| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nthruc | Structured version Visualization version GIF version | ||
| Description: The sequence ℕ, ℤ, ℚ, ℝ, and ℂ forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to ℤ but not ℕ, one-half belongs to ℚ but not ℤ, the square root of 2 belongs to ℝ but not ℚ, and finally that the imaginary number i belongs to ℂ but not ℝ. See nthruz 16154 for a further refinement. (Contributed by NM, 12-Jan-2002.) |
| Ref | Expression |
|---|---|
| nthruc | ⊢ ((ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) ∧ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssz 12482 | . . . 4 ⊢ ℕ ⊆ ℤ | |
| 2 | 0z 12471 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 3 | 0nnn 12153 | . . . . 5 ⊢ ¬ 0 ∈ ℕ | |
| 4 | 2, 3 | pm3.2i 470 | . . . 4 ⊢ (0 ∈ ℤ ∧ ¬ 0 ∈ ℕ) |
| 5 | ssnelpss 4062 | . . . 4 ⊢ (ℕ ⊆ ℤ → ((0 ∈ ℤ ∧ ¬ 0 ∈ ℕ) → ℕ ⊊ ℤ)) | |
| 6 | 1, 4, 5 | mp2 9 | . . 3 ⊢ ℕ ⊊ ℤ |
| 7 | zssq 12846 | . . . 4 ⊢ ℤ ⊆ ℚ | |
| 8 | 1z 12494 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 9 | 2nn 12190 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 10 | znq 12842 | . . . . . 6 ⊢ ((1 ∈ ℤ ∧ 2 ∈ ℕ) → (1 / 2) ∈ ℚ) | |
| 11 | 8, 9, 10 | mp2an 692 | . . . . 5 ⊢ (1 / 2) ∈ ℚ |
| 12 | halfnz 12543 | . . . . 5 ⊢ ¬ (1 / 2) ∈ ℤ | |
| 13 | 11, 12 | pm3.2i 470 | . . . 4 ⊢ ((1 / 2) ∈ ℚ ∧ ¬ (1 / 2) ∈ ℤ) |
| 14 | ssnelpss 4062 | . . . 4 ⊢ (ℤ ⊆ ℚ → (((1 / 2) ∈ ℚ ∧ ¬ (1 / 2) ∈ ℤ) → ℤ ⊊ ℚ)) | |
| 15 | 7, 13, 14 | mp2 9 | . . 3 ⊢ ℤ ⊊ ℚ |
| 16 | 6, 15 | pm3.2i 470 | . 2 ⊢ (ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) |
| 17 | qssre 12849 | . . . 4 ⊢ ℚ ⊆ ℝ | |
| 18 | sqrt2re 16151 | . . . . 5 ⊢ (√‘2) ∈ ℝ | |
| 19 | sqrt2irr 16150 | . . . . . 6 ⊢ (√‘2) ∉ ℚ | |
| 20 | 19 | neli 3032 | . . . . 5 ⊢ ¬ (√‘2) ∈ ℚ |
| 21 | 18, 20 | pm3.2i 470 | . . . 4 ⊢ ((√‘2) ∈ ℝ ∧ ¬ (√‘2) ∈ ℚ) |
| 22 | ssnelpss 4062 | . . . 4 ⊢ (ℚ ⊆ ℝ → (((√‘2) ∈ ℝ ∧ ¬ (√‘2) ∈ ℚ) → ℚ ⊊ ℝ)) | |
| 23 | 17, 21, 22 | mp2 9 | . . 3 ⊢ ℚ ⊊ ℝ |
| 24 | ax-resscn 11055 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 25 | ax-icn 11057 | . . . . 5 ⊢ i ∈ ℂ | |
| 26 | inelr 12107 | . . . . 5 ⊢ ¬ i ∈ ℝ | |
| 27 | 25, 26 | pm3.2i 470 | . . . 4 ⊢ (i ∈ ℂ ∧ ¬ i ∈ ℝ) |
| 28 | ssnelpss 4062 | . . . 4 ⊢ (ℝ ⊆ ℂ → ((i ∈ ℂ ∧ ¬ i ∈ ℝ) → ℝ ⊊ ℂ)) | |
| 29 | 24, 27, 28 | mp2 9 | . . 3 ⊢ ℝ ⊊ ℂ |
| 30 | 23, 29 | pm3.2i 470 | . 2 ⊢ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ) |
| 31 | 16, 30 | pm3.2i 470 | 1 ⊢ ((ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) ∧ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2110 ⊆ wss 3900 ⊊ wpss 3901 ‘cfv 6477 (class class class)co 7341 ℂcc 10996 ℝcr 10997 0cc0 10998 1c1 10999 ici 11000 / cdiv 11766 ℕcn 12117 2c2 12172 ℤcz 12460 ℚcq 12838 √csqrt 15132 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-q 12839 df-rp 12883 df-seq 13901 df-exp 13961 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |