Proof of Theorem isfin4p1
Step | Hyp | Ref
| Expression |
1 | | 1on 8301 |
. . . 4
⊢
1o ∈ On |
2 | | djudoml 9951 |
. . . 4
⊢ ((𝐴 ∈ FinIV ∧
1o ∈ On) → 𝐴 ≼ (𝐴 ⊔ 1o)) |
3 | 1, 2 | mpan2 688 |
. . 3
⊢ (𝐴 ∈ FinIV →
𝐴 ≼ (𝐴 ⊔
1o)) |
4 | | 1oex 8299 |
. . . . . . . . . . 11
⊢
1o ∈ V |
5 | 4 | snid 4603 |
. . . . . . . . . 10
⊢
1o ∈ {1o} |
6 | | 0lt1o 8326 |
. . . . . . . . . 10
⊢ ∅
∈ 1o |
7 | | opelxpi 5627 |
. . . . . . . . . 10
⊢
((1o ∈ {1o} ∧ ∅ ∈
1o) → 〈1o, ∅〉 ∈
({1o} × 1o)) |
8 | 5, 6, 7 | mp2an 689 |
. . . . . . . . 9
⊢
〈1o, ∅〉 ∈ ({1o} ×
1o) |
9 | | elun2 4116 |
. . . . . . . . 9
⊢
(〈1o, ∅〉 ∈ ({1o} ×
1o) → 〈1o, ∅〉 ∈ (({∅}
× 𝐴) ∪
({1o} × 1o))) |
10 | 8, 9 | ax-mp 5 |
. . . . . . . 8
⊢
〈1o, ∅〉 ∈ (({∅} × 𝐴) ∪ ({1o} ×
1o)) |
11 | | df-dju 9670 |
. . . . . . . 8
⊢ (𝐴 ⊔ 1o) =
(({∅} × 𝐴)
∪ ({1o} × 1o)) |
12 | 10, 11 | eleqtrri 2840 |
. . . . . . 7
⊢
〈1o, ∅〉 ∈ (𝐴 ⊔ 1o) |
13 | | 1n0 8310 |
. . . . . . . 8
⊢
1o ≠ ∅ |
14 | | opelxp1 5631 |
. . . . . . . . . 10
⊢
(〈1o, ∅〉 ∈ ({∅} × 𝐴) → 1o ∈
{∅}) |
15 | | elsni 4584 |
. . . . . . . . . 10
⊢
(1o ∈ {∅} → 1o =
∅) |
16 | 14, 15 | syl 17 |
. . . . . . . . 9
⊢
(〈1o, ∅〉 ∈ ({∅} × 𝐴) → 1o =
∅) |
17 | 16 | necon3ai 2970 |
. . . . . . . 8
⊢
(1o ≠ ∅ → ¬ 〈1o,
∅〉 ∈ ({∅} × 𝐴)) |
18 | 13, 17 | ax-mp 5 |
. . . . . . 7
⊢ ¬
〈1o, ∅〉 ∈ ({∅} × 𝐴) |
19 | | ssun1 4111 |
. . . . . . . . 9
⊢
({∅} × 𝐴) ⊆ (({∅} × 𝐴) ∪ ({1o} ×
1o)) |
20 | 19, 11 | sseqtrri 3963 |
. . . . . . . 8
⊢
({∅} × 𝐴) ⊆ (𝐴 ⊔ 1o) |
21 | | ssnelpss 4051 |
. . . . . . . 8
⊢
(({∅} × 𝐴) ⊆ (𝐴 ⊔ 1o) →
((〈1o, ∅〉 ∈ (𝐴 ⊔ 1o) ∧ ¬
〈1o, ∅〉 ∈ ({∅} × 𝐴)) → ({∅} × 𝐴) ⊊ (𝐴 ⊔ 1o))) |
22 | 20, 21 | ax-mp 5 |
. . . . . . 7
⊢
((〈1o, ∅〉 ∈ (𝐴 ⊔ 1o) ∧ ¬
〈1o, ∅〉 ∈ ({∅} × 𝐴)) → ({∅} × 𝐴) ⊊ (𝐴 ⊔ 1o)) |
23 | 12, 18, 22 | mp2an 689 |
. . . . . 6
⊢
({∅} × 𝐴) ⊊ (𝐴 ⊔ 1o) |
24 | | 0ex 5235 |
. . . . . . . 8
⊢ ∅
∈ V |
25 | | relen 8730 |
. . . . . . . . 9
⊢ Rel
≈ |
26 | 25 | brrelex1i 5644 |
. . . . . . . 8
⊢ (𝐴 ≈ (𝐴 ⊔ 1o) → 𝐴 ∈ V) |
27 | | xpsnen2g 8843 |
. . . . . . . 8
⊢ ((∅
∈ V ∧ 𝐴 ∈ V)
→ ({∅} × 𝐴) ≈ 𝐴) |
28 | 24, 26, 27 | sylancr 587 |
. . . . . . 7
⊢ (𝐴 ≈ (𝐴 ⊔ 1o) → ({∅}
× 𝐴) ≈ 𝐴) |
29 | | entr 8784 |
. . . . . . 7
⊢
((({∅} × 𝐴) ≈ 𝐴 ∧ 𝐴 ≈ (𝐴 ⊔ 1o)) → ({∅}
× 𝐴) ≈ (𝐴 ⊔
1o)) |
30 | 28, 29 | mpancom 685 |
. . . . . 6
⊢ (𝐴 ≈ (𝐴 ⊔ 1o) → ({∅}
× 𝐴) ≈ (𝐴 ⊔
1o)) |
31 | | fin4i 10065 |
. . . . . 6
⊢
((({∅} × 𝐴) ⊊ (𝐴 ⊔ 1o) ∧ ({∅}
× 𝐴) ≈ (𝐴 ⊔ 1o)) →
¬ (𝐴 ⊔
1o) ∈ FinIV) |
32 | 23, 30, 31 | sylancr 587 |
. . . . 5
⊢ (𝐴 ≈ (𝐴 ⊔ 1o) → ¬ (𝐴 ⊔ 1o) ∈
FinIV) |
33 | | fin4en1 10076 |
. . . . 5
⊢ (𝐴 ≈ (𝐴 ⊔ 1o) → (𝐴 ∈ FinIV →
(𝐴 ⊔ 1o)
∈ FinIV)) |
34 | 32, 33 | mtod 197 |
. . . 4
⊢ (𝐴 ≈ (𝐴 ⊔ 1o) → ¬ 𝐴 ∈
FinIV) |
35 | 34 | con2i 139 |
. . 3
⊢ (𝐴 ∈ FinIV →
¬ 𝐴 ≈ (𝐴 ⊔
1o)) |
36 | | brsdom 8755 |
. . 3
⊢ (𝐴 ≺ (𝐴 ⊔ 1o) ↔ (𝐴 ≼ (𝐴 ⊔ 1o) ∧ ¬ 𝐴 ≈ (𝐴 ⊔ 1o))) |
37 | 3, 35, 36 | sylanbrc 583 |
. 2
⊢ (𝐴 ∈ FinIV →
𝐴 ≺ (𝐴 ⊔
1o)) |
38 | | sdomnen 8761 |
. . . 4
⊢ (𝐴 ≺ (𝐴 ⊔ 1o) → ¬ 𝐴 ≈ (𝐴 ⊔ 1o)) |
39 | | infdju1 9956 |
. . . . 5
⊢ (ω
≼ 𝐴 → (𝐴 ⊔ 1o) ≈
𝐴) |
40 | 39 | ensymd 8783 |
. . . 4
⊢ (ω
≼ 𝐴 → 𝐴 ≈ (𝐴 ⊔ 1o)) |
41 | 38, 40 | nsyl 140 |
. . 3
⊢ (𝐴 ≺ (𝐴 ⊔ 1o) → ¬
ω ≼ 𝐴) |
42 | | relsdom 8732 |
. . . . 5
⊢ Rel
≺ |
43 | 42 | brrelex1i 5644 |
. . . 4
⊢ (𝐴 ≺ (𝐴 ⊔ 1o) → 𝐴 ∈ V) |
44 | | isfin4-2 10081 |
. . . 4
⊢ (𝐴 ∈ V → (𝐴 ∈ FinIV ↔
¬ ω ≼ 𝐴)) |
45 | 43, 44 | syl 17 |
. . 3
⊢ (𝐴 ≺ (𝐴 ⊔ 1o) → (𝐴 ∈ FinIV ↔
¬ ω ≼ 𝐴)) |
46 | 41, 45 | mpbird 256 |
. 2
⊢ (𝐴 ≺ (𝐴 ⊔ 1o) → 𝐴 ∈
FinIV) |
47 | 37, 46 | impbii 208 |
1
⊢ (𝐴 ∈ FinIV ↔
𝐴 ≺ (𝐴 ⊔
1o)) |