| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nthruc | Structured version Visualization version GIF version | ||
| Description: The sequence ℕ, ℤ, ℚ, ℝ, and ℂ forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to ℤ but not ℕ, one-half belongs to ℚ but not ℤ, the square root of 2 belongs to ℝ but not ℚ, and finally that the imaginary number i belongs to ℂ but not ℝ. See nthruz 16168 for a further refinement. (Contributed by NM, 12-Jan-2002.) |
| Ref | Expression |
|---|---|
| nthruc | ⊢ ((ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) ∧ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssz 12496 | . . . 4 ⊢ ℕ ⊆ ℤ | |
| 2 | 0z 12485 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 3 | 0nnn 12167 | . . . . 5 ⊢ ¬ 0 ∈ ℕ | |
| 4 | 2, 3 | pm3.2i 470 | . . . 4 ⊢ (0 ∈ ℤ ∧ ¬ 0 ∈ ℕ) |
| 5 | ssnelpss 4063 | . . . 4 ⊢ (ℕ ⊆ ℤ → ((0 ∈ ℤ ∧ ¬ 0 ∈ ℕ) → ℕ ⊊ ℤ)) | |
| 6 | 1, 4, 5 | mp2 9 | . . 3 ⊢ ℕ ⊊ ℤ |
| 7 | zssq 12860 | . . . 4 ⊢ ℤ ⊆ ℚ | |
| 8 | 1z 12508 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 9 | 2nn 12204 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 10 | znq 12856 | . . . . . 6 ⊢ ((1 ∈ ℤ ∧ 2 ∈ ℕ) → (1 / 2) ∈ ℚ) | |
| 11 | 8, 9, 10 | mp2an 692 | . . . . 5 ⊢ (1 / 2) ∈ ℚ |
| 12 | halfnz 12557 | . . . . 5 ⊢ ¬ (1 / 2) ∈ ℤ | |
| 13 | 11, 12 | pm3.2i 470 | . . . 4 ⊢ ((1 / 2) ∈ ℚ ∧ ¬ (1 / 2) ∈ ℤ) |
| 14 | ssnelpss 4063 | . . . 4 ⊢ (ℤ ⊆ ℚ → (((1 / 2) ∈ ℚ ∧ ¬ (1 / 2) ∈ ℤ) → ℤ ⊊ ℚ)) | |
| 15 | 7, 13, 14 | mp2 9 | . . 3 ⊢ ℤ ⊊ ℚ |
| 16 | 6, 15 | pm3.2i 470 | . 2 ⊢ (ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) |
| 17 | qssre 12863 | . . . 4 ⊢ ℚ ⊆ ℝ | |
| 18 | sqrt2re 16165 | . . . . 5 ⊢ (√‘2) ∈ ℝ | |
| 19 | sqrt2irr 16164 | . . . . . 6 ⊢ (√‘2) ∉ ℚ | |
| 20 | 19 | neli 3034 | . . . . 5 ⊢ ¬ (√‘2) ∈ ℚ |
| 21 | 18, 20 | pm3.2i 470 | . . . 4 ⊢ ((√‘2) ∈ ℝ ∧ ¬ (√‘2) ∈ ℚ) |
| 22 | ssnelpss 4063 | . . . 4 ⊢ (ℚ ⊆ ℝ → (((√‘2) ∈ ℝ ∧ ¬ (√‘2) ∈ ℚ) → ℚ ⊊ ℝ)) | |
| 23 | 17, 21, 22 | mp2 9 | . . 3 ⊢ ℚ ⊊ ℝ |
| 24 | ax-resscn 11069 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 25 | ax-icn 11071 | . . . . 5 ⊢ i ∈ ℂ | |
| 26 | inelr 12121 | . . . . 5 ⊢ ¬ i ∈ ℝ | |
| 27 | 25, 26 | pm3.2i 470 | . . . 4 ⊢ (i ∈ ℂ ∧ ¬ i ∈ ℝ) |
| 28 | ssnelpss 4063 | . . . 4 ⊢ (ℝ ⊆ ℂ → ((i ∈ ℂ ∧ ¬ i ∈ ℝ) → ℝ ⊊ ℂ)) | |
| 29 | 24, 27, 28 | mp2 9 | . . 3 ⊢ ℝ ⊊ ℂ |
| 30 | 23, 29 | pm3.2i 470 | . 2 ⊢ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ) |
| 31 | 16, 30 | pm3.2i 470 | 1 ⊢ ((ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) ∧ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3897 ⊊ wpss 3898 ‘cfv 6487 (class class class)co 7352 ℂcc 11010 ℝcr 11011 0cc0 11012 1c1 11013 ici 11014 / cdiv 11780 ℕcn 12131 2c2 12186 ℤcz 12474 ℚcq 12852 √csqrt 15146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9332 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-3 12195 df-n0 12388 df-z 12475 df-uz 12739 df-q 12853 df-rp 12897 df-seq 13915 df-exp 13975 df-cj 15012 df-re 15013 df-im 15014 df-sqrt 15148 df-abs 15149 |
| This theorem is referenced by: nthrucw 46989 |
| Copyright terms: Public domain | W3C validator |