![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmtrcl | Structured version Visualization version GIF version |
Description: The domain of the transitive closure is equal to the domain of its base relation. (Contributed by RP, 1-Nov-2020.) |
Ref | Expression |
---|---|
dmtrcl | ⊢ (𝑋 ∈ 𝑉 → dom ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = dom 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trclubg 14151 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) | |
2 | dmss 5570 | . . . 4 ⊢ (∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑋 ∪ (dom 𝑋 × ran 𝑋)) → dom ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ dom (𝑋 ∪ (dom 𝑋 × ran 𝑋))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑋 ∈ 𝑉 → dom ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ dom (𝑋 ∪ (dom 𝑋 × ran 𝑋))) |
4 | dmun 5578 | . . . 4 ⊢ dom (𝑋 ∪ (dom 𝑋 × ran 𝑋)) = (dom 𝑋 ∪ dom (dom 𝑋 × ran 𝑋)) | |
5 | dmxpss 5821 | . . . . 5 ⊢ dom (dom 𝑋 × ran 𝑋) ⊆ dom 𝑋 | |
6 | ssequn2 4009 | . . . . 5 ⊢ (dom (dom 𝑋 × ran 𝑋) ⊆ dom 𝑋 ↔ (dom 𝑋 ∪ dom (dom 𝑋 × ran 𝑋)) = dom 𝑋) | |
7 | 5, 6 | mpbi 222 | . . . 4 ⊢ (dom 𝑋 ∪ dom (dom 𝑋 × ran 𝑋)) = dom 𝑋 |
8 | 4, 7 | eqtri 2802 | . . 3 ⊢ dom (𝑋 ∪ (dom 𝑋 × ran 𝑋)) = dom 𝑋 |
9 | 3, 8 | syl6sseq 3870 | . 2 ⊢ (𝑋 ∈ 𝑉 → dom ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ dom 𝑋) |
10 | ssmin 4731 | . . 3 ⊢ 𝑋 ⊆ ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} | |
11 | dmss 5570 | . . 3 ⊢ (𝑋 ⊆ ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} → dom 𝑋 ⊆ dom ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) | |
12 | 10, 11 | mp1i 13 | . 2 ⊢ (𝑋 ∈ 𝑉 → dom 𝑋 ⊆ dom ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |
13 | 9, 12 | eqssd 3838 | 1 ⊢ (𝑋 ∈ 𝑉 → dom ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = dom 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 {cab 2763 ∪ cun 3790 ⊆ wss 3792 ∩ cint 4712 × cxp 5355 dom cdm 5357 ran crn 5358 ∘ ccom 5361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-int 4713 df-br 4889 df-opab 4951 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 |
This theorem is referenced by: dfrtrcl5 38903 |
Copyright terms: Public domain | W3C validator |