MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzindi Structured version   Visualization version   GIF version

Theorem uzindi 13954
Description: Indirect strong induction on the upper integers. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Hypotheses
Ref Expression
uzindi.a (𝜑𝐴𝑉)
uzindi.b (𝜑𝑇 ∈ (ℤ𝐿))
uzindi.c ((𝜑𝑅 ∈ (𝐿...𝑇) ∧ ∀𝑦(𝑆 ∈ (𝐿..^𝑅) → 𝜒)) → 𝜓)
uzindi.d (𝑥 = 𝑦 → (𝜓𝜒))
uzindi.e (𝑥 = 𝐴 → (𝜓𝜃))
uzindi.f (𝑥 = 𝑦𝑅 = 𝑆)
uzindi.g (𝑥 = 𝐴𝑅 = 𝑇)
Assertion
Ref Expression
uzindi (𝜑𝜃)
Distinct variable groups:   𝑥,𝑦,𝐿   𝑥,𝐴   𝑥,𝑆   𝑥,𝑇,𝑦   𝜒,𝑥   𝜑,𝑥,𝑦   𝜃,𝑥   𝑦,𝑅   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑦)   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem uzindi
StepHypRef Expression
1 uzindi.b . . 3 (𝜑𝑇 ∈ (ℤ𝐿))
2 eluzfz2 13500 . . 3 (𝑇 ∈ (ℤ𝐿) → 𝑇 ∈ (𝐿...𝑇))
31, 2syl 17 . 2 (𝜑𝑇 ∈ (𝐿...𝑇))
4 uzindi.a . . 3 (𝜑𝐴𝑉)
5 fzofi 13946 . . . 4 (𝐿..^𝑇) ∈ Fin
6 finnum 9908 . . . 4 ((𝐿..^𝑇) ∈ Fin → (𝐿..^𝑇) ∈ dom card)
75, 6mp1i 13 . . 3 (𝜑 → (𝐿..^𝑇) ∈ dom card)
8 simpll 766 . . . . . 6 (((𝜑 ∧ ∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒))) ∧ 𝑅 ∈ (𝐿...𝑇)) → 𝜑)
9 simpr 484 . . . . . 6 (((𝜑 ∧ ∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒))) ∧ 𝑅 ∈ (𝐿...𝑇)) → 𝑅 ∈ (𝐿...𝑇))
10 elfzuz3 13489 . . . . . . . . . . . . . . . 16 (𝑅 ∈ (𝐿...𝑇) → 𝑇 ∈ (ℤ𝑅))
1110adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑅 ∈ (𝐿...𝑇)) → 𝑇 ∈ (ℤ𝑅))
12 fzoss2 13655 . . . . . . . . . . . . . . . 16 (𝑇 ∈ (ℤ𝑅) → (𝐿..^𝑅) ⊆ (𝐿..^𝑇))
13 fzossfz 13646 . . . . . . . . . . . . . . . 16 (𝐿..^𝑇) ⊆ (𝐿...𝑇)
1412, 13sstrdi 3962 . . . . . . . . . . . . . . 15 (𝑇 ∈ (ℤ𝑅) → (𝐿..^𝑅) ⊆ (𝐿...𝑇))
1511, 14syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑅 ∈ (𝐿...𝑇)) → (𝐿..^𝑅) ⊆ (𝐿...𝑇))
1615sselda 3949 . . . . . . . . . . . . 13 (((𝜑𝑅 ∈ (𝐿...𝑇)) ∧ 𝑆 ∈ (𝐿..^𝑅)) → 𝑆 ∈ (𝐿...𝑇))
17 fzofi 13946 . . . . . . . . . . . . . 14 (𝐿..^𝑅) ∈ Fin
18 elfzofz 13643 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ (𝐿..^𝑅) → 𝑆 ∈ (𝐿...𝑅))
1918adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑅 ∈ (𝐿...𝑇)) ∧ 𝑆 ∈ (𝐿..^𝑅)) → 𝑆 ∈ (𝐿...𝑅))
20 elfzuz3 13489 . . . . . . . . . . . . . . . 16 (𝑆 ∈ (𝐿...𝑅) → 𝑅 ∈ (ℤ𝑆))
21 fzoss2 13655 . . . . . . . . . . . . . . . 16 (𝑅 ∈ (ℤ𝑆) → (𝐿..^𝑆) ⊆ (𝐿..^𝑅))
2219, 20, 213syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑅 ∈ (𝐿...𝑇)) ∧ 𝑆 ∈ (𝐿..^𝑅)) → (𝐿..^𝑆) ⊆ (𝐿..^𝑅))
23 fzonel 13641 . . . . . . . . . . . . . . . . 17 ¬ 𝑆 ∈ (𝐿..^𝑆)
2423jctr 524 . . . . . . . . . . . . . . . 16 (𝑆 ∈ (𝐿..^𝑅) → (𝑆 ∈ (𝐿..^𝑅) ∧ ¬ 𝑆 ∈ (𝐿..^𝑆)))
2524adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑅 ∈ (𝐿...𝑇)) ∧ 𝑆 ∈ (𝐿..^𝑅)) → (𝑆 ∈ (𝐿..^𝑅) ∧ ¬ 𝑆 ∈ (𝐿..^𝑆)))
26 ssnelpss 4080 . . . . . . . . . . . . . . 15 ((𝐿..^𝑆) ⊆ (𝐿..^𝑅) → ((𝑆 ∈ (𝐿..^𝑅) ∧ ¬ 𝑆 ∈ (𝐿..^𝑆)) → (𝐿..^𝑆) ⊊ (𝐿..^𝑅)))
2722, 25, 26sylc 65 . . . . . . . . . . . . . 14 (((𝜑𝑅 ∈ (𝐿...𝑇)) ∧ 𝑆 ∈ (𝐿..^𝑅)) → (𝐿..^𝑆) ⊊ (𝐿..^𝑅))
28 php3 9179 . . . . . . . . . . . . . 14 (((𝐿..^𝑅) ∈ Fin ∧ (𝐿..^𝑆) ⊊ (𝐿..^𝑅)) → (𝐿..^𝑆) ≺ (𝐿..^𝑅))
2917, 27, 28sylancr 587 . . . . . . . . . . . . 13 (((𝜑𝑅 ∈ (𝐿...𝑇)) ∧ 𝑆 ∈ (𝐿..^𝑅)) → (𝐿..^𝑆) ≺ (𝐿..^𝑅))
30 id 22 . . . . . . . . . . . . . 14 (((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → ((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)))
3130com13 88 . . . . . . . . . . . . 13 (𝑆 ∈ (𝐿...𝑇) → ((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → 𝜒)))
3216, 29, 31sylc 65 . . . . . . . . . . . 12 (((𝜑𝑅 ∈ (𝐿...𝑇)) ∧ 𝑆 ∈ (𝐿..^𝑅)) → (((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → 𝜒))
3332ex 412 . . . . . . . . . . 11 ((𝜑𝑅 ∈ (𝐿...𝑇)) → (𝑆 ∈ (𝐿..^𝑅) → (((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → 𝜒)))
3433com23 86 . . . . . . . . . 10 ((𝜑𝑅 ∈ (𝐿...𝑇)) → (((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → (𝑆 ∈ (𝐿..^𝑅) → 𝜒)))
3534alimdv 1916 . . . . . . . . 9 ((𝜑𝑅 ∈ (𝐿...𝑇)) → (∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → ∀𝑦(𝑆 ∈ (𝐿..^𝑅) → 𝜒)))
3635ex 412 . . . . . . . 8 (𝜑 → (𝑅 ∈ (𝐿...𝑇) → (∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → ∀𝑦(𝑆 ∈ (𝐿..^𝑅) → 𝜒))))
3736com23 86 . . . . . . 7 (𝜑 → (∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → (𝑅 ∈ (𝐿...𝑇) → ∀𝑦(𝑆 ∈ (𝐿..^𝑅) → 𝜒))))
3837imp31 417 . . . . . 6 (((𝜑 ∧ ∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒))) ∧ 𝑅 ∈ (𝐿...𝑇)) → ∀𝑦(𝑆 ∈ (𝐿..^𝑅) → 𝜒))
39 uzindi.c . . . . . 6 ((𝜑𝑅 ∈ (𝐿...𝑇) ∧ ∀𝑦(𝑆 ∈ (𝐿..^𝑅) → 𝜒)) → 𝜓)
408, 9, 38, 39syl3anc 1373 . . . . 5 (((𝜑 ∧ ∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒))) ∧ 𝑅 ∈ (𝐿...𝑇)) → 𝜓)
4140ex 412 . . . 4 ((𝜑 ∧ ∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒))) → (𝑅 ∈ (𝐿...𝑇) → 𝜓))
42413adant2 1131 . . 3 ((𝜑 ∧ (𝐿..^𝑅) ≼ (𝐿..^𝑇) ∧ ∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒))) → (𝑅 ∈ (𝐿...𝑇) → 𝜓))
43 uzindi.f . . . . 5 (𝑥 = 𝑦𝑅 = 𝑆)
4443eleq1d 2814 . . . 4 (𝑥 = 𝑦 → (𝑅 ∈ (𝐿...𝑇) ↔ 𝑆 ∈ (𝐿...𝑇)))
45 uzindi.d . . . 4 (𝑥 = 𝑦 → (𝜓𝜒))
4644, 45imbi12d 344 . . 3 (𝑥 = 𝑦 → ((𝑅 ∈ (𝐿...𝑇) → 𝜓) ↔ (𝑆 ∈ (𝐿...𝑇) → 𝜒)))
47 uzindi.g . . . . 5 (𝑥 = 𝐴𝑅 = 𝑇)
4847eleq1d 2814 . . . 4 (𝑥 = 𝐴 → (𝑅 ∈ (𝐿...𝑇) ↔ 𝑇 ∈ (𝐿...𝑇)))
49 uzindi.e . . . 4 (𝑥 = 𝐴 → (𝜓𝜃))
5048, 49imbi12d 344 . . 3 (𝑥 = 𝐴 → ((𝑅 ∈ (𝐿...𝑇) → 𝜓) ↔ (𝑇 ∈ (𝐿...𝑇) → 𝜃)))
5143oveq2d 7406 . . 3 (𝑥 = 𝑦 → (𝐿..^𝑅) = (𝐿..^𝑆))
5247oveq2d 7406 . . 3 (𝑥 = 𝐴 → (𝐿..^𝑅) = (𝐿..^𝑇))
534, 7, 42, 46, 50, 51, 52indcardi 10001 . 2 (𝜑 → (𝑇 ∈ (𝐿...𝑇) → 𝜃))
543, 53mpd 15 1 (𝜑𝜃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wss 3917  wpss 3918   class class class wbr 5110  dom cdm 5641  cfv 6514  (class class class)co 7390  cdom 8919  csdm 8920  Fincfn 8921  cardccrd 9895  cuz 12800  ...cfz 13475  ..^cfzo 13622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623
This theorem is referenced by:  psgnunilem4  19434
  Copyright terms: Public domain W3C validator