MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin4p1 Structured version   Visualization version   GIF version

Theorem isfin4p1 10198
Description: Alternate definition of IV-finite sets: they are strictly dominated by their successors. (Thus, the proper subset referred to in isfin4 10180 can be assumed to be only a singleton smaller than the original.) (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
isfin4p1 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 ⊔ 1o))

Proof of Theorem isfin4p1
StepHypRef Expression
1 1on 8392 . . . 4 1o ∈ On
2 djudoml 10068 . . . 4 ((𝐴 ∈ FinIV ∧ 1o ∈ On) → 𝐴 ≼ (𝐴 ⊔ 1o))
31, 2mpan2 691 . . 3 (𝐴 ∈ FinIV𝐴 ≼ (𝐴 ⊔ 1o))
4 1oex 8390 . . . . . . . . . . 11 1o ∈ V
54snid 4613 . . . . . . . . . 10 1o ∈ {1o}
6 0lt1o 8414 . . . . . . . . . 10 ∅ ∈ 1o
7 opelxpi 5651 . . . . . . . . . 10 ((1o ∈ {1o} ∧ ∅ ∈ 1o) → ⟨1o, ∅⟩ ∈ ({1o} × 1o))
85, 6, 7mp2an 692 . . . . . . . . 9 ⟨1o, ∅⟩ ∈ ({1o} × 1o)
9 elun2 4131 . . . . . . . . 9 (⟨1o, ∅⟩ ∈ ({1o} × 1o) → ⟨1o, ∅⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o)))
108, 9ax-mp 5 . . . . . . . 8 ⟨1o, ∅⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o))
11 df-dju 9786 . . . . . . . 8 (𝐴 ⊔ 1o) = (({∅} × 𝐴) ∪ ({1o} × 1o))
1210, 11eleqtrri 2828 . . . . . . 7 ⟨1o, ∅⟩ ∈ (𝐴 ⊔ 1o)
13 1n0 8398 . . . . . . . 8 1o ≠ ∅
14 opelxp1 5656 . . . . . . . . . 10 (⟨1o, ∅⟩ ∈ ({∅} × 𝐴) → 1o ∈ {∅})
15 elsni 4591 . . . . . . . . . 10 (1o ∈ {∅} → 1o = ∅)
1614, 15syl 17 . . . . . . . . 9 (⟨1o, ∅⟩ ∈ ({∅} × 𝐴) → 1o = ∅)
1716necon3ai 2951 . . . . . . . 8 (1o ≠ ∅ → ¬ ⟨1o, ∅⟩ ∈ ({∅} × 𝐴))
1813, 17ax-mp 5 . . . . . . 7 ¬ ⟨1o, ∅⟩ ∈ ({∅} × 𝐴)
19 ssun1 4126 . . . . . . . . 9 ({∅} × 𝐴) ⊆ (({∅} × 𝐴) ∪ ({1o} × 1o))
2019, 11sseqtrri 3982 . . . . . . . 8 ({∅} × 𝐴) ⊆ (𝐴 ⊔ 1o)
21 ssnelpss 4062 . . . . . . . 8 (({∅} × 𝐴) ⊆ (𝐴 ⊔ 1o) → ((⟨1o, ∅⟩ ∈ (𝐴 ⊔ 1o) ∧ ¬ ⟨1o, ∅⟩ ∈ ({∅} × 𝐴)) → ({∅} × 𝐴) ⊊ (𝐴 ⊔ 1o)))
2220, 21ax-mp 5 . . . . . . 7 ((⟨1o, ∅⟩ ∈ (𝐴 ⊔ 1o) ∧ ¬ ⟨1o, ∅⟩ ∈ ({∅} × 𝐴)) → ({∅} × 𝐴) ⊊ (𝐴 ⊔ 1o))
2312, 18, 22mp2an 692 . . . . . 6 ({∅} × 𝐴) ⊊ (𝐴 ⊔ 1o)
24 0ex 5243 . . . . . . . 8 ∅ ∈ V
25 relen 8869 . . . . . . . . 9 Rel ≈
2625brrelex1i 5670 . . . . . . . 8 (𝐴 ≈ (𝐴 ⊔ 1o) → 𝐴 ∈ V)
27 xpsnen2g 8978 . . . . . . . 8 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
2824, 26, 27sylancr 587 . . . . . . 7 (𝐴 ≈ (𝐴 ⊔ 1o) → ({∅} × 𝐴) ≈ 𝐴)
29 entr 8923 . . . . . . 7 ((({∅} × 𝐴) ≈ 𝐴𝐴 ≈ (𝐴 ⊔ 1o)) → ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o))
3028, 29mpancom 688 . . . . . 6 (𝐴 ≈ (𝐴 ⊔ 1o) → ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o))
31 fin4i 10181 . . . . . 6 ((({∅} × 𝐴) ⊊ (𝐴 ⊔ 1o) ∧ ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o)) → ¬ (𝐴 ⊔ 1o) ∈ FinIV)
3223, 30, 31sylancr 587 . . . . 5 (𝐴 ≈ (𝐴 ⊔ 1o) → ¬ (𝐴 ⊔ 1o) ∈ FinIV)
33 fin4en1 10192 . . . . 5 (𝐴 ≈ (𝐴 ⊔ 1o) → (𝐴 ∈ FinIV → (𝐴 ⊔ 1o) ∈ FinIV))
3432, 33mtod 198 . . . 4 (𝐴 ≈ (𝐴 ⊔ 1o) → ¬ 𝐴 ∈ FinIV)
3534con2i 139 . . 3 (𝐴 ∈ FinIV → ¬ 𝐴 ≈ (𝐴 ⊔ 1o))
36 brsdom 8892 . . 3 (𝐴 ≺ (𝐴 ⊔ 1o) ↔ (𝐴 ≼ (𝐴 ⊔ 1o) ∧ ¬ 𝐴 ≈ (𝐴 ⊔ 1o)))
373, 35, 36sylanbrc 583 . 2 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 ⊔ 1o))
38 sdomnen 8898 . . . 4 (𝐴 ≺ (𝐴 ⊔ 1o) → ¬ 𝐴 ≈ (𝐴 ⊔ 1o))
39 infdju1 10073 . . . . 5 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴)
4039ensymd 8922 . . . 4 (ω ≼ 𝐴𝐴 ≈ (𝐴 ⊔ 1o))
4138, 40nsyl 140 . . 3 (𝐴 ≺ (𝐴 ⊔ 1o) → ¬ ω ≼ 𝐴)
42 relsdom 8871 . . . . 5 Rel ≺
4342brrelex1i 5670 . . . 4 (𝐴 ≺ (𝐴 ⊔ 1o) → 𝐴 ∈ V)
44 isfin4-2 10197 . . . 4 (𝐴 ∈ V → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴))
4543, 44syl 17 . . 3 (𝐴 ≺ (𝐴 ⊔ 1o) → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴))
4641, 45mpbird 257 . 2 (𝐴 ≺ (𝐴 ⊔ 1o) → 𝐴 ∈ FinIV)
4737, 46impbii 209 1 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 ⊔ 1o))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wne 2926  Vcvv 3434  cun 3898  wss 3900  wpss 3901  c0 4281  {csn 4574  cop 4580   class class class wbr 5089   × cxp 5612  Oncon0 6302  ωcom 7791  1oc1o 8373  cen 8861  cdom 8862  csdm 8863  cdju 9783  FinIVcfin4 10163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-dju 9786  df-fin4 10170
This theorem is referenced by:  fin45  10275  finngch  10538  gchinf  10540
  Copyright terms: Public domain W3C validator