Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssmin | Structured version Visualization version GIF version |
Description: Subclass of the minimum value of class of supersets. (Contributed by NM, 10-Aug-2006.) |
Ref | Expression |
---|---|
ssmin | ⊢ 𝐴 ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssintab 4893 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} ↔ ∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝐴 ⊆ 𝑥)) | |
2 | simpl 482 | . 2 ⊢ ((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝐴 ⊆ 𝑥) | |
3 | 1, 2 | mpgbir 1803 | 1 ⊢ 𝐴 ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 {cab 2715 ⊆ wss 3883 ∩ cint 4876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-int 4877 |
This theorem is referenced by: tcid 9428 trclfvlb 14647 trclun 14653 dmtrcl 41124 rntrcl 41125 dfrtrcl5 41126 |
Copyright terms: Public domain | W3C validator |