![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nthruc | Structured version Visualization version GIF version |
Description: The sequence ℕ, ℤ, ℚ, ℝ, and ℂ forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to ℤ but not ℕ, one-half belongs to ℚ but not ℤ, the square root of 2 belongs to ℝ but not ℚ, and finally that the imaginary number i belongs to ℂ but not ℝ. See nthruz 15386 for a further refinement. (Contributed by NM, 12-Jan-2002.) |
Ref | Expression |
---|---|
nthruc | ⊢ ((ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) ∧ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssz 11748 | . . . 4 ⊢ ℕ ⊆ ℤ | |
2 | 0z 11739 | . . . . 5 ⊢ 0 ∈ ℤ | |
3 | 0nnn 11411 | . . . . 5 ⊢ ¬ 0 ∈ ℕ | |
4 | 2, 3 | pm3.2i 464 | . . . 4 ⊢ (0 ∈ ℤ ∧ ¬ 0 ∈ ℕ) |
5 | ssnelpss 3940 | . . . 4 ⊢ (ℕ ⊆ ℤ → ((0 ∈ ℤ ∧ ¬ 0 ∈ ℕ) → ℕ ⊊ ℤ)) | |
6 | 1, 4, 5 | mp2 9 | . . 3 ⊢ ℕ ⊊ ℤ |
7 | zssq 12103 | . . . 4 ⊢ ℤ ⊆ ℚ | |
8 | 1z 11759 | . . . . . 6 ⊢ 1 ∈ ℤ | |
9 | 2nn 11448 | . . . . . 6 ⊢ 2 ∈ ℕ | |
10 | znq 12099 | . . . . . 6 ⊢ ((1 ∈ ℤ ∧ 2 ∈ ℕ) → (1 / 2) ∈ ℚ) | |
11 | 8, 9, 10 | mp2an 682 | . . . . 5 ⊢ (1 / 2) ∈ ℚ |
12 | halfnz 11807 | . . . . 5 ⊢ ¬ (1 / 2) ∈ ℤ | |
13 | 11, 12 | pm3.2i 464 | . . . 4 ⊢ ((1 / 2) ∈ ℚ ∧ ¬ (1 / 2) ∈ ℤ) |
14 | ssnelpss 3940 | . . . 4 ⊢ (ℤ ⊆ ℚ → (((1 / 2) ∈ ℚ ∧ ¬ (1 / 2) ∈ ℤ) → ℤ ⊊ ℚ)) | |
15 | 7, 13, 14 | mp2 9 | . . 3 ⊢ ℤ ⊊ ℚ |
16 | 6, 15 | pm3.2i 464 | . 2 ⊢ (ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) |
17 | qssre 12106 | . . . 4 ⊢ ℚ ⊆ ℝ | |
18 | sqrt2re 15383 | . . . . 5 ⊢ (√‘2) ∈ ℝ | |
19 | sqrt2irr 15382 | . . . . . 6 ⊢ (√‘2) ∉ ℚ | |
20 | 19 | neli 3077 | . . . . 5 ⊢ ¬ (√‘2) ∈ ℚ |
21 | 18, 20 | pm3.2i 464 | . . . 4 ⊢ ((√‘2) ∈ ℝ ∧ ¬ (√‘2) ∈ ℚ) |
22 | ssnelpss 3940 | . . . 4 ⊢ (ℚ ⊆ ℝ → (((√‘2) ∈ ℝ ∧ ¬ (√‘2) ∈ ℚ) → ℚ ⊊ ℝ)) | |
23 | 17, 21, 22 | mp2 9 | . . 3 ⊢ ℚ ⊊ ℝ |
24 | ax-resscn 10329 | . . . 4 ⊢ ℝ ⊆ ℂ | |
25 | ax-icn 10331 | . . . . 5 ⊢ i ∈ ℂ | |
26 | inelr 11364 | . . . . 5 ⊢ ¬ i ∈ ℝ | |
27 | 25, 26 | pm3.2i 464 | . . . 4 ⊢ (i ∈ ℂ ∧ ¬ i ∈ ℝ) |
28 | ssnelpss 3940 | . . . 4 ⊢ (ℝ ⊆ ℂ → ((i ∈ ℂ ∧ ¬ i ∈ ℝ) → ℝ ⊊ ℂ)) | |
29 | 24, 27, 28 | mp2 9 | . . 3 ⊢ ℝ ⊊ ℂ |
30 | 23, 29 | pm3.2i 464 | . 2 ⊢ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ) |
31 | 16, 30 | pm3.2i 464 | 1 ⊢ ((ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) ∧ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 386 ∈ wcel 2107 ⊆ wss 3792 ⊊ wpss 3793 ‘cfv 6135 (class class class)co 6922 ℂcc 10270 ℝcr 10271 0cc0 10272 1c1 10273 ici 10274 / cdiv 11032 ℕcn 11374 2c2 11430 ℤcz 11728 ℚcq 12095 √csqrt 14380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-sup 8636 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-z 11729 df-uz 11993 df-q 12096 df-rp 12138 df-seq 13120 df-exp 13179 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |