MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sorpssuni Structured version   Visualization version   GIF version

Theorem sorpssuni 7767
Description: In a chain of sets, a maximal element is the union of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
sorpssuni ( [] Or 𝑌 → (∃𝑢𝑌𝑣𝑌 ¬ 𝑢𝑣 𝑌𝑌))
Distinct variable group:   𝑢,𝑌,𝑣

Proof of Theorem sorpssuni
StepHypRef Expression
1 sorpssi 7764 . . . . . . . . . 10 (( [] Or 𝑌 ∧ (𝑢𝑌𝑣𝑌)) → (𝑢𝑣𝑣𝑢))
21anassrs 467 . . . . . . . . 9 ((( [] Or 𝑌𝑢𝑌) ∧ 𝑣𝑌) → (𝑢𝑣𝑣𝑢))
3 sspss 4125 . . . . . . . . . . 11 (𝑢𝑣 ↔ (𝑢𝑣𝑢 = 𝑣))
4 orel1 887 . . . . . . . . . . . 12 𝑢𝑣 → ((𝑢𝑣𝑢 = 𝑣) → 𝑢 = 𝑣))
5 eqimss2 4068 . . . . . . . . . . . 12 (𝑢 = 𝑣𝑣𝑢)
64, 5syl6com 37 . . . . . . . . . . 11 ((𝑢𝑣𝑢 = 𝑣) → (¬ 𝑢𝑣𝑣𝑢))
73, 6sylbi 217 . . . . . . . . . 10 (𝑢𝑣 → (¬ 𝑢𝑣𝑣𝑢))
8 ax-1 6 . . . . . . . . . 10 (𝑣𝑢 → (¬ 𝑢𝑣𝑣𝑢))
97, 8jaoi 856 . . . . . . . . 9 ((𝑢𝑣𝑣𝑢) → (¬ 𝑢𝑣𝑣𝑢))
102, 9syl 17 . . . . . . . 8 ((( [] Or 𝑌𝑢𝑌) ∧ 𝑣𝑌) → (¬ 𝑢𝑣𝑣𝑢))
1110ralimdva 3173 . . . . . . 7 (( [] Or 𝑌𝑢𝑌) → (∀𝑣𝑌 ¬ 𝑢𝑣 → ∀𝑣𝑌 𝑣𝑢))
12113impia 1117 . . . . . 6 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑢𝑣) → ∀𝑣𝑌 𝑣𝑢)
13 unissb 4963 . . . . . 6 ( 𝑌𝑢 ↔ ∀𝑣𝑌 𝑣𝑢)
1412, 13sylibr 234 . . . . 5 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑢𝑣) → 𝑌𝑢)
15 elssuni 4961 . . . . . 6 (𝑢𝑌𝑢 𝑌)
16153ad2ant2 1134 . . . . 5 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑢𝑣) → 𝑢 𝑌)
1714, 16eqssd 4026 . . . 4 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑢𝑣) → 𝑌 = 𝑢)
18 simp2 1137 . . . 4 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑢𝑣) → 𝑢𝑌)
1917, 18eqeltrd 2844 . . 3 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑢𝑣) → 𝑌𝑌)
2019rexlimdv3a 3165 . 2 ( [] Or 𝑌 → (∃𝑢𝑌𝑣𝑌 ¬ 𝑢𝑣 𝑌𝑌))
21 elssuni 4961 . . . . 5 (𝑣𝑌𝑣 𝑌)
22 ssnpss 4129 . . . . 5 (𝑣 𝑌 → ¬ 𝑌𝑣)
2321, 22syl 17 . . . 4 (𝑣𝑌 → ¬ 𝑌𝑣)
2423rgen 3069 . . 3 𝑣𝑌 ¬ 𝑌𝑣
25 psseq1 4113 . . . . . 6 (𝑢 = 𝑌 → (𝑢𝑣 𝑌𝑣))
2625notbid 318 . . . . 5 (𝑢 = 𝑌 → (¬ 𝑢𝑣 ↔ ¬ 𝑌𝑣))
2726ralbidv 3184 . . . 4 (𝑢 = 𝑌 → (∀𝑣𝑌 ¬ 𝑢𝑣 ↔ ∀𝑣𝑌 ¬ 𝑌𝑣))
2827rspcev 3635 . . 3 (( 𝑌𝑌 ∧ ∀𝑣𝑌 ¬ 𝑌𝑣) → ∃𝑢𝑌𝑣𝑌 ¬ 𝑢𝑣)
2924, 28mpan2 690 . 2 ( 𝑌𝑌 → ∃𝑢𝑌𝑣𝑌 ¬ 𝑢𝑣)
3020, 29impbid1 225 1 ( [] Or 𝑌 → (∃𝑢𝑌𝑣𝑌 ¬ 𝑢𝑣 𝑌𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  wss 3976  wpss 3977   cuni 4931   Or wor 5606   [] crpss 7757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-so 5608  df-xp 5706  df-rel 5707  df-rpss 7758
This theorem is referenced by:  fin2i2  10387  isfin2-2  10388  fin12  10482
  Copyright terms: Public domain W3C validator