Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmtrcl | Structured version Visualization version GIF version |
Description: The domain of the transitive closure is equal to the domain of its base relation. (Contributed by RP, 1-Nov-2020.) |
Ref | Expression |
---|---|
dmtrcl | ⊢ (𝑋 ∈ 𝑉 → dom ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = dom 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trclubg 14406 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) | |
2 | dmss 5742 | . . . 4 ⊢ (∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑋 ∪ (dom 𝑋 × ran 𝑋)) → dom ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ dom (𝑋 ∪ (dom 𝑋 × ran 𝑋))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑋 ∈ 𝑉 → dom ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ dom (𝑋 ∪ (dom 𝑋 × ran 𝑋))) |
4 | dmun 5750 | . . . 4 ⊢ dom (𝑋 ∪ (dom 𝑋 × ran 𝑋)) = (dom 𝑋 ∪ dom (dom 𝑋 × ran 𝑋)) | |
5 | dmxpss 6000 | . . . . 5 ⊢ dom (dom 𝑋 × ran 𝑋) ⊆ dom 𝑋 | |
6 | ssequn2 4088 | . . . . 5 ⊢ (dom (dom 𝑋 × ran 𝑋) ⊆ dom 𝑋 ↔ (dom 𝑋 ∪ dom (dom 𝑋 × ran 𝑋)) = dom 𝑋) | |
7 | 5, 6 | mpbi 233 | . . . 4 ⊢ (dom 𝑋 ∪ dom (dom 𝑋 × ran 𝑋)) = dom 𝑋 |
8 | 4, 7 | eqtri 2781 | . . 3 ⊢ dom (𝑋 ∪ (dom 𝑋 × ran 𝑋)) = dom 𝑋 |
9 | 3, 8 | sseqtrdi 3942 | . 2 ⊢ (𝑋 ∈ 𝑉 → dom ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ dom 𝑋) |
10 | ssmin 4857 | . . 3 ⊢ 𝑋 ⊆ ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} | |
11 | dmss 5742 | . . 3 ⊢ (𝑋 ⊆ ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} → dom 𝑋 ⊆ dom ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) | |
12 | 10, 11 | mp1i 13 | . 2 ⊢ (𝑋 ∈ 𝑉 → dom 𝑋 ⊆ dom ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |
13 | 9, 12 | eqssd 3909 | 1 ⊢ (𝑋 ∈ 𝑉 → dom ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = dom 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {cab 2735 ∪ cun 3856 ⊆ wss 3858 ∩ cint 4838 × cxp 5522 dom cdm 5524 ran crn 5525 ∘ ccom 5528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-int 4839 df-br 5033 df-opab 5095 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 |
This theorem is referenced by: dfrtrcl5 40702 |
Copyright terms: Public domain | W3C validator |