MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclfvlb Structured version   Visualization version   GIF version

Theorem trclfvlb 15047
Description: The transitive closure of a relation has a lower bound. (Contributed by RP, 28-Apr-2020.)
Assertion
Ref Expression
trclfvlb (𝑅𝑉𝑅 ⊆ (t+‘𝑅))

Proof of Theorem trclfvlb
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 ssmin 4967 . 2 𝑅 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}
2 trclfv 15039 . 2 (𝑅𝑉 → (t+‘𝑅) = {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
31, 2sseqtrrid 4027 1 (𝑅𝑉𝑅 ⊆ (t+‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  {cab 2714  wss 3951   cint 4946  ccom 5689  cfv 6561  t+ctcl 15024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-iota 6514  df-fun 6563  df-fv 6569  df-trcl 15026
This theorem is referenced by:  trclfvlb2  15049  trclfvlb3  15050  cotrtrclfv  15051  trclfvg  15054  dmtrclfv  15057  rntrclfvOAI  42702  brtrclfv2  43740  frege96d  43762  frege91d  43764  frege97d  43765  frege109d  43770  frege131d  43777
  Copyright terms: Public domain W3C validator