| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rntrcl | Structured version Visualization version GIF version | ||
| Description: The range of the transitive closure is equal to the range of its base relation. (Contributed by RP, 1-Nov-2020.) |
| Ref | Expression |
|---|---|
| rntrcl | ⊢ (𝑋 ∈ 𝑉 → ran ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = ran 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trclubg 14906 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) | |
| 2 | rnss 5881 | . . . 4 ⊢ (∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑋 ∪ (dom 𝑋 × ran 𝑋)) → ran ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ ran (𝑋 ∪ (dom 𝑋 × ran 𝑋))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ran ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ ran (𝑋 ∪ (dom 𝑋 × ran 𝑋))) |
| 4 | rnun 6094 | . . . 4 ⊢ ran (𝑋 ∪ (dom 𝑋 × ran 𝑋)) = (ran 𝑋 ∪ ran (dom 𝑋 × ran 𝑋)) | |
| 5 | rnxpss 6121 | . . . . 5 ⊢ ran (dom 𝑋 × ran 𝑋) ⊆ ran 𝑋 | |
| 6 | ssequn2 4140 | . . . . 5 ⊢ (ran (dom 𝑋 × ran 𝑋) ⊆ ran 𝑋 ↔ (ran 𝑋 ∪ ran (dom 𝑋 × ran 𝑋)) = ran 𝑋) | |
| 7 | 5, 6 | mpbi 230 | . . . 4 ⊢ (ran 𝑋 ∪ ran (dom 𝑋 × ran 𝑋)) = ran 𝑋 |
| 8 | 4, 7 | eqtri 2752 | . . 3 ⊢ ran (𝑋 ∪ (dom 𝑋 × ran 𝑋)) = ran 𝑋 |
| 9 | 3, 8 | sseqtrdi 3976 | . 2 ⊢ (𝑋 ∈ 𝑉 → ran ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ ran 𝑋) |
| 10 | ssmin 4917 | . . 3 ⊢ 𝑋 ⊆ ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} | |
| 11 | rnss 5881 | . . 3 ⊢ (𝑋 ⊆ ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} → ran 𝑋 ⊆ ran ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) | |
| 12 | 10, 11 | mp1i 13 | . 2 ⊢ (𝑋 ∈ 𝑉 → ran 𝑋 ⊆ ran ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |
| 13 | 9, 12 | eqssd 3953 | 1 ⊢ (𝑋 ∈ 𝑉 → ran ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = ran 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∪ cun 3901 ⊆ wss 3903 ∩ cint 4896 × cxp 5617 dom cdm 5619 ran crn 5620 ∘ ccom 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 |
| This theorem is referenced by: dfrtrcl5 43606 |
| Copyright terms: Public domain | W3C validator |