MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin4p1 Structured version   Visualization version   GIF version

Theorem isfin4p1 10244
Description: Alternate definition of IV-finite sets: they are strictly dominated by their successors. (Thus, the proper subset referred to in isfin4 10226 can be assumed to be only a singleton smaller than the original.) (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
isfin4p1 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 ⊔ 1o))

Proof of Theorem isfin4p1
StepHypRef Expression
1 1on 8423 . . . 4 1o ∈ On
2 djudoml 10114 . . . 4 ((𝐴 ∈ FinIV ∧ 1o ∈ On) → 𝐴 ≼ (𝐴 ⊔ 1o))
31, 2mpan2 691 . . 3 (𝐴 ∈ FinIV𝐴 ≼ (𝐴 ⊔ 1o))
4 1oex 8421 . . . . . . . . . . 11 1o ∈ V
54snid 4622 . . . . . . . . . 10 1o ∈ {1o}
6 0lt1o 8445 . . . . . . . . . 10 ∅ ∈ 1o
7 opelxpi 5668 . . . . . . . . . 10 ((1o ∈ {1o} ∧ ∅ ∈ 1o) → ⟨1o, ∅⟩ ∈ ({1o} × 1o))
85, 6, 7mp2an 692 . . . . . . . . 9 ⟨1o, ∅⟩ ∈ ({1o} × 1o)
9 elun2 4142 . . . . . . . . 9 (⟨1o, ∅⟩ ∈ ({1o} × 1o) → ⟨1o, ∅⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o)))
108, 9ax-mp 5 . . . . . . . 8 ⟨1o, ∅⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o))
11 df-dju 9830 . . . . . . . 8 (𝐴 ⊔ 1o) = (({∅} × 𝐴) ∪ ({1o} × 1o))
1210, 11eleqtrri 2827 . . . . . . 7 ⟨1o, ∅⟩ ∈ (𝐴 ⊔ 1o)
13 1n0 8429 . . . . . . . 8 1o ≠ ∅
14 opelxp1 5673 . . . . . . . . . 10 (⟨1o, ∅⟩ ∈ ({∅} × 𝐴) → 1o ∈ {∅})
15 elsni 4602 . . . . . . . . . 10 (1o ∈ {∅} → 1o = ∅)
1614, 15syl 17 . . . . . . . . 9 (⟨1o, ∅⟩ ∈ ({∅} × 𝐴) → 1o = ∅)
1716necon3ai 2950 . . . . . . . 8 (1o ≠ ∅ → ¬ ⟨1o, ∅⟩ ∈ ({∅} × 𝐴))
1813, 17ax-mp 5 . . . . . . 7 ¬ ⟨1o, ∅⟩ ∈ ({∅} × 𝐴)
19 ssun1 4137 . . . . . . . . 9 ({∅} × 𝐴) ⊆ (({∅} × 𝐴) ∪ ({1o} × 1o))
2019, 11sseqtrri 3993 . . . . . . . 8 ({∅} × 𝐴) ⊆ (𝐴 ⊔ 1o)
21 ssnelpss 4073 . . . . . . . 8 (({∅} × 𝐴) ⊆ (𝐴 ⊔ 1o) → ((⟨1o, ∅⟩ ∈ (𝐴 ⊔ 1o) ∧ ¬ ⟨1o, ∅⟩ ∈ ({∅} × 𝐴)) → ({∅} × 𝐴) ⊊ (𝐴 ⊔ 1o)))
2220, 21ax-mp 5 . . . . . . 7 ((⟨1o, ∅⟩ ∈ (𝐴 ⊔ 1o) ∧ ¬ ⟨1o, ∅⟩ ∈ ({∅} × 𝐴)) → ({∅} × 𝐴) ⊊ (𝐴 ⊔ 1o))
2312, 18, 22mp2an 692 . . . . . 6 ({∅} × 𝐴) ⊊ (𝐴 ⊔ 1o)
24 0ex 5257 . . . . . . . 8 ∅ ∈ V
25 relen 8900 . . . . . . . . 9 Rel ≈
2625brrelex1i 5687 . . . . . . . 8 (𝐴 ≈ (𝐴 ⊔ 1o) → 𝐴 ∈ V)
27 xpsnen2g 9011 . . . . . . . 8 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
2824, 26, 27sylancr 587 . . . . . . 7 (𝐴 ≈ (𝐴 ⊔ 1o) → ({∅} × 𝐴) ≈ 𝐴)
29 entr 8954 . . . . . . 7 ((({∅} × 𝐴) ≈ 𝐴𝐴 ≈ (𝐴 ⊔ 1o)) → ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o))
3028, 29mpancom 688 . . . . . 6 (𝐴 ≈ (𝐴 ⊔ 1o) → ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o))
31 fin4i 10227 . . . . . 6 ((({∅} × 𝐴) ⊊ (𝐴 ⊔ 1o) ∧ ({∅} × 𝐴) ≈ (𝐴 ⊔ 1o)) → ¬ (𝐴 ⊔ 1o) ∈ FinIV)
3223, 30, 31sylancr 587 . . . . 5 (𝐴 ≈ (𝐴 ⊔ 1o) → ¬ (𝐴 ⊔ 1o) ∈ FinIV)
33 fin4en1 10238 . . . . 5 (𝐴 ≈ (𝐴 ⊔ 1o) → (𝐴 ∈ FinIV → (𝐴 ⊔ 1o) ∈ FinIV))
3432, 33mtod 198 . . . 4 (𝐴 ≈ (𝐴 ⊔ 1o) → ¬ 𝐴 ∈ FinIV)
3534con2i 139 . . 3 (𝐴 ∈ FinIV → ¬ 𝐴 ≈ (𝐴 ⊔ 1o))
36 brsdom 8923 . . 3 (𝐴 ≺ (𝐴 ⊔ 1o) ↔ (𝐴 ≼ (𝐴 ⊔ 1o) ∧ ¬ 𝐴 ≈ (𝐴 ⊔ 1o)))
373, 35, 36sylanbrc 583 . 2 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 ⊔ 1o))
38 sdomnen 8929 . . . 4 (𝐴 ≺ (𝐴 ⊔ 1o) → ¬ 𝐴 ≈ (𝐴 ⊔ 1o))
39 infdju1 10119 . . . . 5 (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴)
4039ensymd 8953 . . . 4 (ω ≼ 𝐴𝐴 ≈ (𝐴 ⊔ 1o))
4138, 40nsyl 140 . . 3 (𝐴 ≺ (𝐴 ⊔ 1o) → ¬ ω ≼ 𝐴)
42 relsdom 8902 . . . . 5 Rel ≺
4342brrelex1i 5687 . . . 4 (𝐴 ≺ (𝐴 ⊔ 1o) → 𝐴 ∈ V)
44 isfin4-2 10243 . . . 4 (𝐴 ∈ V → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴))
4543, 44syl 17 . . 3 (𝐴 ≺ (𝐴 ⊔ 1o) → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴))
4641, 45mpbird 257 . 2 (𝐴 ≺ (𝐴 ⊔ 1o) → 𝐴 ∈ FinIV)
4737, 46impbii 209 1 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 ⊔ 1o))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  cun 3909  wss 3911  wpss 3912  c0 4292  {csn 4585  cop 4591   class class class wbr 5102   × cxp 5629  Oncon0 6320  ωcom 7822  1oc1o 8404  cen 8892  cdom 8893  csdm 8894  cdju 9827  FinIVcfin4 10209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-dju 9830  df-fin4 10216
This theorem is referenced by:  fin45  10321  finngch  10584  gchinf  10586
  Copyright terms: Public domain W3C validator