MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssmin Structured version   Visualization version   GIF version

Theorem ssmin 4967
Description: Subclass of the minimum value of class of supersets. (Contributed by NM, 10-Aug-2006.)
Assertion
Ref Expression
ssmin 𝐴 {𝑥 ∣ (𝐴𝑥𝜑)}
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssmin
StepHypRef Expression
1 ssintab 4965 . 2 (𝐴 {𝑥 ∣ (𝐴𝑥𝜑)} ↔ ∀𝑥((𝐴𝑥𝜑) → 𝐴𝑥))
2 simpl 482 . 2 ((𝐴𝑥𝜑) → 𝐴𝑥)
31, 2mpgbir 1799 1 𝐴 {𝑥 ∣ (𝐴𝑥𝜑)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  {cab 2714  wss 3951   cint 4946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-v 3482  df-ss 3968  df-int 4947
This theorem is referenced by:  tcid  9779  trclfvlb  15047  trclun  15053  dmtrcl  43640  rntrcl  43641  dfrtrcl5  43642
  Copyright terms: Public domain W3C validator