| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nthruc | Structured version Visualization version GIF version | ||
| Description: The sequence ℕ, ℤ, ℚ, ℝ, and ℂ forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to ℤ but not ℕ, one-half belongs to ℚ but not ℤ, the square root of 2 belongs to ℝ but not ℚ, and finally that the imaginary number i belongs to ℂ but not ℝ. See nthruz 16221 for a further refinement. (Contributed by NM, 12-Jan-2002.) |
| Ref | Expression |
|---|---|
| nthruc | ⊢ ((ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) ∧ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssz 12551 | . . . 4 ⊢ ℕ ⊆ ℤ | |
| 2 | 0z 12540 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 3 | 0nnn 12222 | . . . . 5 ⊢ ¬ 0 ∈ ℕ | |
| 4 | 2, 3 | pm3.2i 470 | . . . 4 ⊢ (0 ∈ ℤ ∧ ¬ 0 ∈ ℕ) |
| 5 | ssnelpss 4077 | . . . 4 ⊢ (ℕ ⊆ ℤ → ((0 ∈ ℤ ∧ ¬ 0 ∈ ℕ) → ℕ ⊊ ℤ)) | |
| 6 | 1, 4, 5 | mp2 9 | . . 3 ⊢ ℕ ⊊ ℤ |
| 7 | zssq 12915 | . . . 4 ⊢ ℤ ⊆ ℚ | |
| 8 | 1z 12563 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 9 | 2nn 12259 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 10 | znq 12911 | . . . . . 6 ⊢ ((1 ∈ ℤ ∧ 2 ∈ ℕ) → (1 / 2) ∈ ℚ) | |
| 11 | 8, 9, 10 | mp2an 692 | . . . . 5 ⊢ (1 / 2) ∈ ℚ |
| 12 | halfnz 12612 | . . . . 5 ⊢ ¬ (1 / 2) ∈ ℤ | |
| 13 | 11, 12 | pm3.2i 470 | . . . 4 ⊢ ((1 / 2) ∈ ℚ ∧ ¬ (1 / 2) ∈ ℤ) |
| 14 | ssnelpss 4077 | . . . 4 ⊢ (ℤ ⊆ ℚ → (((1 / 2) ∈ ℚ ∧ ¬ (1 / 2) ∈ ℤ) → ℤ ⊊ ℚ)) | |
| 15 | 7, 13, 14 | mp2 9 | . . 3 ⊢ ℤ ⊊ ℚ |
| 16 | 6, 15 | pm3.2i 470 | . 2 ⊢ (ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) |
| 17 | qssre 12918 | . . . 4 ⊢ ℚ ⊆ ℝ | |
| 18 | sqrt2re 16218 | . . . . 5 ⊢ (√‘2) ∈ ℝ | |
| 19 | sqrt2irr 16217 | . . . . . 6 ⊢ (√‘2) ∉ ℚ | |
| 20 | 19 | neli 3031 | . . . . 5 ⊢ ¬ (√‘2) ∈ ℚ |
| 21 | 18, 20 | pm3.2i 470 | . . . 4 ⊢ ((√‘2) ∈ ℝ ∧ ¬ (√‘2) ∈ ℚ) |
| 22 | ssnelpss 4077 | . . . 4 ⊢ (ℚ ⊆ ℝ → (((√‘2) ∈ ℝ ∧ ¬ (√‘2) ∈ ℚ) → ℚ ⊊ ℝ)) | |
| 23 | 17, 21, 22 | mp2 9 | . . 3 ⊢ ℚ ⊊ ℝ |
| 24 | ax-resscn 11125 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 25 | ax-icn 11127 | . . . . 5 ⊢ i ∈ ℂ | |
| 26 | inelr 12176 | . . . . 5 ⊢ ¬ i ∈ ℝ | |
| 27 | 25, 26 | pm3.2i 470 | . . . 4 ⊢ (i ∈ ℂ ∧ ¬ i ∈ ℝ) |
| 28 | ssnelpss 4077 | . . . 4 ⊢ (ℝ ⊆ ℂ → ((i ∈ ℂ ∧ ¬ i ∈ ℝ) → ℝ ⊊ ℂ)) | |
| 29 | 24, 27, 28 | mp2 9 | . . 3 ⊢ ℝ ⊊ ℂ |
| 30 | 23, 29 | pm3.2i 470 | . 2 ⊢ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ) |
| 31 | 16, 30 | pm3.2i 470 | 1 ⊢ ((ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) ∧ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3914 ⊊ wpss 3915 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 ici 11070 / cdiv 11835 ℕcn 12186 2c2 12241 ℤcz 12529 ℚcq 12907 √csqrt 15199 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |