MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclfvlb Structured version   Visualization version   GIF version

Theorem trclfvlb 14950
Description: The transitive closure of a relation has a lower bound. (Contributed by RP, 28-Apr-2020.)
Assertion
Ref Expression
trclfvlb (𝑅𝑉𝑅 ⊆ (t+‘𝑅))

Proof of Theorem trclfvlb
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 ssmin 4969 . 2 𝑅 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}
2 trclfv 14942 . 2 (𝑅𝑉 → (t+‘𝑅) = {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
31, 2sseqtrrid 4033 1 (𝑅𝑉𝑅 ⊆ (t+‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  {cab 2710  wss 3946   cint 4948  ccom 5678  cfv 6539  t+ctcl 14927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-int 4949  df-br 5147  df-opab 5209  df-mpt 5230  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-iota 6491  df-fun 6541  df-fv 6547  df-trcl 14929
This theorem is referenced by:  trclfvlb2  14952  trclfvlb3  14953  cotrtrclfv  14954  trclfvg  14957  dmtrclfv  14960  rntrclfvOAI  41361  brtrclfv2  42410  frege96d  42432  frege91d  42434  frege97d  42435  frege109d  42440  frege131d  42447
  Copyright terms: Public domain W3C validator