![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsppratlem6 | Structured version Visualization version GIF version |
Description: Lemma for lspprat 21004. Negating the assumption on π¦, we arrive close to the desired conclusion. (Contributed by NM, 29-Aug-2014.) |
Ref | Expression |
---|---|
lspprat.v | β’ π = (Baseβπ) |
lspprat.s | β’ π = (LSubSpβπ) |
lspprat.n | β’ π = (LSpanβπ) |
lspprat.w | β’ (π β π β LVec) |
lspprat.u | β’ (π β π β π) |
lspprat.x | β’ (π β π β π) |
lspprat.y | β’ (π β π β π) |
lspprat.p | β’ (π β π β (πβ{π, π})) |
lsppratlem6.o | β’ 0 = (0gβπ) |
Ref | Expression |
---|---|
lsppratlem6 | β’ (π β (π₯ β (π β { 0 }) β π = (πβ{π₯}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspprat.p | . . . . . . 7 β’ (π β π β (πβ{π, π})) | |
2 | 1 | adantr 480 | . . . . . 6 β’ ((π β§ π₯ β (π β { 0 })) β π β (πβ{π, π})) |
3 | lspprat.v | . . . . . . . . 9 β’ π = (Baseβπ) | |
4 | lspprat.s | . . . . . . . . 9 β’ π = (LSubSpβπ) | |
5 | lspprat.n | . . . . . . . . 9 β’ π = (LSpanβπ) | |
6 | lspprat.w | . . . . . . . . . 10 β’ (π β π β LVec) | |
7 | 6 | adantr 480 | . . . . . . . . 9 β’ ((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β (πβ{π₯})))) β π β LVec) |
8 | lspprat.u | . . . . . . . . . 10 β’ (π β π β π) | |
9 | 8 | adantr 480 | . . . . . . . . 9 β’ ((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β (πβ{π₯})))) β π β π) |
10 | lspprat.x | . . . . . . . . . 10 β’ (π β π β π) | |
11 | 10 | adantr 480 | . . . . . . . . 9 β’ ((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β (πβ{π₯})))) β π β π) |
12 | lspprat.y | . . . . . . . . . 10 β’ (π β π β π) | |
13 | 12 | adantr 480 | . . . . . . . . 9 β’ ((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β (πβ{π₯})))) β π β π) |
14 | 1 | adantr 480 | . . . . . . . . 9 β’ ((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β (πβ{π₯})))) β π β (πβ{π, π})) |
15 | lsppratlem6.o | . . . . . . . . 9 β’ 0 = (0gβπ) | |
16 | simprl 768 | . . . . . . . . 9 β’ ((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β (πβ{π₯})))) β π₯ β (π β { 0 })) | |
17 | simprr 770 | . . . . . . . . 9 β’ ((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β (πβ{π₯})))) β π¦ β (π β (πβ{π₯}))) | |
18 | 3, 4, 5, 7, 9, 11, 13, 14, 15, 16, 17 | lsppratlem5 21002 | . . . . . . . 8 β’ ((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β (πβ{π₯})))) β (πβ{π, π}) β π) |
19 | ssnpss 4098 | . . . . . . . 8 β’ ((πβ{π, π}) β π β Β¬ π β (πβ{π, π})) | |
20 | 18, 19 | syl 17 | . . . . . . 7 β’ ((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β (πβ{π₯})))) β Β¬ π β (πβ{π, π})) |
21 | 20 | expr 456 | . . . . . 6 β’ ((π β§ π₯ β (π β { 0 })) β (π¦ β (π β (πβ{π₯})) β Β¬ π β (πβ{π, π}))) |
22 | 2, 21 | mt2d 136 | . . . . 5 β’ ((π β§ π₯ β (π β { 0 })) β Β¬ π¦ β (π β (πβ{π₯}))) |
23 | 22 | eq0rdv 4399 | . . . 4 β’ ((π β§ π₯ β (π β { 0 })) β (π β (πβ{π₯})) = β ) |
24 | ssdif0 4358 | . . . 4 β’ (π β (πβ{π₯}) β (π β (πβ{π₯})) = β ) | |
25 | 23, 24 | sylibr 233 | . . 3 β’ ((π β§ π₯ β (π β { 0 })) β π β (πβ{π₯})) |
26 | lveclmod 20954 | . . . . . 6 β’ (π β LVec β π β LMod) | |
27 | 6, 26 | syl 17 | . . . . 5 β’ (π β π β LMod) |
28 | 27 | adantr 480 | . . . 4 β’ ((π β§ π₯ β (π β { 0 })) β π β LMod) |
29 | 8 | adantr 480 | . . . 4 β’ ((π β§ π₯ β (π β { 0 })) β π β π) |
30 | eldifi 4121 | . . . . 5 β’ (π₯ β (π β { 0 }) β π₯ β π) | |
31 | 30 | adantl 481 | . . . 4 β’ ((π β§ π₯ β (π β { 0 })) β π₯ β π) |
32 | 4, 5, 28, 29, 31 | lspsnel5a 20843 | . . 3 β’ ((π β§ π₯ β (π β { 0 })) β (πβ{π₯}) β π) |
33 | 25, 32 | eqssd 3994 | . 2 β’ ((π β§ π₯ β (π β { 0 })) β π = (πβ{π₯})) |
34 | 33 | ex 412 | 1 β’ (π β (π₯ β (π β { 0 }) β π = (πβ{π₯}))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β cdif 3940 β wss 3943 β wpss 3944 β c0 4317 {csn 4623 {cpr 4625 βcfv 6537 Basecbs 17153 0gc0g 17394 LModclmod 20706 LSubSpclss 20778 LSpanclspn 20818 LVecclvec 20950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-tpos 8212 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-0g 17396 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18866 df-minusg 18867 df-sbg 18868 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-ring 20140 df-oppr 20236 df-dvdsr 20259 df-unit 20260 df-invr 20290 df-drng 20589 df-lmod 20708 df-lss 20779 df-lsp 20819 df-lvec 20951 |
This theorem is referenced by: lspprat 21004 |
Copyright terms: Public domain | W3C validator |