Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzindi Structured version   Visualization version   GIF version

Theorem uzindi 13349
 Description: Indirect strong induction on the upper integers. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Hypotheses
Ref Expression
uzindi.a (𝜑𝐴𝑉)
uzindi.b (𝜑𝑇 ∈ (ℤ𝐿))
uzindi.c ((𝜑𝑅 ∈ (𝐿...𝑇) ∧ ∀𝑦(𝑆 ∈ (𝐿..^𝑅) → 𝜒)) → 𝜓)
uzindi.d (𝑥 = 𝑦 → (𝜓𝜒))
uzindi.e (𝑥 = 𝐴 → (𝜓𝜃))
uzindi.f (𝑥 = 𝑦𝑅 = 𝑆)
uzindi.g (𝑥 = 𝐴𝑅 = 𝑇)
Assertion
Ref Expression
uzindi (𝜑𝜃)
Distinct variable groups:   𝑥,𝑦,𝐿   𝑥,𝐴   𝑥,𝑆   𝑥,𝑇,𝑦   𝜒,𝑥   𝜑,𝑥,𝑦   𝜃,𝑥   𝑦,𝑅   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑦)   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem uzindi
StepHypRef Expression
1 uzindi.b . . 3 (𝜑𝑇 ∈ (ℤ𝐿))
2 eluzfz2 12914 . . 3 (𝑇 ∈ (ℤ𝐿) → 𝑇 ∈ (𝐿...𝑇))
31, 2syl 17 . 2 (𝜑𝑇 ∈ (𝐿...𝑇))
4 uzindi.a . . 3 (𝜑𝐴𝑉)
5 fzofi 13341 . . . 4 (𝐿..^𝑇) ∈ Fin
6 finnum 9365 . . . 4 ((𝐿..^𝑇) ∈ Fin → (𝐿..^𝑇) ∈ dom card)
75, 6mp1i 13 . . 3 (𝜑 → (𝐿..^𝑇) ∈ dom card)
8 simpll 766 . . . . . 6 (((𝜑 ∧ ∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒))) ∧ 𝑅 ∈ (𝐿...𝑇)) → 𝜑)
9 simpr 488 . . . . . 6 (((𝜑 ∧ ∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒))) ∧ 𝑅 ∈ (𝐿...𝑇)) → 𝑅 ∈ (𝐿...𝑇))
10 elfzuz3 12903 . . . . . . . . . . . . . . . 16 (𝑅 ∈ (𝐿...𝑇) → 𝑇 ∈ (ℤ𝑅))
1110adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑅 ∈ (𝐿...𝑇)) → 𝑇 ∈ (ℤ𝑅))
12 fzoss2 13064 . . . . . . . . . . . . . . . 16 (𝑇 ∈ (ℤ𝑅) → (𝐿..^𝑅) ⊆ (𝐿..^𝑇))
13 fzossfz 13055 . . . . . . . . . . . . . . . 16 (𝐿..^𝑇) ⊆ (𝐿...𝑇)
1412, 13sstrdi 3930 . . . . . . . . . . . . . . 15 (𝑇 ∈ (ℤ𝑅) → (𝐿..^𝑅) ⊆ (𝐿...𝑇))
1511, 14syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑅 ∈ (𝐿...𝑇)) → (𝐿..^𝑅) ⊆ (𝐿...𝑇))
1615sselda 3918 . . . . . . . . . . . . 13 (((𝜑𝑅 ∈ (𝐿...𝑇)) ∧ 𝑆 ∈ (𝐿..^𝑅)) → 𝑆 ∈ (𝐿...𝑇))
17 fzofi 13341 . . . . . . . . . . . . . 14 (𝐿..^𝑅) ∈ Fin
18 elfzofz 13052 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ (𝐿..^𝑅) → 𝑆 ∈ (𝐿...𝑅))
1918adantl 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑅 ∈ (𝐿...𝑇)) ∧ 𝑆 ∈ (𝐿..^𝑅)) → 𝑆 ∈ (𝐿...𝑅))
20 elfzuz3 12903 . . . . . . . . . . . . . . . 16 (𝑆 ∈ (𝐿...𝑅) → 𝑅 ∈ (ℤ𝑆))
21 fzoss2 13064 . . . . . . . . . . . . . . . 16 (𝑅 ∈ (ℤ𝑆) → (𝐿..^𝑆) ⊆ (𝐿..^𝑅))
2219, 20, 213syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑅 ∈ (𝐿...𝑇)) ∧ 𝑆 ∈ (𝐿..^𝑅)) → (𝐿..^𝑆) ⊆ (𝐿..^𝑅))
23 fzonel 13050 . . . . . . . . . . . . . . . . 17 ¬ 𝑆 ∈ (𝐿..^𝑆)
2423jctr 528 . . . . . . . . . . . . . . . 16 (𝑆 ∈ (𝐿..^𝑅) → (𝑆 ∈ (𝐿..^𝑅) ∧ ¬ 𝑆 ∈ (𝐿..^𝑆)))
2524adantl 485 . . . . . . . . . . . . . . 15 (((𝜑𝑅 ∈ (𝐿...𝑇)) ∧ 𝑆 ∈ (𝐿..^𝑅)) → (𝑆 ∈ (𝐿..^𝑅) ∧ ¬ 𝑆 ∈ (𝐿..^𝑆)))
26 ssnelpss 4042 . . . . . . . . . . . . . . 15 ((𝐿..^𝑆) ⊆ (𝐿..^𝑅) → ((𝑆 ∈ (𝐿..^𝑅) ∧ ¬ 𝑆 ∈ (𝐿..^𝑆)) → (𝐿..^𝑆) ⊊ (𝐿..^𝑅)))
2722, 25, 26sylc 65 . . . . . . . . . . . . . 14 (((𝜑𝑅 ∈ (𝐿...𝑇)) ∧ 𝑆 ∈ (𝐿..^𝑅)) → (𝐿..^𝑆) ⊊ (𝐿..^𝑅))
