MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suplem2pr Structured version   Visualization version   GIF version

Theorem suplem2pr 10469
Description: The union of a set of positive reals (if a positive real) is its supremum (the least upper bound). Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
suplem2pr (𝐴P → ((𝑦𝐴 → ¬ 𝐴<P 𝑦) ∧ (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
Distinct variable group:   𝑦,𝑧,𝐴

Proof of Theorem suplem2pr
StepHypRef Expression
1 ltrelpr 10414 . . . . . 6 <P ⊆ (P × P)
21brel 5616 . . . . 5 (𝑦<P 𝐴 → (𝑦P 𝐴P))
32simpld 495 . . . 4 (𝑦<P 𝐴𝑦P)
4 ralnex 3241 . . . . . . . . 9 (∀𝑧𝐴 ¬ 𝑦<P 𝑧 ↔ ¬ ∃𝑧𝐴 𝑦<P 𝑧)
5 ssel2 3966 . . . . . . . . . . . 12 ((𝐴P𝑧𝐴) → 𝑧P)
6 ltsopr 10448 . . . . . . . . . . . . . . . 16 <P Or P
7 sotric 5500 . . . . . . . . . . . . . . . 16 ((<P Or P ∧ (𝑦P𝑧P)) → (𝑦<P 𝑧 ↔ ¬ (𝑦 = 𝑧𝑧<P 𝑦)))
86, 7mpan 686 . . . . . . . . . . . . . . 15 ((𝑦P𝑧P) → (𝑦<P 𝑧 ↔ ¬ (𝑦 = 𝑧𝑧<P 𝑦)))
98con2bid 356 . . . . . . . . . . . . . 14 ((𝑦P𝑧P) → ((𝑦 = 𝑧𝑧<P 𝑦) ↔ ¬ 𝑦<P 𝑧))
109ancoms 459 . . . . . . . . . . . . 13 ((𝑧P𝑦P) → ((𝑦 = 𝑧𝑧<P 𝑦) ↔ ¬ 𝑦<P 𝑧))
11 ltprord 10446 . . . . . . . . . . . . . . 15 ((𝑧P𝑦P) → (𝑧<P 𝑦𝑧𝑦))
1211orbi2d 911 . . . . . . . . . . . . . 14 ((𝑧P𝑦P) → ((𝑦 = 𝑧𝑧<P 𝑦) ↔ (𝑦 = 𝑧𝑧𝑦)))
13 sspss 4080 . . . . . . . . . . . . . . 15 (𝑧𝑦 ↔ (𝑧𝑦𝑧 = 𝑦))
14 equcom 2018 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦𝑦 = 𝑧)
1514orbi2i 908 . . . . . . . . . . . . . . 15 ((𝑧𝑦𝑧 = 𝑦) ↔ (𝑧𝑦𝑦 = 𝑧))
16 orcom 866 . . . . . . . . . . . . . . 15 ((𝑧𝑦𝑦 = 𝑧) ↔ (𝑦 = 𝑧𝑧𝑦))
1713, 15, 163bitri 298 . . . . . . . . . . . . . 14 (𝑧𝑦 ↔ (𝑦 = 𝑧𝑧𝑦))
1812, 17syl6bbr 290 . . . . . . . . . . . . 13 ((𝑧P𝑦P) → ((𝑦 = 𝑧𝑧<P 𝑦) ↔ 𝑧𝑦))
1910, 18bitr3d 282 . . . . . . . . . . . 12 ((𝑧P𝑦P) → (¬ 𝑦<P 𝑧𝑧𝑦))
205, 19sylan 580 . . . . . . . . . . 11 (((𝐴P𝑧𝐴) ∧ 𝑦P) → (¬ 𝑦<P 𝑧𝑧𝑦))
2120an32s 648 . . . . . . . . . 10 (((𝐴P𝑦P) ∧ 𝑧𝐴) → (¬ 𝑦<P 𝑧𝑧𝑦))
2221ralbidva 3201 . . . . . . . . 9 ((𝐴P𝑦P) → (∀𝑧𝐴 ¬ 𝑦<P 𝑧 ↔ ∀𝑧𝐴 𝑧𝑦))
234, 22syl5bbr 286 . . . . . . . 8 ((𝐴P𝑦P) → (¬ ∃𝑧𝐴 𝑦<P 𝑧 ↔ ∀𝑧𝐴 𝑧𝑦))
24 unissb 4868 . . . . . . . 8 ( 𝐴𝑦 ↔ ∀𝑧𝐴 𝑧𝑦)
2523, 24syl6bbr 290 . . . . . . 7 ((𝐴P𝑦P) → (¬ ∃𝑧𝐴 𝑦<P 𝑧 𝐴𝑦))
26 ssnpss 4084 . . . . . . . 8 ( 𝐴𝑦 → ¬ 𝑦 𝐴)
27 ltprord 10446 . . . . . . . . . 10 ((𝑦P 𝐴P) → (𝑦<P 𝐴𝑦 𝐴))
2827biimpd 230 . . . . . . . . 9 ((𝑦P 𝐴P) → (𝑦<P 𝐴𝑦 𝐴))
292, 28mpcom 38 . . . . . . . 8 (𝑦<P 𝐴𝑦 𝐴)
3026, 29nsyl 142 . . . . . . 7 ( 𝐴𝑦 → ¬ 𝑦<P 𝐴)
3125, 30syl6bi 254 . . . . . 6 ((𝐴P𝑦P) → (¬ ∃𝑧𝐴 𝑦<P 𝑧 → ¬ 𝑦<P 𝐴))
3231con4d 115 . . . . 5 ((𝐴P𝑦P) → (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))
3332ex 413 . . . 4 (𝐴P → (𝑦P → (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
343, 33syl5 34 . . 3 (𝐴P → (𝑦<P 𝐴 → (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
3534pm2.43d 53 . 2 (𝐴P → (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧))
36 elssuni 4866 . . . 4 (𝑦𝐴𝑦 𝐴)
37 ssnpss 4084 . . . 4 (𝑦 𝐴 → ¬ 𝐴𝑦)
3836, 37syl 17 . . 3 (𝑦𝐴 → ¬ 𝐴𝑦)
391brel 5616 . . . 4 ( 𝐴<P 𝑦 → ( 𝐴P𝑦P))
40 ltprord 10446 . . . . 5 (( 𝐴P𝑦P) → ( 𝐴<P 𝑦 𝐴𝑦))
4140biimpd 230 . . . 4 (( 𝐴P𝑦P) → ( 𝐴<P 𝑦 𝐴𝑦))
4239, 41mpcom 38 . . 3 ( 𝐴<P 𝑦 𝐴𝑦)
4338, 42nsyl 142 . 2 (𝑦𝐴 → ¬ 𝐴<P 𝑦)
4435, 43jctil 520 1 (𝐴P → ((𝑦𝐴 → ¬ 𝐴<P 𝑦) ∧ (𝑦<P 𝐴 → ∃𝑧𝐴 𝑦<P 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 843  wcel 2107  wral 3143  wrex 3144  wss 3940  wpss 3941   cuni 4837   class class class wbr 5063   Or wor 5472  Pcnp 10275  <P cltp 10279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-oadd 8102  df-omul 8103  df-er 8284  df-ni 10288  df-mi 10290  df-lti 10291  df-ltpq 10326  df-enq 10327  df-nq 10328  df-ltnq 10334  df-np 10397  df-ltp 10401
This theorem is referenced by:  supexpr  10470
  Copyright terms: Public domain W3C validator