MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqpr Structured version   Visualization version   GIF version

Theorem nqpr 10957
Description: The canonical embedding of the rationals into the reals. (Contributed by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nqpr (𝐴Q → {𝑥𝑥 <Q 𝐴} ∈ P)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nqpr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsmallnq 10920 . . . 4 (𝐴Q → ∃𝑥 𝑥 <Q 𝐴)
2 abn0 4345 . . . 4 ({𝑥𝑥 <Q 𝐴} ≠ ∅ ↔ ∃𝑥 𝑥 <Q 𝐴)
31, 2sylibr 233 . . 3 (𝐴Q → {𝑥𝑥 <Q 𝐴} ≠ ∅)
4 0pss 4409 . . 3 (∅ ⊊ {𝑥𝑥 <Q 𝐴} ↔ {𝑥𝑥 <Q 𝐴} ≠ ∅)
53, 4sylibr 233 . 2 (𝐴Q → ∅ ⊊ {𝑥𝑥 <Q 𝐴})
6 ltrelnq 10869 . . . . . 6 <Q ⊆ (Q × Q)
76brel 5702 . . . . 5 (𝑥 <Q 𝐴 → (𝑥Q𝐴Q))
87simpld 496 . . . 4 (𝑥 <Q 𝐴𝑥Q)
98abssi 4032 . . 3 {𝑥𝑥 <Q 𝐴} ⊆ Q
10 ltsonq 10912 . . . . . 6 <Q Or Q
1110, 6soirri 6085 . . . . 5 ¬ 𝐴 <Q 𝐴
12 breq1 5113 . . . . . 6 (𝑥 = 𝐴 → (𝑥 <Q 𝐴𝐴 <Q 𝐴))
1312elabg 3633 . . . . 5 (𝐴Q → (𝐴 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝐴 <Q 𝐴))
1411, 13mtbiri 327 . . . 4 (𝐴Q → ¬ 𝐴 ∈ {𝑥𝑥 <Q 𝐴})
1514ancli 550 . . 3 (𝐴Q → (𝐴Q ∧ ¬ 𝐴 ∈ {𝑥𝑥 <Q 𝐴}))
16 ssnelpss 4076 . . 3 ({𝑥𝑥 <Q 𝐴} ⊆ Q → ((𝐴Q ∧ ¬ 𝐴 ∈ {𝑥𝑥 <Q 𝐴}) → {𝑥𝑥 <Q 𝐴} ⊊ Q))
179, 15, 16mpsyl 68 . 2 (𝐴Q → {𝑥𝑥 <Q 𝐴} ⊊ Q)
18 vex 3452 . . . . 5 𝑦 ∈ V
19 breq1 5113 . . . . 5 (𝑥 = 𝑦 → (𝑥 <Q 𝐴𝑦 <Q 𝐴))
2018, 19elab 3635 . . . 4 (𝑦 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝑦 <Q 𝐴)
2110, 6sotri 6086 . . . . . . . . 9 ((𝑧 <Q 𝑦𝑦 <Q 𝐴) → 𝑧 <Q 𝐴)
2221expcom 415 . . . . . . . 8 (𝑦 <Q 𝐴 → (𝑧 <Q 𝑦𝑧 <Q 𝐴))
2322adantl 483 . . . . . . 7 ((𝐴Q𝑦 <Q 𝐴) → (𝑧 <Q 𝑦𝑧 <Q 𝐴))
24 vex 3452 . . . . . . . 8 𝑧 ∈ V
25 breq1 5113 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 <Q 𝐴𝑧 <Q 𝐴))
2624, 25elab 3635 . . . . . . 7 (𝑧 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝑧 <Q 𝐴)
2723, 26syl6ibr 252 . . . . . 6 ((𝐴Q𝑦 <Q 𝐴) → (𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}))
2827alrimiv 1931 . . . . 5 ((𝐴Q𝑦 <Q 𝐴) → ∀𝑧(𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}))
29 ltbtwnnq 10921 . . . . . . . 8 (𝑦 <Q 𝐴 ↔ ∃𝑧(𝑦 <Q 𝑧𝑧 <Q 𝐴))
3026anbi2i 624 . . . . . . . . . . 11 ((𝑦 <Q 𝑧𝑧 ∈ {𝑥𝑥 <Q 𝐴}) ↔ (𝑦 <Q 𝑧𝑧 <Q 𝐴))
3130biimpri 227 . . . . . . . . . 10 ((𝑦 <Q 𝑧𝑧 <Q 𝐴) → (𝑦 <Q 𝑧𝑧 ∈ {𝑥𝑥 <Q 𝐴}))
3231ancomd 463 . . . . . . . . 9 ((𝑦 <Q 𝑧𝑧 <Q 𝐴) → (𝑧 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑦 <Q 𝑧))
3332eximi 1838 . . . . . . . 8 (∃𝑧(𝑦 <Q 𝑧𝑧 <Q 𝐴) → ∃𝑧(𝑧 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑦 <Q 𝑧))
3429, 33sylbi 216 . . . . . . 7 (𝑦 <Q 𝐴 → ∃𝑧(𝑧 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑦 <Q 𝑧))
3534adantl 483 . . . . . 6 ((𝐴Q𝑦 <Q 𝐴) → ∃𝑧(𝑧 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑦 <Q 𝑧))
36 df-rex 3075 . . . . . 6 (∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧 ↔ ∃𝑧(𝑧 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑦 <Q 𝑧))
3735, 36sylibr 233 . . . . 5 ((𝐴Q𝑦 <Q 𝐴) → ∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧)
3828, 37jca 513 . . . 4 ((𝐴Q𝑦 <Q 𝐴) → (∀𝑧(𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}) ∧ ∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧))
3920, 38sylan2b 595 . . 3 ((𝐴Q𝑦 ∈ {𝑥𝑥 <Q 𝐴}) → (∀𝑧(𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}) ∧ ∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧))
4039ralrimiva 3144 . 2 (𝐴Q → ∀𝑦 ∈ {𝑥𝑥 <Q 𝐴} (∀𝑧(𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}) ∧ ∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧))
41 elnp 10930 . 2 ({𝑥𝑥 <Q 𝐴} ∈ P ↔ ((∅ ⊊ {𝑥𝑥 <Q 𝐴} ∧ {𝑥𝑥 <Q 𝐴} ⊊ Q) ∧ ∀𝑦 ∈ {𝑥𝑥 <Q 𝐴} (∀𝑧(𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}) ∧ ∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧)))
425, 17, 40, 41syl21anbrc 1345 1 (𝐴Q → {𝑥𝑥 <Q 𝐴} ∈ P)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wal 1540  wex 1782  wcel 2107  {cab 2714  wne 2944  wral 3065  wrex 3074  wss 3915  wpss 3916  c0 4287   class class class wbr 5110  Qcnq 10795   <Q cltq 10801  Pcnp 10802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-oadd 8421  df-omul 8422  df-er 8655  df-ni 10815  df-pli 10816  df-mi 10817  df-lti 10818  df-plpq 10851  df-mpq 10852  df-ltpq 10853  df-enq 10854  df-nq 10855  df-erq 10856  df-plq 10857  df-mq 10858  df-1nq 10859  df-rq 10860  df-ltnq 10861  df-np 10924
This theorem is referenced by:  1pr  10958
  Copyright terms: Public domain W3C validator