MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzindi Structured version   Visualization version   GIF version

Theorem uzindi 13946
Description: Indirect strong induction on the upper integers. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Hypotheses
Ref Expression
uzindi.a (𝜑𝐴𝑉)
uzindi.b (𝜑𝑇 ∈ (ℤ𝐿))
uzindi.c ((𝜑𝑅 ∈ (𝐿...𝑇) ∧ ∀𝑦(𝑆 ∈ (𝐿..^𝑅) → 𝜒)) → 𝜓)
uzindi.d (𝑥 = 𝑦 → (𝜓𝜒))
uzindi.e (𝑥 = 𝐴 → (𝜓𝜃))
uzindi.f (𝑥 = 𝑦𝑅 = 𝑆)
uzindi.g (𝑥 = 𝐴𝑅 = 𝑇)
Assertion
Ref Expression
uzindi (𝜑𝜃)
Distinct variable groups:   𝑥,𝑦,𝐿   𝑥,𝐴   𝑥,𝑆   𝑥,𝑇,𝑦   𝜒,𝑥   𝜑,𝑥,𝑦   𝜃,𝑥   𝑦,𝑅   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑦)   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem uzindi
StepHypRef Expression
1 uzindi.b . . 3 (𝜑𝑇 ∈ (ℤ𝐿))
2 eluzfz2 13508 . . 3 (𝑇 ∈ (ℤ𝐿) → 𝑇 ∈ (𝐿...𝑇))
31, 2syl 17 . 2 (𝜑𝑇 ∈ (𝐿...𝑇))
4 uzindi.a . . 3 (𝜑𝐴𝑉)
5 fzofi 13938 . . . 4 (𝐿..^𝑇) ∈ Fin
6 finnum 9942 . . . 4 ((𝐿..^𝑇) ∈ Fin → (𝐿..^𝑇) ∈ dom card)
75, 6mp1i 13 . . 3 (𝜑 → (𝐿..^𝑇) ∈ dom card)
8 simpll 765 . . . . . 6 (((𝜑 ∧ ∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒))) ∧ 𝑅 ∈ (𝐿...𝑇)) → 𝜑)
9 simpr 485 . . . . . 6 (((𝜑 ∧ ∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒))) ∧ 𝑅 ∈ (𝐿...𝑇)) → 𝑅 ∈ (𝐿...𝑇))
10 elfzuz3 13497 . . . . . . . . . . . . . . . 16 (𝑅 ∈ (𝐿...𝑇) → 𝑇 ∈ (ℤ𝑅))
1110adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑅 ∈ (𝐿...𝑇)) → 𝑇 ∈ (ℤ𝑅))
12 fzoss2 13659 . . . . . . . . . . . . . . . 16 (𝑇 ∈ (ℤ𝑅) → (𝐿..^𝑅) ⊆ (𝐿..^𝑇))
13 fzossfz 13650 . . . . . . . . . . . . . . . 16 (𝐿..^𝑇) ⊆ (𝐿...𝑇)
1412, 13sstrdi 3994 . . . . . . . . . . . . . . 15 (𝑇 ∈ (ℤ𝑅) → (𝐿..^𝑅) ⊆ (𝐿...𝑇))
1511, 14syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑅 ∈ (𝐿...𝑇)) → (𝐿..^𝑅) ⊆ (𝐿...𝑇))
1615sselda 3982 . . . . . . . . . . . . 13 (((𝜑𝑅 ∈ (𝐿...𝑇)) ∧ 𝑆 ∈ (𝐿..^𝑅)) → 𝑆 ∈ (𝐿...𝑇))
17 fzofi 13938 . . . . . . . . . . . . . 14 (𝐿..^𝑅) ∈ Fin
18 elfzofz 13647 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ (𝐿..^𝑅) → 𝑆 ∈ (𝐿...𝑅))
1918adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑅 ∈ (𝐿...𝑇)) ∧ 𝑆 ∈ (𝐿..^𝑅)) → 𝑆 ∈ (𝐿...𝑅))
20 elfzuz3 13497 . . . . . . . . . . . . . . . 16 (𝑆 ∈ (𝐿...𝑅) → 𝑅 ∈ (ℤ𝑆))
21 fzoss2 13659 . . . . . . . . . . . . . . . 16 (𝑅 ∈ (ℤ𝑆) → (𝐿..^𝑆) ⊆ (𝐿..^𝑅))
2219, 20, 213syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑅 ∈ (𝐿...𝑇)) ∧ 𝑆 ∈ (𝐿..^𝑅)) → (𝐿..^𝑆) ⊆ (𝐿..^𝑅))
23 fzonel 13645 . . . . . . . . . . . . . . . . 17 ¬ 𝑆 ∈ (𝐿..^𝑆)
2423jctr 525 . . . . . . . . . . . . . . . 16 (𝑆 ∈ (𝐿..^𝑅) → (𝑆 ∈ (𝐿..^𝑅) ∧ ¬ 𝑆 ∈ (𝐿..^𝑆)))
2524adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑅 ∈ (𝐿...𝑇)) ∧ 𝑆 ∈ (𝐿..^𝑅)) → (𝑆 ∈ (𝐿..^𝑅) ∧ ¬ 𝑆 ∈ (𝐿..^𝑆)))
26 ssnelpss 4111 . . . . . . . . . . . . . . 15 ((𝐿..^𝑆) ⊆ (𝐿..^𝑅) → ((𝑆 ∈ (𝐿..^𝑅) ∧ ¬ 𝑆 ∈ (𝐿..^𝑆)) → (𝐿..^𝑆) ⊊ (𝐿..^𝑅)))
2722, 25, 26sylc 65 . . . . . . . . . . . . . 14 (((𝜑𝑅 ∈ (𝐿...𝑇)) ∧ 𝑆 ∈ (𝐿..^𝑅)) → (𝐿..^𝑆) ⊊ (𝐿..^𝑅))
