| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssmin | Structured version Visualization version GIF version | ||
| Description: Subclass of the minimum value of class of supersets. (Contributed by NM, 10-Aug-2006.) |
| Ref | Expression |
|---|---|
| ssmin | ⊢ 𝐴 ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssintab 4910 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} ↔ ∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝐴 ⊆ 𝑥)) | |
| 2 | simpl 482 | . 2 ⊢ ((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝐴 ⊆ 𝑥) | |
| 3 | 1, 2 | mpgbir 1800 | 1 ⊢ 𝐴 ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 {cab 2709 ⊆ wss 3897 ∩ cint 4892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-ss 3914 df-int 4893 |
| This theorem is referenced by: tcid 9622 trclfvlb 14910 trclun 14916 tz9.1regs 35122 dmtrcl 43660 rntrcl 43661 dfrtrcl5 43662 |
| Copyright terms: Public domain | W3C validator |