MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nthruc Structured version   Visualization version   GIF version

Theorem nthruc 16002
Description: The sequence , , , , and forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to but not , one-half belongs to but not , the square root of 2 belongs to but not , and finally that the imaginary number i belongs to but not . See nthruz 16003 for a further refinement. (Contributed by NM, 12-Jan-2002.)
Assertion
Ref Expression
nthruc ((ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) ∧ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ))

Proof of Theorem nthruc
StepHypRef Expression
1 nnssz 12382 . . . 4 ℕ ⊆ ℤ
2 0z 12372 . . . . 5 0 ∈ ℤ
3 0nnn 12051 . . . . 5 ¬ 0 ∈ ℕ
42, 3pm3.2i 472 . . . 4 (0 ∈ ℤ ∧ ¬ 0 ∈ ℕ)
5 ssnelpss 4052 . . . 4 (ℕ ⊆ ℤ → ((0 ∈ ℤ ∧ ¬ 0 ∈ ℕ) → ℕ ⊊ ℤ))
61, 4, 5mp2 9 . . 3 ℕ ⊊ ℤ
7 zssq 12738 . . . 4 ℤ ⊆ ℚ
8 1z 12392 . . . . . 6 1 ∈ ℤ
9 2nn 12088 . . . . . 6 2 ∈ ℕ
10 znq 12734 . . . . . 6 ((1 ∈ ℤ ∧ 2 ∈ ℕ) → (1 / 2) ∈ ℚ)
118, 9, 10mp2an 690 . . . . 5 (1 / 2) ∈ ℚ
12 halfnz 12440 . . . . 5 ¬ (1 / 2) ∈ ℤ
1311, 12pm3.2i 472 . . . 4 ((1 / 2) ∈ ℚ ∧ ¬ (1 / 2) ∈ ℤ)
14 ssnelpss 4052 . . . 4 (ℤ ⊆ ℚ → (((1 / 2) ∈ ℚ ∧ ¬ (1 / 2) ∈ ℤ) → ℤ ⊊ ℚ))
157, 13, 14mp2 9 . . 3 ℤ ⊊ ℚ
166, 15pm3.2i 472 . 2 (ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ)
17 qssre 12741 . . . 4 ℚ ⊆ ℝ
18 sqrt2re 16000 . . . . 5 (√‘2) ∈ ℝ
19 sqrt2irr 15999 . . . . . 6 (√‘2) ∉ ℚ
2019neli 3049 . . . . 5 ¬ (√‘2) ∈ ℚ
2118, 20pm3.2i 472 . . . 4 ((√‘2) ∈ ℝ ∧ ¬ (√‘2) ∈ ℚ)
22 ssnelpss 4052 . . . 4 (ℚ ⊆ ℝ → (((√‘2) ∈ ℝ ∧ ¬ (√‘2) ∈ ℚ) → ℚ ⊊ ℝ))
2317, 21, 22mp2 9 . . 3 ℚ ⊊ ℝ
24 ax-resscn 10970 . . . 4 ℝ ⊆ ℂ
25 ax-icn 10972 . . . . 5 i ∈ ℂ
26 inelr 12005 . . . . 5 ¬ i ∈ ℝ
2725, 26pm3.2i 472 . . . 4 (i ∈ ℂ ∧ ¬ i ∈ ℝ)
28 ssnelpss 4052 . . . 4 (ℝ ⊆ ℂ → ((i ∈ ℂ ∧ ¬ i ∈ ℝ) → ℝ ⊊ ℂ))
2924, 27, 28mp2 9 . . 3 ℝ ⊊ ℂ
3023, 29pm3.2i 472 . 2 (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ)
3116, 30pm3.2i 472 1 ((ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) ∧ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 397  wcel 2104  wss 3892  wpss 3893  cfv 6454  (class class class)co 7303  cc 10911  cr 10912  0cc0 10913  1c1 10914  ici 10915   / cdiv 11674  cn 12015  2c2 12070  cz 12361  cq 12730  csqrt 14985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7616  ax-cnex 10969  ax-resscn 10970  ax-1cn 10971  ax-icn 10972  ax-addcl 10973  ax-addrcl 10974  ax-mulcl 10975  ax-mulrcl 10976  ax-mulcom 10977  ax-addass 10978  ax-mulass 10979  ax-distr 10980  ax-i2m1 10981  ax-1ne0 10982  ax-1rid 10983  ax-rnegex 10984  ax-rrecex 10985  ax-cnre 10986  ax-pre-lttri 10987  ax-pre-lttrn 10988  ax-pre-ltadd 10989  ax-pre-mulgt0 10990  ax-pre-sup 10991
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5496  df-eprel 5502  df-po 5510  df-so 5511  df-fr 5551  df-we 5553  df-xp 5602  df-rel 5603  df-cnv 5604  df-co 5605  df-dm 5606  df-rn 5607  df-res 5608  df-ima 5609  df-pred 6213  df-ord 6280  df-on 6281  df-lim 6282  df-suc 6283  df-iota 6406  df-fun 6456  df-fn 6457  df-f 6458  df-f1 6459  df-fo 6460  df-f1o 6461  df-fv 6462  df-riota 7260  df-ov 7306  df-oprab 7307  df-mpo 7308  df-om 7741  df-1st 7859  df-2nd 7860  df-frecs 8124  df-wrecs 8155  df-recs 8229  df-rdg 8268  df-er 8525  df-en 8761  df-dom 8762  df-sdom 8763  df-sup 9241  df-pnf 11053  df-mnf 11054  df-xr 11055  df-ltxr 11056  df-le 11057  df-sub 11249  df-neg 11250  df-div 11675  df-nn 12016  df-2 12078  df-3 12079  df-n0 12276  df-z 12362  df-uz 12625  df-q 12731  df-rp 12773  df-seq 13764  df-exp 13825  df-cj 14851  df-re 14852  df-im 14853  df-sqrt 14987  df-abs 14988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator