MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin4p1 Structured version   Visualization version   GIF version

Theorem isfin4p1 10082
Description: Alternate definition of IV-finite sets: they are strictly dominated by their successors. (Thus, the proper subset referred to in isfin4 10064 can be assumed to be only a singleton smaller than the original.) (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
isfin4p1 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 ⊔ 1o))

Proof of Theorem isfin4p1
StepHypRef Expression
1 1on 8301 . . . 4 1o ∈ On
2 djudoml 9951 . . . 4 ((𝐴 ∈ FinIV ∧ 1o ∈ On) → 𝐴 ≼ (𝐴 ⊔ 1o))
31, 2mpan2 688 . . 3 (𝐴 ∈ FinIV𝐴 ≼ (𝐴 ⊔ 1o))
4 1oex 8299 . . . . . . . . . . 11 1o ∈ V
54snid 4603 . . . . . . . . . 10 1o ∈ {1o}
6 0lt1o 8326 . . . . . . . . . 10 ∅ ∈ 1o
7 opelxpi 5627 . . . . . . . . . 10 ((1o ∈ {1o} ∧ ∅ ∈ 1o) → ⟨1o, ∅⟩ ∈ ({1o} × 1o))
85, 6, 7mp2an 689 . . . . . . . . 9 ⟨1o, ∅⟩ ∈ ({1o} × 1o)
9 elun2 4116 . . . . . . . . 9 (⟨1o, ∅⟩ ∈ ({1o} × 1o) → ⟨1o, ∅⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o)))
108, 9ax-mp 5 . . . . . . . 8 ⟨1o, ∅⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o))
11 df-dju 9670 . . . . . . . 8 (𝐴 ⊔ 1o) = (({∅} × 𝐴) ∪ ({1o} × 1o))
1210, 11eleqtrri 2840 . . . . . . 7 ⟨1o, ∅⟩ ∈ (𝐴 ⊔ 1o)
13 1n0 8310 . . . . . . . 8 1o ≠ ∅
14 opelxp1 5631 . . . . . . . . . 10 (⟨1o, ∅⟩ ∈ ({∅} × 𝐴) → 1o ∈ {∅})
15 elsni 4584 . . . . . . . . . 10 (1o ∈ {∅} → 1o = ∅)
1614, 15syl 17 . . . . . . . . 9 (⟨1o, ∅⟩ ∈ ({∅} × 𝐴) → 1o = ∅)
1716necon3ai 2970 . . . . . . . 8 (1o ≠ ∅ → ¬ ⟨1o, ∅⟩ ∈ ({∅} × 𝐴))
1813, 17ax-mp 5 . . . . . . 7 ¬ ⟨1o, ∅⟩ ∈ ({∅} × 𝐴)
19 ssun1 4111 . . . . . . . . 9 ({∅} × 𝐴) ⊆ (({∅} × 𝐴) ∪ ({1o} × 1o))
2019, 11sseqtrri 3963 . . . . . . . 8 ({∅} × 𝐴) ⊆ (𝐴 ⊔ 1o)
21 ssnelpss 4051 . . . . . . . 8 (({∅} × 𝐴) ⊆ (𝐴 ⊔ 1o) → ((⟨1o, ∅⟩ ∈ (𝐴 ⊔ 1o) ∧ ¬ ⟨1o, ∅⟩ ∈ ({∅} × 𝐴)) → ({∅} × 𝐴) ⊊ (𝐴 ⊔ 1o)))
2220, 21ax-mp 5 . . . . . . 7 ((⟨1o, ∅⟩ ∈ (𝐴 ⊔ 1o) ∧ ¬ ⟨1o, ∅⟩ ∈ ({∅} × 𝐴)) → ({∅} × 𝐴) ⊊ (𝐴 ⊔ 1o))
2312, 18, 22mp2an 689 . . . . . 6 ({∅} × 𝐴) ⊊ (𝐴 ⊔ 1o)
24 0ex 5235 . . . . . . . 8 ∅ ∈ V
25 relen 8730 . . . . . . . . 9 Rel ≈
2625brrelex1i 5644 . . . . . . . 8 (𝐴 ≈ (𝐴 ⊔ 1o) → 𝐴 ∈ V)
27 xpsnen2g 8843 . . . . . . . 8 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
2824, 26, 27sylancr 587 . . . . . . 7 (𝐴 ≈ (𝐴 ⊔ 1o) → ({∅} × 𝐴) ≈ 𝐴)
29 entr 8784 . . . . . . 7 ((({∅} × 𝐴) ≈ 𝐴𝐴 ≈ (𝐴 ⊔ 1o)) → ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o))
3028, 29mpancom 685 . . . . . 6 (𝐴 ≈ (𝐴 ⊔ 1o) → ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o))
31 fin4i 10065 . . . . . 6 ((({∅} × 𝐴) ⊊ (𝐴 ⊔ 1o) ∧ ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o)) → ¬ (𝐴 ⊔ 1o) ∈ FinIV)
3223, 30, 31sylancr 587 . . . . 5 (𝐴 ≈ (𝐴 ⊔ 1o) → ¬ (𝐴 ⊔ 1o) ∈ FinIV)
33 fin4en1 10076 . . . . 5 (𝐴 ≈ (𝐴 ⊔ 1o) → (𝐴 ∈ FinIV → (𝐴 ⊔ 1o) ∈ FinIV))
3432, 33mtod 197 . . . 4 (𝐴 ≈ (𝐴 ⊔ 1o) → ¬ 𝐴 ∈ FinIV)
3534con2i 139 . . 3 (𝐴 ∈ FinIV → ¬ 𝐴 ≈ (𝐴 ⊔ 1o))
36 brsdom 8755 . . 3 (𝐴 ≺ (𝐴 ⊔ 1o) ↔ (𝐴 ≼ (𝐴 ⊔ 1o) ∧ ¬ 𝐴 ≈ (𝐴 ⊔ 1o)))
373, 35, 36sylanbrc 583 . 2 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 ⊔ 1o))
38 sdomnen 8761 . . . 4 (𝐴 ≺ (𝐴 ⊔ 1o) → ¬ 𝐴 ≈ (𝐴 ⊔ 1o))
39 infdju1 9956 . . . . 5 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴)
4039ensymd 8783 . . . 4 (ω ≼ 𝐴𝐴 ≈ (𝐴 ⊔ 1o))
4138, 40nsyl 140 . . 3 (𝐴 ≺ (𝐴 ⊔ 1o) → ¬ ω ≼ 𝐴)
42 relsdom 8732 . . . . 5 Rel ≺
4342brrelex1i 5644 . . . 4 (𝐴 ≺ (𝐴 ⊔ 1o) → 𝐴 ∈ V)
44 isfin4-2 10081 . . . 4 (𝐴 ∈ V → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴))
4543, 44syl 17 . . 3 (𝐴 ≺ (𝐴 ⊔ 1o) → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴))
4641, 45mpbird 256 . 2 (𝐴 ≺ (𝐴 ⊔ 1o) → 𝐴 ∈ FinIV)
4737, 46impbii 208 1 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 ⊔ 1o))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wne 2945  Vcvv 3431  cun 3890  wss 3892  wpss 3893  c0 4262  {csn 4567  cop 4573   class class class wbr 5079   × cxp 5588  Oncon0 6265  ωcom 7707  1oc1o 8282  cen 8722  cdom 8723  csdm 8724  cdju 9667  FinIVcfin4 10047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7275  df-om 7708  df-1st 7825  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-er 8490  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-dju 9670  df-fin4 10054
This theorem is referenced by:  fin45  10159  finngch  10422  gchinf  10424
  Copyright terms: Public domain W3C validator