Proof of Theorem sorpssuni
| Step | Hyp | Ref
| Expression |
| 1 | | sorpssi 7728 |
. . . . . . . . . 10
⊢ ((
[⊊] Or 𝑌
∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) |
| 2 | 1 | anassrs 467 |
. . . . . . . . 9
⊢ (((
[⊊] Or 𝑌
∧ 𝑢 ∈ 𝑌) ∧ 𝑣 ∈ 𝑌) → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) |
| 3 | | sspss 4082 |
. . . . . . . . . . 11
⊢ (𝑢 ⊆ 𝑣 ↔ (𝑢 ⊊ 𝑣 ∨ 𝑢 = 𝑣)) |
| 4 | | orel1 888 |
. . . . . . . . . . . 12
⊢ (¬
𝑢 ⊊ 𝑣 → ((𝑢 ⊊ 𝑣 ∨ 𝑢 = 𝑣) → 𝑢 = 𝑣)) |
| 5 | | eqimss2 4023 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑣 → 𝑣 ⊆ 𝑢) |
| 6 | 4, 5 | syl6com 37 |
. . . . . . . . . . 11
⊢ ((𝑢 ⊊ 𝑣 ∨ 𝑢 = 𝑣) → (¬ 𝑢 ⊊ 𝑣 → 𝑣 ⊆ 𝑢)) |
| 7 | 3, 6 | sylbi 217 |
. . . . . . . . . 10
⊢ (𝑢 ⊆ 𝑣 → (¬ 𝑢 ⊊ 𝑣 → 𝑣 ⊆ 𝑢)) |
| 8 | | ax-1 6 |
. . . . . . . . . 10
⊢ (𝑣 ⊆ 𝑢 → (¬ 𝑢 ⊊ 𝑣 → 𝑣 ⊆ 𝑢)) |
| 9 | 7, 8 | jaoi 857 |
. . . . . . . . 9
⊢ ((𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢) → (¬ 𝑢 ⊊ 𝑣 → 𝑣 ⊆ 𝑢)) |
| 10 | 2, 9 | syl 17 |
. . . . . . . 8
⊢ (((
[⊊] Or 𝑌
∧ 𝑢 ∈ 𝑌) ∧ 𝑣 ∈ 𝑌) → (¬ 𝑢 ⊊ 𝑣 → 𝑣 ⊆ 𝑢)) |
| 11 | 10 | ralimdva 3153 |
. . . . . . 7
⊢ ((
[⊊] Or 𝑌
∧ 𝑢 ∈ 𝑌) → (∀𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 → ∀𝑣 ∈ 𝑌 𝑣 ⊆ 𝑢)) |
| 12 | 11 | 3impia 1117 |
. . . . . 6
⊢ ((
[⊊] Or 𝑌
∧ 𝑢 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣) → ∀𝑣 ∈ 𝑌 𝑣 ⊆ 𝑢) |
| 13 | | unissb 4920 |
. . . . . 6
⊢ (∪ 𝑌
⊆ 𝑢 ↔
∀𝑣 ∈ 𝑌 𝑣 ⊆ 𝑢) |
| 14 | 12, 13 | sylibr 234 |
. . . . 5
⊢ ((
[⊊] Or 𝑌
∧ 𝑢 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣) → ∪ 𝑌 ⊆ 𝑢) |
| 15 | | elssuni 4918 |
. . . . . 6
⊢ (𝑢 ∈ 𝑌 → 𝑢 ⊆ ∪ 𝑌) |
| 16 | 15 | 3ad2ant2 1134 |
. . . . 5
⊢ ((
[⊊] Or 𝑌
∧ 𝑢 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣) → 𝑢 ⊆ ∪ 𝑌) |
| 17 | 14, 16 | eqssd 3981 |
. . . 4
⊢ ((
[⊊] Or 𝑌
∧ 𝑢 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣) → ∪ 𝑌 = 𝑢) |
| 18 | | simp2 1137 |
. . . 4
⊢ ((
[⊊] Or 𝑌
∧ 𝑢 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣) → 𝑢 ∈ 𝑌) |
| 19 | 17, 18 | eqeltrd 2835 |
. . 3
⊢ ((
[⊊] Or 𝑌
∧ 𝑢 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣) → ∪ 𝑌 ∈ 𝑌) |
| 20 | 19 | rexlimdv3a 3146 |
. 2
⊢ (
[⊊] Or 𝑌
→ (∃𝑢 ∈
𝑌 ∀𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 → ∪ 𝑌 ∈ 𝑌)) |
| 21 | | elssuni 4918 |
. . . . 5
⊢ (𝑣 ∈ 𝑌 → 𝑣 ⊆ ∪ 𝑌) |
| 22 | | ssnpss 4086 |
. . . . 5
⊢ (𝑣 ⊆ ∪ 𝑌
→ ¬ ∪ 𝑌 ⊊ 𝑣) |
| 23 | 21, 22 | syl 17 |
. . . 4
⊢ (𝑣 ∈ 𝑌 → ¬ ∪
𝑌 ⊊ 𝑣) |
| 24 | 23 | rgen 3054 |
. . 3
⊢
∀𝑣 ∈
𝑌 ¬ ∪ 𝑌
⊊ 𝑣 |
| 25 | | psseq1 4070 |
. . . . . 6
⊢ (𝑢 = ∪
𝑌 → (𝑢 ⊊ 𝑣 ↔ ∪ 𝑌 ⊊ 𝑣)) |
| 26 | 25 | notbid 318 |
. . . . 5
⊢ (𝑢 = ∪
𝑌 → (¬ 𝑢 ⊊ 𝑣 ↔ ¬ ∪
𝑌 ⊊ 𝑣)) |
| 27 | 26 | ralbidv 3164 |
. . . 4
⊢ (𝑢 = ∪
𝑌 → (∀𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ↔ ∀𝑣 ∈ 𝑌 ¬ ∪ 𝑌 ⊊ 𝑣)) |
| 28 | 27 | rspcev 3606 |
. . 3
⊢ ((∪ 𝑌
∈ 𝑌 ∧
∀𝑣 ∈ 𝑌 ¬ ∪ 𝑌
⊊ 𝑣) →
∃𝑢 ∈ 𝑌 ∀𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣) |
| 29 | 24, 28 | mpan2 691 |
. 2
⊢ (∪ 𝑌
∈ 𝑌 →
∃𝑢 ∈ 𝑌 ∀𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣) |
| 30 | 20, 29 | impbid1 225 |
1
⊢ (
[⊊] Or 𝑌
→ (∃𝑢 ∈
𝑌 ∀𝑣 ∈ 𝑌 ¬ 𝑢 ⊊ 𝑣 ↔ ∪ 𝑌 ∈ 𝑌)) |