![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nthruc | Structured version Visualization version GIF version |
Description: The sequence ℕ, ℤ, ℚ, ℝ, and ℂ forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to ℤ but not ℕ, one-half belongs to ℚ but not ℤ, the square root of 2 belongs to ℝ but not ℚ, and finally that the imaginary number i belongs to ℂ but not ℝ. See nthruz 16301 for a further refinement. (Contributed by NM, 12-Jan-2002.) |
Ref | Expression |
---|---|
nthruc | ⊢ ((ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) ∧ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssz 12661 | . . . 4 ⊢ ℕ ⊆ ℤ | |
2 | 0z 12650 | . . . . 5 ⊢ 0 ∈ ℤ | |
3 | 0nnn 12329 | . . . . 5 ⊢ ¬ 0 ∈ ℕ | |
4 | 2, 3 | pm3.2i 470 | . . . 4 ⊢ (0 ∈ ℤ ∧ ¬ 0 ∈ ℕ) |
5 | ssnelpss 4137 | . . . 4 ⊢ (ℕ ⊆ ℤ → ((0 ∈ ℤ ∧ ¬ 0 ∈ ℕ) → ℕ ⊊ ℤ)) | |
6 | 1, 4, 5 | mp2 9 | . . 3 ⊢ ℕ ⊊ ℤ |
7 | zssq 13021 | . . . 4 ⊢ ℤ ⊆ ℚ | |
8 | 1z 12673 | . . . . . 6 ⊢ 1 ∈ ℤ | |
9 | 2nn 12366 | . . . . . 6 ⊢ 2 ∈ ℕ | |
10 | znq 13017 | . . . . . 6 ⊢ ((1 ∈ ℤ ∧ 2 ∈ ℕ) → (1 / 2) ∈ ℚ) | |
11 | 8, 9, 10 | mp2an 691 | . . . . 5 ⊢ (1 / 2) ∈ ℚ |
12 | halfnz 12721 | . . . . 5 ⊢ ¬ (1 / 2) ∈ ℤ | |
13 | 11, 12 | pm3.2i 470 | . . . 4 ⊢ ((1 / 2) ∈ ℚ ∧ ¬ (1 / 2) ∈ ℤ) |
14 | ssnelpss 4137 | . . . 4 ⊢ (ℤ ⊆ ℚ → (((1 / 2) ∈ ℚ ∧ ¬ (1 / 2) ∈ ℤ) → ℤ ⊊ ℚ)) | |
15 | 7, 13, 14 | mp2 9 | . . 3 ⊢ ℤ ⊊ ℚ |
16 | 6, 15 | pm3.2i 470 | . 2 ⊢ (ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) |
17 | qssre 13024 | . . . 4 ⊢ ℚ ⊆ ℝ | |
18 | sqrt2re 16298 | . . . . 5 ⊢ (√‘2) ∈ ℝ | |
19 | sqrt2irr 16297 | . . . . . 6 ⊢ (√‘2) ∉ ℚ | |
20 | 19 | neli 3054 | . . . . 5 ⊢ ¬ (√‘2) ∈ ℚ |
21 | 18, 20 | pm3.2i 470 | . . . 4 ⊢ ((√‘2) ∈ ℝ ∧ ¬ (√‘2) ∈ ℚ) |
22 | ssnelpss 4137 | . . . 4 ⊢ (ℚ ⊆ ℝ → (((√‘2) ∈ ℝ ∧ ¬ (√‘2) ∈ ℚ) → ℚ ⊊ ℝ)) | |
23 | 17, 21, 22 | mp2 9 | . . 3 ⊢ ℚ ⊊ ℝ |
24 | ax-resscn 11241 | . . . 4 ⊢ ℝ ⊆ ℂ | |
25 | ax-icn 11243 | . . . . 5 ⊢ i ∈ ℂ | |
26 | inelr 12283 | . . . . 5 ⊢ ¬ i ∈ ℝ | |
27 | 25, 26 | pm3.2i 470 | . . . 4 ⊢ (i ∈ ℂ ∧ ¬ i ∈ ℝ) |
28 | ssnelpss 4137 | . . . 4 ⊢ (ℝ ⊆ ℂ → ((i ∈ ℂ ∧ ¬ i ∈ ℝ) → ℝ ⊊ ℂ)) | |
29 | 24, 27, 28 | mp2 9 | . . 3 ⊢ ℝ ⊊ ℂ |
30 | 23, 29 | pm3.2i 470 | . 2 ⊢ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ) |
31 | 16, 30 | pm3.2i 470 | 1 ⊢ ((ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) ∧ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3976 ⊊ wpss 3977 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 ici 11186 / cdiv 11947 ℕcn 12293 2c2 12348 ℤcz 12639 ℚcq 13013 √csqrt 15282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |