| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rntrcl | Structured version Visualization version GIF version | ||
| Description: The range of the transitive closure is equal to the range of its base relation. (Contributed by RP, 1-Nov-2020.) |
| Ref | Expression |
|---|---|
| rntrcl | ⊢ (𝑋 ∈ 𝑉 → ran ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = ran 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trclubg 15018 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑋 ∪ (dom 𝑋 × ran 𝑋))) | |
| 2 | rnss 5919 | . . . 4 ⊢ (∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑋 ∪ (dom 𝑋 × ran 𝑋)) → ran ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ ran (𝑋 ∪ (dom 𝑋 × ran 𝑋))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ran ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ ran (𝑋 ∪ (dom 𝑋 × ran 𝑋))) |
| 4 | rnun 6134 | . . . 4 ⊢ ran (𝑋 ∪ (dom 𝑋 × ran 𝑋)) = (ran 𝑋 ∪ ran (dom 𝑋 × ran 𝑋)) | |
| 5 | rnxpss 6161 | . . . . 5 ⊢ ran (dom 𝑋 × ran 𝑋) ⊆ ran 𝑋 | |
| 6 | ssequn2 4164 | . . . . 5 ⊢ (ran (dom 𝑋 × ran 𝑋) ⊆ ran 𝑋 ↔ (ran 𝑋 ∪ ran (dom 𝑋 × ran 𝑋)) = ran 𝑋) | |
| 7 | 5, 6 | mpbi 230 | . . . 4 ⊢ (ran 𝑋 ∪ ran (dom 𝑋 × ran 𝑋)) = ran 𝑋 |
| 8 | 4, 7 | eqtri 2758 | . . 3 ⊢ ran (𝑋 ∪ (dom 𝑋 × ran 𝑋)) = ran 𝑋 |
| 9 | 3, 8 | sseqtrdi 3999 | . 2 ⊢ (𝑋 ∈ 𝑉 → ran ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ ran 𝑋) |
| 10 | ssmin 4943 | . . 3 ⊢ 𝑋 ⊆ ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} | |
| 11 | rnss 5919 | . . 3 ⊢ (𝑋 ⊆ ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} → ran 𝑋 ⊆ ran ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) | |
| 12 | 10, 11 | mp1i 13 | . 2 ⊢ (𝑋 ∈ 𝑉 → ran 𝑋 ⊆ ran ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |
| 13 | 9, 12 | eqssd 3976 | 1 ⊢ (𝑋 ∈ 𝑉 → ran ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = ran 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 ∪ cun 3924 ⊆ wss 3926 ∩ cint 4922 × cxp 5652 dom cdm 5654 ran crn 5655 ∘ ccom 5658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 |
| This theorem is referenced by: dfrtrcl5 43653 |
| Copyright terms: Public domain | W3C validator |