MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssmin Structured version   Visualization version   GIF version

Theorem ssmin 4970
Description: Subclass of the minimum value of class of supersets. (Contributed by NM, 10-Aug-2006.)
Assertion
Ref Expression
ssmin 𝐴 {𝑥 ∣ (𝐴𝑥𝜑)}
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssmin
StepHypRef Expression
1 ssintab 4968 . 2 (𝐴 {𝑥 ∣ (𝐴𝑥𝜑)} ↔ ∀𝑥((𝐴𝑥𝜑) → 𝐴𝑥))
2 simpl 481 . 2 ((𝐴𝑥𝜑) → 𝐴𝑥)
31, 2mpgbir 1799 1 𝐴 {𝑥 ∣ (𝐴𝑥𝜑)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  {cab 2707  wss 3947   cint 4949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-v 3474  df-in 3954  df-ss 3964  df-int 4950
This theorem is referenced by:  tcid  9736  trclfvlb  14959  trclun  14965  dmtrcl  42680  rntrcl  42681  dfrtrcl5  42682
  Copyright terms: Public domain W3C validator