28 php3 8691 . . . . . . . . . . . . . 14 (((𝐿..^𝑅) ∈ Fin ∧ (𝐿..^𝑆) ⊊ (𝐿..^𝑅)) → (𝐿..^𝑆) ≺ (𝐿..^𝑅))
2917, 27, 28sylancr 590 . . . . . . . . . . . . 13 (((𝜑𝑅 ∈ (𝐿...𝑇)) ∧ 𝑆 ∈ (𝐿..^𝑅)) → (𝐿..^𝑆) ≺ (𝐿..^𝑅))
30 id 22 . . . . . . . . . . . . . 14 (((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → ((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)))
3130com13 88 . . . . . . . . . . . . 13 (𝑆 ∈ (𝐿...𝑇) → ((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → 𝜒)))
3216, 29, 31sylc 65 . . . . . . . . . . . 12 (((𝜑𝑅 ∈ (𝐿...𝑇)) ∧ 𝑆 ∈ (𝐿..^𝑅)) → (((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → 𝜒))
3332ex 416 . . . . . . . . . . 11 ((𝜑𝑅 ∈ (𝐿...𝑇)) → (𝑆 ∈ (𝐿..^𝑅) → (((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → 𝜒)))
3433com23 86 . . . . . . . . . 10 ((𝜑𝑅 ∈ (𝐿...𝑇)) → (((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → (𝑆 ∈ (𝐿..^𝑅) → 𝜒)))
3534alimdv 1917 . . . . . . . . 9 ((𝜑𝑅 ∈ (𝐿...𝑇)) → (∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → ∀𝑦(𝑆 ∈ (𝐿..^𝑅) → 𝜒)))
3635ex 416 . . . . . . . 8 (𝜑 → (𝑅 ∈ (𝐿...𝑇) → (∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → ∀𝑦(𝑆 ∈ (𝐿..^𝑅) → 𝜒))))
3736com23 86 . . . . . . 7 (𝜑 → (∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → (𝑅 ∈ (𝐿...𝑇) → ∀𝑦(𝑆 ∈ (𝐿..^𝑅) → 𝜒))))
3837imp31 421 . . . . . 6 (((𝜑 ∧ ∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒))) ∧ 𝑅 ∈ (𝐿...𝑇)) → ∀𝑦(𝑆 ∈ (𝐿..^𝑅) → 𝜒))
39 uzindi.c . . . . . 6 ((𝜑𝑅 ∈ (𝐿...𝑇) ∧ ∀𝑦(𝑆 ∈ (𝐿..^𝑅) → 𝜒)) → 𝜓)
408, 9, 38, 39syl3anc 1368 . . . . 5 (((𝜑 ∧ ∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒))) ∧ 𝑅 ∈ (𝐿...𝑇)) → 𝜓)
4140ex 416 . . . 4 ((𝜑 ∧ ∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒))) → (𝑅 ∈ (𝐿...𝑇) → 𝜓))
42413adant2 1128 . . 3 ((𝜑 ∧ (𝐿..^𝑅) ≼ (𝐿..^𝑇) ∧ ∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒))) → (𝑅 ∈ (𝐿...𝑇) → 𝜓))
43 uzindi.f . . . . 5 (𝑥 = 𝑦𝑅 = 𝑆)
4443eleq1d 2877 . . . 4 (𝑥 = 𝑦 → (𝑅 ∈ (𝐿...𝑇) ↔ 𝑆 ∈ (𝐿...𝑇)))
45 uzindi.d . . . 4 (𝑥 = 𝑦 → (𝜓𝜒))
4644, 45imbi12d 348 . . 3 (𝑥 = 𝑦 → ((𝑅 ∈ (𝐿...𝑇) → 𝜓) ↔ (𝑆 ∈ (𝐿...𝑇) → 𝜒)))
47 uzindi.g . . . . 5 (𝑥 = 𝐴𝑅 = 𝑇)
4847eleq1d 2877 . . . 4 (𝑥 = 𝐴 → (𝑅 ∈ (𝐿...𝑇) ↔ 𝑇 ∈ (𝐿...𝑇)))
49 uzindi.e . . . 4 (𝑥 = 𝐴 → (𝜓𝜃))
5048, 49imbi12d 348 . . 3 (𝑥 = 𝐴 → ((𝑅 ∈ (𝐿...𝑇) → 𝜓) ↔ (𝑇 ∈ (𝐿...𝑇) → 𝜃)))
5143oveq2d 7155 . . 3 (𝑥 = 𝑦 → (𝐿..^𝑅) = (𝐿..^𝑆))
5247oveq2d 7155 . . 3 (𝑥 = 𝐴 → (𝐿..^𝑅) = (𝐿..^𝑇))
534, 7, 42, 46, 50, 51, 52indcardi 9456 . 2 (𝜑 → (𝑇 ∈ (𝐿...𝑇) → 𝜃))
543, 53mpd 15 1 (𝜑𝜃)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084  ∀wal 1536   = wceq 1538   ∈ wcel 2112   ⊆ wss 3884   ⊊ wpss 3885   class class class wbr 5033  dom cdm 5523  ‘cfv 6328  (class class class)co 7139   ≼ cdom 8494   ≺ csdm 8495  Fincfn 8496  cardccrd 9352  ℤ≥cuz 12235  ...cfz 12889  ..^cfzo 13032 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-fzo 13033 This theorem is referenced by:  psgnunilem4  18620
 Copyright terms: Public domain W3C validator