MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nthruc Structured version   Visualization version   GIF version

Theorem nthruc 16167
Description: The sequence , , , , and forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to but not , one-half belongs to but not , the square root of 2 belongs to but not , and finally that the imaginary number i belongs to but not . See nthruz 16168 for a further refinement. (Contributed by NM, 12-Jan-2002.)
Assertion
Ref Expression
nthruc ((ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) ∧ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ))

Proof of Theorem nthruc
StepHypRef Expression
1 nnssz 12496 . . . 4 ℕ ⊆ ℤ
2 0z 12485 . . . . 5 0 ∈ ℤ
3 0nnn 12167 . . . . 5 ¬ 0 ∈ ℕ
42, 3pm3.2i 470 . . . 4 (0 ∈ ℤ ∧ ¬ 0 ∈ ℕ)
5 ssnelpss 4063 . . . 4 (ℕ ⊆ ℤ → ((0 ∈ ℤ ∧ ¬ 0 ∈ ℕ) → ℕ ⊊ ℤ))
61, 4, 5mp2 9 . . 3 ℕ ⊊ ℤ
7 zssq 12860 . . . 4 ℤ ⊆ ℚ
8 1z 12508 . . . . . 6 1 ∈ ℤ
9 2nn 12204 . . . . . 6 2 ∈ ℕ
10 znq 12856 . . . . . 6 ((1 ∈ ℤ ∧ 2 ∈ ℕ) → (1 / 2) ∈ ℚ)
118, 9, 10mp2an 692 . . . . 5 (1 / 2) ∈ ℚ
12 halfnz 12557 . . . . 5 ¬ (1 / 2) ∈ ℤ
1311, 12pm3.2i 470 . . . 4 ((1 / 2) ∈ ℚ ∧ ¬ (1 / 2) ∈ ℤ)
14 ssnelpss 4063 . . . 4 (ℤ ⊆ ℚ → (((1 / 2) ∈ ℚ ∧ ¬ (1 / 2) ∈ ℤ) → ℤ ⊊ ℚ))
157, 13, 14mp2 9 . . 3 ℤ ⊊ ℚ
166, 15pm3.2i 470 . 2 (ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ)
17 qssre 12863 . . . 4 ℚ ⊆ ℝ
18 sqrt2re 16165 . . . . 5 (√‘2) ∈ ℝ
19 sqrt2irr 16164 . . . . . 6 (√‘2) ∉ ℚ
2019neli 3034 . . . . 5 ¬ (√‘2) ∈ ℚ
2118, 20pm3.2i 470 . . . 4 ((√‘2) ∈ ℝ ∧ ¬ (√‘2) ∈ ℚ)
22 ssnelpss 4063 . . . 4 (ℚ ⊆ ℝ → (((√‘2) ∈ ℝ ∧ ¬ (√‘2) ∈ ℚ) → ℚ ⊊ ℝ))
2317, 21, 22mp2 9 . . 3 ℚ ⊊ ℝ
24 ax-resscn 11069 . . . 4 ℝ ⊆ ℂ
25 ax-icn 11071 . . . . 5 i ∈ ℂ
26 inelr 12121 . . . . 5 ¬ i ∈ ℝ
2725, 26pm3.2i 470 . . . 4 (i ∈ ℂ ∧ ¬ i ∈ ℝ)
28 ssnelpss 4063 . . . 4 (ℝ ⊆ ℂ → ((i ∈ ℂ ∧ ¬ i ∈ ℝ) → ℝ ⊊ ℂ))
2924, 27, 28mp2 9 . . 3 ℝ ⊊ ℂ
3023, 29pm3.2i 470 . 2 (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ)
3116, 30pm3.2i 470 1 ((ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) ∧ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wcel 2111  wss 3897  wpss 3898  cfv 6487  (class class class)co 7352  cc 11010  cr 11011  0cc0 11012  1c1 11013  ici 11014   / cdiv 11780  cn 12131  2c2 12186  cz 12474  cq 12852  csqrt 15146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9332  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-n0 12388  df-z 12475  df-uz 12739  df-q 12853  df-rp 12897  df-seq 13915  df-exp 13975  df-cj 15012  df-re 15013  df-im 15014  df-sqrt 15148  df-abs 15149
This theorem is referenced by:  nthrucw  46989
  Copyright terms: Public domain W3C validator