MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclfvlb Structured version   Visualization version   GIF version

Theorem trclfvlb 15044
Description: The transitive closure of a relation has a lower bound. (Contributed by RP, 28-Apr-2020.)
Assertion
Ref Expression
trclfvlb (𝑅𝑉𝑅 ⊆ (t+‘𝑅))

Proof of Theorem trclfvlb
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 ssmin 4972 . 2 𝑅 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}
2 trclfv 15036 . 2 (𝑅𝑉 → (t+‘𝑅) = {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
31, 2sseqtrrid 4049 1 (𝑅𝑉𝑅 ⊆ (t+‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  {cab 2712  wss 3963   cint 4951  ccom 5693  cfv 6563  t+ctcl 15021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571  df-trcl 15023
This theorem is referenced by:  trclfvlb2  15046  trclfvlb3  15047  cotrtrclfv  15048  trclfvg  15051  dmtrclfv  15054  rntrclfvOAI  42679  brtrclfv2  43717  frege96d  43739  frege91d  43741  frege97d  43742  frege109d  43747  frege131d  43754
  Copyright terms: Public domain W3C validator