![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssmin | Structured version Visualization version GIF version |
Description: Subclass of the minimum value of class of supersets. (Contributed by NM, 10-Aug-2006.) |
Ref | Expression |
---|---|
ssmin | ⊢ 𝐴 ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssintab 4989 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} ↔ ∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝐴 ⊆ 𝑥)) | |
2 | simpl 482 | . 2 ⊢ ((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝐴 ⊆ 𝑥) | |
3 | 1, 2 | mpgbir 1797 | 1 ⊢ 𝐴 ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 {cab 2717 ⊆ wss 3976 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-v 3490 df-ss 3993 df-int 4971 |
This theorem is referenced by: tcid 9808 trclfvlb 15057 trclun 15063 dmtrcl 43589 rntrcl 43590 dfrtrcl5 43591 |
Copyright terms: Public domain | W3C validator |