| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nthruc | Structured version Visualization version GIF version | ||
| Description: The sequence ℕ, ℤ, ℚ, ℝ, and ℂ forms a chain of proper subsets. In each case the proper subset relationship is shown by demonstrating a number that belongs to one set but not the other. We show that zero belongs to ℤ but not ℕ, one-half belongs to ℚ but not ℤ, the square root of 2 belongs to ℝ but not ℚ, and finally that the imaginary number i belongs to ℂ but not ℝ. See nthruz 16271 for a further refinement. (Contributed by NM, 12-Jan-2002.) |
| Ref | Expression |
|---|---|
| nthruc | ⊢ ((ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) ∧ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssz 12610 | . . . 4 ⊢ ℕ ⊆ ℤ | |
| 2 | 0z 12599 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 3 | 0nnn 12276 | . . . . 5 ⊢ ¬ 0 ∈ ℕ | |
| 4 | 2, 3 | pm3.2i 470 | . . . 4 ⊢ (0 ∈ ℤ ∧ ¬ 0 ∈ ℕ) |
| 5 | ssnelpss 4089 | . . . 4 ⊢ (ℕ ⊆ ℤ → ((0 ∈ ℤ ∧ ¬ 0 ∈ ℕ) → ℕ ⊊ ℤ)) | |
| 6 | 1, 4, 5 | mp2 9 | . . 3 ⊢ ℕ ⊊ ℤ |
| 7 | zssq 12972 | . . . 4 ⊢ ℤ ⊆ ℚ | |
| 8 | 1z 12622 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 9 | 2nn 12313 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 10 | znq 12968 | . . . . . 6 ⊢ ((1 ∈ ℤ ∧ 2 ∈ ℕ) → (1 / 2) ∈ ℚ) | |
| 11 | 8, 9, 10 | mp2an 692 | . . . . 5 ⊢ (1 / 2) ∈ ℚ |
| 12 | halfnz 12671 | . . . . 5 ⊢ ¬ (1 / 2) ∈ ℤ | |
| 13 | 11, 12 | pm3.2i 470 | . . . 4 ⊢ ((1 / 2) ∈ ℚ ∧ ¬ (1 / 2) ∈ ℤ) |
| 14 | ssnelpss 4089 | . . . 4 ⊢ (ℤ ⊆ ℚ → (((1 / 2) ∈ ℚ ∧ ¬ (1 / 2) ∈ ℤ) → ℤ ⊊ ℚ)) | |
| 15 | 7, 13, 14 | mp2 9 | . . 3 ⊢ ℤ ⊊ ℚ |
| 16 | 6, 15 | pm3.2i 470 | . 2 ⊢ (ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) |
| 17 | qssre 12975 | . . . 4 ⊢ ℚ ⊆ ℝ | |
| 18 | sqrt2re 16268 | . . . . 5 ⊢ (√‘2) ∈ ℝ | |
| 19 | sqrt2irr 16267 | . . . . . 6 ⊢ (√‘2) ∉ ℚ | |
| 20 | 19 | neli 3038 | . . . . 5 ⊢ ¬ (√‘2) ∈ ℚ |
| 21 | 18, 20 | pm3.2i 470 | . . . 4 ⊢ ((√‘2) ∈ ℝ ∧ ¬ (√‘2) ∈ ℚ) |
| 22 | ssnelpss 4089 | . . . 4 ⊢ (ℚ ⊆ ℝ → (((√‘2) ∈ ℝ ∧ ¬ (√‘2) ∈ ℚ) → ℚ ⊊ ℝ)) | |
| 23 | 17, 21, 22 | mp2 9 | . . 3 ⊢ ℚ ⊊ ℝ |
| 24 | ax-resscn 11186 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 25 | ax-icn 11188 | . . . . 5 ⊢ i ∈ ℂ | |
| 26 | inelr 12230 | . . . . 5 ⊢ ¬ i ∈ ℝ | |
| 27 | 25, 26 | pm3.2i 470 | . . . 4 ⊢ (i ∈ ℂ ∧ ¬ i ∈ ℝ) |
| 28 | ssnelpss 4089 | . . . 4 ⊢ (ℝ ⊆ ℂ → ((i ∈ ℂ ∧ ¬ i ∈ ℝ) → ℝ ⊊ ℂ)) | |
| 29 | 24, 27, 28 | mp2 9 | . . 3 ⊢ ℝ ⊊ ℂ |
| 30 | 23, 29 | pm3.2i 470 | . 2 ⊢ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ) |
| 31 | 16, 30 | pm3.2i 470 | 1 ⊢ ((ℕ ⊊ ℤ ∧ ℤ ⊊ ℚ) ∧ (ℚ ⊊ ℝ ∧ ℝ ⊊ ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3926 ⊊ wpss 3927 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 ℝcr 11128 0cc0 11129 1c1 11130 ici 11131 / cdiv 11894 ℕcn 12240 2c2 12295 ℤcz 12588 ℚcq 12964 √csqrt 15252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |