∈ {𝑎} ∨ ¬ 𝑏𝑏))
10096, 99sylibr 234 . . . . . . . . . . . . . . 15 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ¬ ⟨𝑎, 𝑏⟩ ∈ ({𝑎} × 𝑏))
10184sucid 6477 . . . . . . . . . . . . . . . . . 18 𝑎 ∈ suc 𝑎
102 snssi 4833 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ suc 𝑎 → {𝑎} ⊆ suc 𝑎)
103101, 102ax-mp 5 . . . . . . . . . . . . . . . . 17 {𝑎} ⊆ suc 𝑎
104 sssucid 6475 . . . . . . . . . . . . . . . . 17 𝑏 ⊆ suc 𝑏
105 xpss12 5715 . . . . . . . . . . . . . . . . 17 (({𝑎} ⊆ suc 𝑎𝑏 ⊆ suc 𝑏) → ({𝑎} × 𝑏) ⊆ (suc 𝑎 × suc 𝑏))
106103, 104, 105mp2an 691 . . . . . . . . . . . . . . . 16 ({𝑎} × 𝑏) ⊆ (suc 𝑎 × suc 𝑏)
107 ssdifsn 4813 . . . . . . . . . . . . . . . 16 (({𝑎} × 𝑏) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) ↔ (({𝑎} × 𝑏) ⊆ (suc 𝑎 × suc 𝑏) ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ ({𝑎} × 𝑏)))
108106, 107mpbiran 708 . . . . . . . . . . . . . . 15 (({𝑎} × 𝑏) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) ↔ ¬ ⟨𝑎, 𝑏⟩ ∈ ({𝑎} × 𝑏))
109100, 108sylibr 234 . . . . . . . . . . . . . 14 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ({𝑎} × 𝑏) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}))
110 resima2 6045 . . . . . . . . . . . . . 14 (({𝑎} × 𝑏) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) → (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) = ( +no “ ({𝑎} × 𝑏)))
111109, 110syl 17 . . . . . . . . . . . . 13 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) = ( +no “ ({𝑎} × 𝑏)))
112111sseq1d 4040 . . . . . . . . . . . 12 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥))
113 eloni 6405 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ On → Ord 𝑎)
114113ad2antrr 725 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → Ord 𝑎)
115 ordirr 6413 . . . . . . . . . . . . . . . . . 18 (Ord 𝑎 → ¬ 𝑎𝑎)
116114, 115syl 17 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ¬ 𝑎𝑎)
117116orcd 872 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (¬ 𝑎𝑎 ∨ ¬ 𝑏 ∈ {𝑏}))
118 ianor 982 . . . . . . . . . . . . . . . . 17 (¬ (𝑎𝑎𝑏 ∈ {𝑏}) ↔ (¬ 𝑎𝑎 ∨ ¬ 𝑏 ∈ {𝑏}))
119 opelxp 5736 . . . . . . . . . . . . . . . . 17 (⟨𝑎, 𝑏⟩ ∈ (𝑎 × {𝑏}) ↔ (𝑎𝑎𝑏 ∈ {𝑏}))
120118, 119xchnxbir 333 . . . . . . . . . . . . . . . 16 (¬ ⟨𝑎, 𝑏⟩ ∈ (𝑎 × {𝑏}) ↔ (¬ 𝑎𝑎 ∨ ¬ 𝑏 ∈ {𝑏}))
121117, 120sylibr 234 . . . . . . . . . . . . . . 15 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ¬ ⟨𝑎, 𝑏⟩ ∈ (𝑎 × {𝑏}))
122 sssucid 6475 . . . . . . . . . . . . . . . . 17 𝑎 ⊆ suc 𝑎
12386sucid 6477 . . . . . . . . . . . . . . . . . 18 𝑏 ∈ suc 𝑏
124 snssi 4833 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ suc 𝑏 → {𝑏} ⊆ suc 𝑏)
125123, 124ax-mp 5 . . . . . . . . . . . . . . . . 17 {𝑏} ⊆ suc 𝑏
126 xpss12 5715 . . . . . . . . . . . . . . . . 17 ((𝑎 ⊆ suc 𝑎 ∧ {𝑏} ⊆ suc 𝑏) → (𝑎 × {𝑏}) ⊆ (suc 𝑎 × suc 𝑏))
127122, 125, 126mp2an 691 . . . . . . . . . . . . . . . 16 (𝑎 × {𝑏}) ⊆ (suc 𝑎 × suc 𝑏)
128 ssdifsn 4813 . . . . . . . . . . . . . . . 16 ((𝑎 × {𝑏}) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) ↔ ((𝑎 × {𝑏}) ⊆ (suc 𝑎 × suc 𝑏) ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ (𝑎 × {𝑏})))
129127, 128mpbiran 708 . . . . . . . . . . . . . . 15 ((𝑎 × {𝑏}) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) ↔ ¬ ⟨𝑎, 𝑏⟩ ∈ (𝑎 × {𝑏}))
130121, 129sylibr 234 . . . . . . . . . . . . . 14 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 × {𝑏}) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}))
131 resima2 6045 . . . . . . . . . . . . . 14 ((𝑎 × {𝑏}) ⊆ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}) → (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) = ( +no “ (𝑎 × {𝑏})))
132130, 131syl 17 . . . . . . . . . . . . 13 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) = ( +no “ (𝑎 × {𝑏})))
133132sseq1d 4040 . . . . . . . . . . . 12 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥))
134112, 133anbi12d 631 . . . . . . . . . . 11 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)))
135134rabbidv 3451 . . . . . . . . . 10 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)})
136135inteqd 4975 . . . . . . . . 9 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)})
137 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)
138 oveq1 7455 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑎 → (𝑡 +no 𝑑) = (𝑎 +no 𝑑))
139138eleq1d 2829 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑎 → ((𝑡 +no 𝑑) ∈ On ↔ (𝑎 +no 𝑑) ∈ On))
140139ralbidv 3184 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑎 → (∀𝑑𝑏 (𝑡 +no 𝑑) ∈ On ↔ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On))
14184, 140ralsn 4705 . . . . . . . . . . . . . . . . 17 (∀𝑡 ∈ {𝑎}∀𝑑𝑏 (𝑡 +no 𝑑) ∈ On ↔ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)
142137, 141sylibr 234 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ∀𝑡 ∈ {𝑎}∀𝑑𝑏 (𝑡 +no 𝑑) ∈ On)
143 snssi 4833 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ On → {𝑎} ⊆ On)
144 onss 7820 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ On → 𝑏 ⊆ On)
145 xpss12 5715 . . . . . . . . . . . . . . . . . . . 20 (({𝑎} ⊆ On ∧ 𝑏 ⊆ On) → ({𝑎} × 𝑏) ⊆ (On × On))
146143, 144, 145syl2an 595 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ({𝑎} × 𝑏) ⊆ (On × On))
147146adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ({𝑎} × 𝑏) ⊆ (On × On))
14881fndmi 6683 . . . . . . . . . . . . . . . . . 18 dom +no = (On × On)
149147, 148sseqtrrdi 4060 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ({𝑎} × 𝑏) ⊆ dom +no )
150 funimassov 7627 . . . . . . . . . . . . . . . . 17 ((Fun +no ∧ ({𝑎} × 𝑏) ⊆ dom +no ) → (( +no “ ({𝑎} × 𝑏)) ⊆ On ↔ ∀𝑡 ∈ {𝑎}∀𝑑𝑏 (𝑡 +no 𝑑) ∈ On))
15183, 149, 150sylancr 586 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no “ ({𝑎} × 𝑏)) ⊆ On ↔ ∀𝑡 ∈ {𝑎}∀𝑑𝑏 (𝑡 +no 𝑑) ∈ On))
152142, 151mpbird 257 . . . . . . . . . . . . . . 15 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ( +no “ ({𝑎} × 𝑏)) ⊆ On)
153 simprl 770 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On)
154 oveq2 7456 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑏 → (𝑐 +no 𝑡) = (𝑐 +no 𝑏))
155154eleq1d 2829 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑏 → ((𝑐 +no 𝑡) ∈ On ↔ (𝑐 +no 𝑏) ∈ On))
15686, 155ralsn 4705 . . . . . . . . . . . . . . . . . 18 (∀𝑡 ∈ {𝑏} (𝑐 +no 𝑡) ∈ On ↔ (𝑐 +no 𝑏) ∈ On)
157156ralbii 3099 . . . . . . . . . . . . . . . . 17 (∀𝑐𝑎𝑡 ∈ {𝑏} (𝑐 +no 𝑡) ∈ On ↔ ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On)
158153, 157sylibr 234 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ∀𝑐𝑎𝑡 ∈ {𝑏} (𝑐 +no 𝑡) ∈ On)
159 onss 7820 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ On → 𝑎 ⊆ On)
160 snssi 4833 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ On → {𝑏} ⊆ On)
161 xpss12 5715 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ⊆ On ∧ {𝑏} ⊆ On) → (𝑎 × {𝑏}) ⊆ (On × On))
162159, 160, 161syl2an 595 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 × {𝑏}) ⊆ (On × On))
163162adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 × {𝑏}) ⊆ (On × On))
164163, 148sseqtrrdi 4060 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 × {𝑏}) ⊆ dom +no )
165 funimassov 7627 . . . . . . . . . . . . . . . . 17 ((Fun +no ∧ (𝑎 × {𝑏}) ⊆ dom +no ) → (( +no “ (𝑎 × {𝑏})) ⊆ On ↔ ∀𝑐𝑎𝑡 ∈ {𝑏} (𝑐 +no 𝑡) ∈ On))
16683, 164, 165sylancr 586 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no “ (𝑎 × {𝑏})) ⊆ On ↔ ∀𝑐𝑎𝑡 ∈ {𝑏} (𝑐 +no 𝑡) ∈ On))
167158, 166mpbird 257 . . . . . . . . . . . . . . 15 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ( +no “ (𝑎 × {𝑏})) ⊆ On)
168152, 167unssd 4215 . . . . . . . . . . . . . 14 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ⊆ On)
169 ssorduni 7814 . . . . . . . . . . . . . 14 ((( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ⊆ On → Ord (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))
170168, 169syl 17 . . . . . . . . . . . . 13 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → Ord (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))
171 vsnex 5449 . . . . . . . . . . . . . . . . . 18 {𝑎} ∈ V
172171, 86xpex 7788 . . . . . . . . . . . . . . . . 17 ({𝑎} × 𝑏) ∈ V
173 funimaexg 6664 . . . . . . . . . . . . . . . . 17 ((Fun +no ∧ ({𝑎} × 𝑏) ∈ V) → ( +no “ ({𝑎} × 𝑏)) ∈ V)
17483, 172, 173mp2an 691 . . . . . . . . . . . . . . . 16 ( +no “ ({𝑎} × 𝑏)) ∈ V
175 vsnex 5449 . . . . . . . . . . . . . . . . . 18 {𝑏} ∈ V
17684, 175xpex 7788 . . . . . . . . . . . . . . . . 17 (𝑎 × {𝑏}) ∈ V
177 funimaexg 6664 . . . . . . . . . . . . . . . . 17 ((Fun +no ∧ (𝑎 × {𝑏}) ∈ V) → ( +no “ (𝑎 × {𝑏})) ∈ V)
17883, 176, 177mp2an 691 . . . . . . . . . . . . . . . 16 ( +no “ (𝑎 × {𝑏})) ∈ V
179174, 178unex 7779 . . . . . . . . . . . . . . 15 (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ V
180179uniex 7776 . . . . . . . . . . . . . 14 (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ V
181180elon 6404 . . . . . . . . . . . . 13 ( (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On ↔ Ord (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))
182170, 181sylibr 234 . . . . . . . . . . . 12 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On)
183 onsucb 7853 . . . . . . . . . . . 12 ( (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On ↔ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On)
184182, 183sylib 218 . . . . . . . . . . 11 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On)
185 onsucuni 7864 . . . . . . . . . . . . 13 ((( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ⊆ On → (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))
186168, 185syl 17 . . . . . . . . . . . 12 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))
187186unssad 4216 . . . . . . . . . . 11 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ( +no “ ({𝑎} × 𝑏)) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))
188186unssbd 4217 . . . . . . . . . . 11 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ( +no “ (𝑎 × {𝑏})) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))
189 sseq2 4035 . . . . . . . . . . . . 13 (𝑥 = suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) → (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ↔ ( +no “ ({𝑎} × 𝑏)) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏})))))
190 sseq2 4035 . . . . . . . . . . . . 13 (𝑥 = suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) → (( +no “ (𝑎 × {𝑏})) ⊆ 𝑥 ↔ ( +no “ (𝑎 × {𝑏})) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏})))))
191189, 190anbi12d 631 . . . . . . . . . . . 12 (𝑥 = suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) → ((( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ (( +no “ ({𝑎} × 𝑏)) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∧ ( +no “ (𝑎 × {𝑏})) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))))
192191rspcev 3635 . . . . . . . . . . 11 ((suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∈ On ∧ (( +no “ ({𝑎} × 𝑏)) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))) ∧ ( +no “ (𝑎 × {𝑏})) ⊆ suc (( +no “ ({𝑎} × 𝑏)) ∪ ( +no “ (𝑎 × {𝑏}))))) → ∃𝑥 ∈ On (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥))
193184, 187, 188, 192syl12anc 836 . . . . . . . . . 10 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ∃𝑥 ∈ On (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥))
194 onintrab2 7833 . . . . . . . . . 10 (∃𝑥 ∈ On (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} ∈ On)
195193, 194sylib 218 . . . . . . . . 9 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)} ∈ On)
196136, 195eqeltrd 2844 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)} ∈ On)
19784, 86op1std 8040 . . . . . . . . . . . . . . . 16 (𝑡 = ⟨𝑎, 𝑏⟩ → (1st𝑡) = 𝑎)
198197sneqd 4660 . . . . . . . . . . . . . . 15 (𝑡 = ⟨𝑎, 𝑏⟩ → {(1st𝑡)} = {𝑎})
19984, 86op2ndd 8041 . . . . . . . . . . . . . . 15 (𝑡 = ⟨𝑎, 𝑏⟩ → (2nd𝑡) = 𝑏)
200198, 199xpeq12d 5731 . . . . . . . . . . . . . 14 (𝑡 = ⟨𝑎, 𝑏⟩ → ({(1st𝑡)} × (2nd𝑡)) = ({𝑎} × 𝑏))
201200imaeq2d 6089 . . . . . . . . . . . . 13 (𝑡 = ⟨𝑎, 𝑏⟩ → (𝑓 “ ({(1st𝑡)} × (2nd𝑡))) = (𝑓 “ ({𝑎} × 𝑏)))
202201sseq1d 4040 . . . . . . . . . . . 12 (𝑡 = ⟨𝑎, 𝑏⟩ → ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ↔ (𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥))
203199sneqd 4660 . . . . . . . . . . . . . . 15 (𝑡 = ⟨𝑎, 𝑏⟩ → {(2nd𝑡)} = {𝑏})
204197, 203xpeq12d 5731 . . . . . . . . . . . . . 14 (𝑡 = ⟨𝑎, 𝑏⟩ → ((1st𝑡) × {(2nd𝑡)}) = (𝑎 × {𝑏}))
205204imaeq2d 6089 . . . . . . . . . . . . 13 (𝑡 = ⟨𝑎, 𝑏⟩ → (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) = (𝑓 “ (𝑎 × {𝑏})))
206205sseq1d 4040 . . . . . . . . . . . 12 (𝑡 = ⟨𝑎, 𝑏⟩ → ((𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥 ↔ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥))
207202, 206anbi12d 631 . . . . . . . . . . 11 (𝑡 = ⟨𝑎, 𝑏⟩ → (((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥) ↔ ((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥)))
208207rabbidv 3451 . . . . . . . . . 10 (𝑡 = ⟨𝑎, 𝑏⟩ → {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ ((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥)})
209208inteqd 4975 . . . . . . . . 9 (𝑡 = ⟨𝑎, 𝑏⟩ → {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ ((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥)})
210 imaeq1 6084 . . . . . . . . . . . . 13 (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) → (𝑓 “ ({𝑎} × 𝑏)) = (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)))
211210sseq1d 4040 . . . . . . . . . . . 12 (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) → ((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ↔ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥))
212 imaeq1 6084 . . . . . . . . . . . . 13 (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) → (𝑓 “ (𝑎 × {𝑏})) = (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})))
213212sseq1d 4040 . . . . . . . . . . . 12 (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) → ((𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥 ↔ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥))
214211, 213anbi12d 631 . . . . . . . . . . 11 (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) → (((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥) ↔ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)))
215214rabbidv 3451 . . . . . . . . . 10 (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) → {𝑥 ∈ On ∣ ((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)})
216215inteqd 4975 . . . . . . . . 9 (𝑓 = ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) → {𝑥 ∈ On ∣ ((𝑓 “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (𝑓 “ (𝑎 × {𝑏})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)})
217 eqid 2740 . . . . . . . . 9 (𝑡 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)}) = (𝑡 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)})
218209, 216, 217ovmpog 7609 . . . . . . . 8 ((⟨𝑎, 𝑏⟩ ∈ V ∧ ( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) ∈ V ∧ {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)} ∈ On) → (⟨𝑎, 𝑏⟩(𝑡 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)})( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}))) = {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)})
21980, 91, 196, 218mp3an12i 1465 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (⟨𝑎, 𝑏⟩(𝑡 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ On ∣ ((𝑓 “ ({(1st𝑡)} × (2nd𝑡))) ⊆ 𝑥 ∧ (𝑓 “ ((1st𝑡) × {(2nd𝑡)})) ⊆ 𝑥)})( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩}))) = {𝑥 ∈ On ∣ ((( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ (( +no ↾ ((suc 𝑎 × suc 𝑏) ∖ {⟨𝑎, 𝑏⟩})) “ (𝑎 × {𝑏})) ⊆ 𝑥)})
22079, 219, 1363eqtrd 2784 . . . . . 6 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)})
221220, 195eqeltrd 2844 . . . . 5 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → (𝑎 +no 𝑏) ∈ On)
222221, 220jca 511 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On)) → ((𝑎 +no 𝑏) ∈ On ∧ (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)}))
223222ex 412 . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐𝑎 (𝑐 +no 𝑏) ∈ On ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) ∈ On) → ((𝑎 +no 𝑏) ∈ On ∧ (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)})))
22476, 223syl5 34 . 2 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐𝑎𝑑𝑏 ((𝑐 +no 𝑑) ∈ On ∧ (𝑐 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑑})) ⊆ 𝑥)}) ∧ ∀𝑐𝑎 ((𝑐 +no 𝑏) ∈ On ∧ (𝑐 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑐} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑐 × {𝑏})) ⊆ 𝑥)}) ∧ ∀𝑑𝑏 ((𝑎 +no 𝑑) ∈ On ∧ (𝑎 +no 𝑑) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑑)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑑})) ⊆ 𝑥)})) → ((𝑎 +no 𝑏) ∈ On ∧ (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (( +no “ ({𝑎} × 𝑏)) ⊆ 𝑥 ∧ ( +no “ (𝑎 × {𝑏})) ⊆ 𝑥)})))
22514, 28, 41, 55, 69, 224on2ind 8725 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +no 𝐵) ∈ On ∧ (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cdif 3973  cun 3974  wss 3976  {csn 4648  cop 4654   cuni 4931   cint 4970   × cxp 5698  dom cdm 5700  cres 5702  cima 5703  Ord word 6394  Oncon0 6395  suc csuc 6397  Fun wfun 6567   Fn wfn 6568  cfv 6573  (class class class)co 7448  cmpo 7450  1st c1st 8028  2nd c2nd 8029   +no cnadd 8721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-nadd 8722
This theorem is referenced by:  naddcl  8733  naddov  8734
  Copyright terms: Public domain W3C validator