MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqpr Structured version   Visualization version   GIF version

Theorem nqpr 11008
Description: The canonical embedding of the rationals into the reals. (Contributed by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nqpr (𝐴Q → {𝑥𝑥 <Q 𝐴} ∈ P)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nqpr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsmallnq 10971 . . . 4 (𝐴Q → ∃𝑥 𝑥 <Q 𝐴)
2 abn0 4380 . . . 4 ({𝑥𝑥 <Q 𝐴} ≠ ∅ ↔ ∃𝑥 𝑥 <Q 𝐴)
31, 2sylibr 233 . . 3 (𝐴Q → {𝑥𝑥 <Q 𝐴} ≠ ∅)
4 0pss 4444 . . 3 (∅ ⊊ {𝑥𝑥 <Q 𝐴} ↔ {𝑥𝑥 <Q 𝐴} ≠ ∅)
53, 4sylibr 233 . 2 (𝐴Q → ∅ ⊊ {𝑥𝑥 <Q 𝐴})
6 ltrelnq 10920 . . . . . 6 <Q ⊆ (Q × Q)
76brel 5741 . . . . 5 (𝑥 <Q 𝐴 → (𝑥Q𝐴Q))
87simpld 495 . . . 4 (𝑥 <Q 𝐴𝑥Q)
98abssi 4067 . . 3 {𝑥𝑥 <Q 𝐴} ⊆ Q
10 ltsonq 10963 . . . . . 6 <Q Or Q
1110, 6soirri 6127 . . . . 5 ¬ 𝐴 <Q 𝐴
12 breq1 5151 . . . . . 6 (𝑥 = 𝐴 → (𝑥 <Q 𝐴𝐴 <Q 𝐴))
1312elabg 3666 . . . . 5 (𝐴Q → (𝐴 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝐴 <Q 𝐴))
1411, 13mtbiri 326 . . . 4 (𝐴Q → ¬ 𝐴 ∈ {𝑥𝑥 <Q 𝐴})
1514ancli 549 . . 3 (𝐴Q → (𝐴Q ∧ ¬ 𝐴 ∈ {𝑥𝑥 <Q 𝐴}))
16 ssnelpss 4111 . . 3 ({𝑥𝑥 <Q 𝐴} ⊆ Q → ((𝐴Q ∧ ¬ 𝐴 ∈ {𝑥𝑥 <Q 𝐴}) → {𝑥𝑥 <Q 𝐴} ⊊ Q))
179, 15, 16mpsyl 68 . 2 (𝐴Q → {𝑥𝑥 <Q 𝐴} ⊊ Q)
18 vex 3478 . . . . 5 𝑦 ∈ V
19 breq1 5151 . . . . 5 (𝑥 = 𝑦 → (𝑥 <Q 𝐴𝑦 <Q 𝐴))
2018, 19elab 3668 . . . 4 (𝑦 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝑦 <Q 𝐴)
2110, 6sotri 6128 . . . . . . . . 9 ((𝑧 <Q 𝑦𝑦 <Q 𝐴) → 𝑧 <Q 𝐴)
2221expcom 414 . . . . . . . 8 (𝑦 <Q 𝐴 → (𝑧 <Q 𝑦𝑧 <Q 𝐴))
2322adantl 482 . . . . . . 7 ((𝐴Q𝑦 <Q 𝐴) → (𝑧 <Q 𝑦𝑧 <Q 𝐴))
24 vex 3478 . . . . . . . 8 𝑧 ∈ V
25 breq1 5151 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 <Q 𝐴𝑧 <Q 𝐴))
2624, 25elab 3668 . . . . . . 7 (𝑧 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝑧 <Q 𝐴)
2723, 26syl6ibr 251 . . . . . 6 ((𝐴Q𝑦 <Q 𝐴) → (𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}))
2827alrimiv 1930 . . . . 5 ((𝐴Q𝑦 <Q 𝐴) → ∀𝑧(𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}))
29 ltbtwnnq 10972 . . . . . . . 8 (𝑦 <Q 𝐴 ↔ ∃𝑧(𝑦 <Q 𝑧𝑧 <Q 𝐴))
3026anbi2i 623 . . . . . . . . . . 11 ((𝑦 <Q 𝑧𝑧 ∈ {𝑥𝑥 <Q 𝐴}) ↔ (𝑦 <Q 𝑧𝑧 <Q 𝐴))
3130biimpri 227 . . . . . . . . . 10 ((𝑦 <Q 𝑧𝑧 <Q 𝐴) → (𝑦 <Q 𝑧𝑧 ∈ {𝑥𝑥 <Q 𝐴}))
3231ancomd 462 . . . . . . . . 9 ((𝑦 <Q 𝑧𝑧 <Q 𝐴) → (𝑧 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑦 <Q 𝑧))
3332eximi 1837 . . . . . . . 8 (∃𝑧(𝑦 <Q 𝑧𝑧 <Q 𝐴) → ∃𝑧(𝑧 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑦 <Q 𝑧))
3429, 33sylbi 216 . . . . . . 7 (𝑦 <Q 𝐴 → ∃𝑧(𝑧 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑦 <Q 𝑧))
3534adantl 482 . . . . . 6 ((𝐴Q𝑦 <Q 𝐴) → ∃𝑧(𝑧 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑦 <Q 𝑧))
36 df-rex 3071 . . . . . 6 (∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧 ↔ ∃𝑧(𝑧 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑦 <Q 𝑧))
3735, 36sylibr 233 . . . . 5 ((𝐴Q𝑦 <Q 𝐴) → ∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧)
3828, 37jca 512 . . . 4 ((𝐴Q𝑦 <Q 𝐴) → (∀𝑧(𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}) ∧ ∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧))
3920, 38sylan2b 594 . . 3 ((𝐴Q𝑦 ∈ {𝑥𝑥 <Q 𝐴}) → (∀𝑧(𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}) ∧ ∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧))
4039ralrimiva 3146 . 2 (𝐴Q → ∀𝑦 ∈ {𝑥𝑥 <Q 𝐴} (∀𝑧(𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}) ∧ ∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧))
41 elnp 10981 . 2 ({𝑥𝑥 <Q 𝐴} ∈ P ↔ ((∅ ⊊ {𝑥𝑥 <Q 𝐴} ∧ {𝑥𝑥 <Q 𝐴} ⊊ Q) ∧ ∀𝑦 ∈ {𝑥𝑥 <Q 𝐴} (∀𝑧(𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}) ∧ ∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧)))
425, 17, 40, 41syl21anbrc 1344 1 (𝐴Q → {𝑥𝑥 <Q 𝐴} ∈ P)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wal 1539  wex 1781  wcel 2106  {cab 2709  wne 2940  wral 3061  wrex 3070  wss 3948  wpss 3949  c0 4322   class class class wbr 5148  Qcnq 10846   <Q cltq 10852  Pcnp 10853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-oadd 8469  df-omul 8470  df-er 8702  df-ni 10866  df-pli 10867  df-mi 10868  df-lti 10869  df-plpq 10902  df-mpq 10903  df-ltpq 10904  df-enq 10905  df-nq 10906  df-erq 10907  df-plq 10908  df-mq 10909  df-1nq 10910  df-rq 10911  df-ltnq 10912  df-np 10975
This theorem is referenced by:  1pr  11009
  Copyright terms: Public domain W3C validator