28 php3 9211 . . . . . . . . . . . . . 14 (((𝐿..^𝑅) ∈ Fin ∧ (𝐿..^𝑆) ⊊ (𝐿..^𝑅)) → (𝐿..^𝑆) ≺ (𝐿..^𝑅))
2917, 27, 28sylancr 587 . . . . . . . . . . . . 13 (((𝜑𝑅 ∈ (𝐿...𝑇)) ∧ 𝑆 ∈ (𝐿..^𝑅)) → (𝐿..^𝑆) ≺ (𝐿..^𝑅))
30 id 22 . . . . . . . . . . . . . 14 (((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → ((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)))
3130com13 88 . . . . . . . . . . . . 13 (𝑆 ∈ (𝐿...𝑇) → ((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → 𝜒)))
3216, 29, 31sylc 65 . . . . . . . . . . . 12 (((𝜑𝑅 ∈ (𝐿...𝑇)) ∧ 𝑆 ∈ (𝐿..^𝑅)) → (((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → 𝜒))
3332ex 413 . . . . . . . . . . 11 ((𝜑𝑅 ∈ (𝐿...𝑇)) → (𝑆 ∈ (𝐿..^𝑅) → (((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → 𝜒)))
3433com23 86 . . . . . . . . . 10 ((𝜑𝑅 ∈ (𝐿...𝑇)) → (((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → (𝑆 ∈ (𝐿..^𝑅) → 𝜒)))
3534alimdv 1919 . . . . . . . . 9 ((𝜑𝑅 ∈ (𝐿...𝑇)) → (∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → ∀𝑦(𝑆 ∈ (𝐿..^𝑅) → 𝜒)))
3635ex 413 . . . . . . . 8 (𝜑 → (𝑅 ∈ (𝐿...𝑇) → (∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → ∀𝑦(𝑆 ∈ (𝐿..^𝑅) → 𝜒))))
3736com23 86 . . . . . . 7 (𝜑 → (∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒)) → (𝑅 ∈ (𝐿...𝑇) → ∀𝑦(𝑆 ∈ (𝐿..^𝑅) → 𝜒))))
3837imp31 418 . . . . . 6 (((𝜑 ∧ ∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒))) ∧ 𝑅 ∈ (𝐿...𝑇)) → ∀𝑦(𝑆 ∈ (𝐿..^𝑅) → 𝜒))
39 uzindi.c . . . . . 6 ((𝜑𝑅 ∈ (𝐿...𝑇) ∧ ∀𝑦(𝑆 ∈ (𝐿..^𝑅) → 𝜒)) → 𝜓)
408, 9, 38, 39syl3anc 1371 . . . . 5 (((𝜑 ∧ ∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒))) ∧ 𝑅 ∈ (𝐿...𝑇)) → 𝜓)
4140ex 413 . . . 4 ((𝜑 ∧ ∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒))) → (𝑅 ∈ (𝐿...𝑇) → 𝜓))
42413adant2 1131 . . 3 ((𝜑 ∧ (𝐿..^𝑅) ≼ (𝐿..^𝑇) ∧ ∀𝑦((𝐿..^𝑆) ≺ (𝐿..^𝑅) → (𝑆 ∈ (𝐿...𝑇) → 𝜒))) → (𝑅 ∈ (𝐿...𝑇) → 𝜓))
43 uzindi.f . . . . 5 (𝑥 = 𝑦𝑅 = 𝑆)
4443eleq1d 2818 . . . 4 (𝑥 = 𝑦 → (𝑅 ∈ (𝐿...𝑇) ↔ 𝑆 ∈ (𝐿...𝑇)))
45 uzindi.d . . . 4 (𝑥 = 𝑦 → (𝜓𝜒))
4644, 45imbi12d 344 . . 3 (𝑥 = 𝑦 → ((𝑅 ∈ (𝐿...𝑇) → 𝜓) ↔ (𝑆 ∈ (𝐿...𝑇) → 𝜒)))
47 uzindi.g . . . . 5 (𝑥 = 𝐴𝑅 = 𝑇)
4847eleq1d 2818 . . . 4 (𝑥 = 𝐴 → (𝑅 ∈ (𝐿...𝑇) ↔ 𝑇 ∈ (𝐿...𝑇)))
49 uzindi.e . . . 4 (𝑥 = 𝐴 → (𝜓𝜃))
5048, 49imbi12d 344 . . 3 (𝑥 = 𝐴 → ((𝑅 ∈ (𝐿...𝑇) → 𝜓) ↔ (𝑇 ∈ (𝐿...𝑇) → 𝜃)))
5143oveq2d 7424 . . 3 (𝑥 = 𝑦 → (𝐿..^𝑅) = (𝐿..^𝑆))
5247oveq2d 7424 . . 3 (𝑥 = 𝐴 → (𝐿..^𝑅) = (𝐿..^𝑇))
534, 7, 42, 46, 50, 51, 52indcardi 10035 . 2 (𝜑 → (𝑇 ∈ (𝐿...𝑇) → 𝜃))
543, 53mpd 15 1 (𝜑𝜃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087  wal 1539   = wceq 1541  wcel 2106  wss 3948  wpss 3949   class class class wbr 5148  dom cdm 5676  cfv 6543  (class class class)co 7408  cdom 8936  csdm 8937  Fincfn 8938  cardccrd 9929  cuz 12821  ...cfz 13483  ..^cfzo 13626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627
This theorem is referenced by:  psgnunilem4  19364
  Copyright terms: Public domain W3C validator