| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssmin | Structured version Visualization version GIF version | ||
| Description: Subclass of the minimum value of class of supersets. (Contributed by NM, 10-Aug-2006.) |
| Ref | Expression |
|---|---|
| ssmin | ⊢ 𝐴 ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssintab 4941 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} ↔ ∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝐴 ⊆ 𝑥)) | |
| 2 | simpl 482 | . 2 ⊢ ((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝐴 ⊆ 𝑥) | |
| 3 | 1, 2 | mpgbir 1799 | 1 ⊢ 𝐴 ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 {cab 2713 ⊆ wss 3926 ∩ cint 4922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-v 3461 df-ss 3943 df-int 4923 |
| This theorem is referenced by: tcid 9753 trclfvlb 15027 trclun 15033 dmtrcl 43651 rntrcl 43652 dfrtrcl5 43653 |
| Copyright terms: Public domain | W3C validator |