MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssmin Structured version   Visualization version   GIF version

Theorem ssmin 4898
Description: Subclass of the minimum value of class of supersets. (Contributed by NM, 10-Aug-2006.)
Assertion
Ref Expression
ssmin 𝐴 {𝑥 ∣ (𝐴𝑥𝜑)}
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssmin
StepHypRef Expression
1 ssintab 4896 . 2 (𝐴 {𝑥 ∣ (𝐴𝑥𝜑)} ↔ ∀𝑥((𝐴𝑥𝜑) → 𝐴𝑥))
2 simpl 483 . 2 ((𝐴𝑥𝜑) → 𝐴𝑥)
31, 2mpgbir 1802 1 𝐴 {𝑥 ∣ (𝐴𝑥𝜑)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  {cab 2715  wss 3887   cint 4879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-v 3434  df-in 3894  df-ss 3904  df-int 4880
This theorem is referenced by:  tcid  9497  trclfvlb  14719  trclun  14725  dmtrcl  41235  rntrcl  41236  dfrtrcl5  41237
  Copyright terms: Public domain W3C validator