Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsppratlem6 | Structured version Visualization version GIF version |
Description: Lemma for lspprat 20426. Negating the assumption on 𝑦, we arrive close to the desired conclusion. (Contributed by NM, 29-Aug-2014.) |
Ref | Expression |
---|---|
lspprat.v | ⊢ 𝑉 = (Base‘𝑊) |
lspprat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspprat.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspprat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspprat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspprat.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lspprat.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lspprat.p | ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
lsppratlem6.o | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
lsppratlem6 | ⊢ (𝜑 → (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑥}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspprat.p | . . . . . . 7 ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) | |
2 | 1 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
3 | lspprat.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑊) | |
4 | lspprat.s | . . . . . . . . 9 ⊢ 𝑆 = (LSubSp‘𝑊) | |
5 | lspprat.n | . . . . . . . . 9 ⊢ 𝑁 = (LSpan‘𝑊) | |
6 | lspprat.w | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
7 | 6 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑊 ∈ LVec) |
8 | lspprat.u | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
9 | 8 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑈 ∈ 𝑆) |
10 | lspprat.x | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
11 | 10 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑋 ∈ 𝑉) |
12 | lspprat.y | . . . . . . . . . 10 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
13 | 12 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑌 ∈ 𝑉) |
14 | 1 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
15 | lsppratlem6.o | . . . . . . . . 9 ⊢ 0 = (0g‘𝑊) | |
16 | simprl 768 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑥 ∈ (𝑈 ∖ { 0 })) | |
17 | simprr 770 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) | |
18 | 3, 4, 5, 7, 9, 11, 13, 14, 15, 16, 17 | lsppratlem5 20424 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
19 | ssnpss 4043 | . . . . . . . 8 ⊢ ((𝑁‘{𝑋, 𝑌}) ⊆ 𝑈 → ¬ 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) | |
20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → ¬ 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
21 | 20 | expr 457 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → (𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})) → ¬ 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))) |
22 | 2, 21 | mt2d 136 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → ¬ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
23 | 22 | eq0rdv 4344 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → (𝑈 ∖ (𝑁‘{𝑥})) = ∅) |
24 | ssdif0 4303 | . . . 4 ⊢ (𝑈 ⊆ (𝑁‘{𝑥}) ↔ (𝑈 ∖ (𝑁‘{𝑥})) = ∅) | |
25 | 23, 24 | sylibr 233 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 ⊆ (𝑁‘{𝑥})) |
26 | lveclmod 20379 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
27 | 6, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
28 | 27 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑊 ∈ LMod) |
29 | 8 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 ∈ 𝑆) |
30 | eldifi 4066 | . . . . 5 ⊢ (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑥 ∈ 𝑈) | |
31 | 30 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑥 ∈ 𝑈) |
32 | 4, 5, 28, 29, 31 | lspsnel5a 20269 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → (𝑁‘{𝑥}) ⊆ 𝑈) |
33 | 25, 32 | eqssd 3943 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 = (𝑁‘{𝑥})) |
34 | 33 | ex 413 | 1 ⊢ (𝜑 → (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑥}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∖ cdif 3889 ⊆ wss 3892 ⊊ wpss 3893 ∅c0 4262 {csn 4567 {cpr 4569 ‘cfv 6432 Basecbs 16923 0gc0g 17161 LModclmod 20134 LSubSpclss 20204 LSpanclspn 20244 LVecclvec 20375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 ax-pre-mulgt0 10959 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-om 7708 df-1st 7825 df-2nd 7826 df-tpos 8034 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-er 8490 df-en 8726 df-dom 8727 df-sdom 8728 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-sub 11218 df-neg 11219 df-nn 11985 df-2 12047 df-3 12048 df-sets 16876 df-slot 16894 df-ndx 16906 df-base 16924 df-ress 16953 df-plusg 16986 df-mulr 16987 df-0g 17163 df-mgm 18337 df-sgrp 18386 df-mnd 18397 df-grp 18591 df-minusg 18592 df-sbg 18593 df-cmn 19399 df-abl 19400 df-mgp 19732 df-ur 19749 df-ring 19796 df-oppr 19873 df-dvdsr 19894 df-unit 19895 df-invr 19925 df-drng 20004 df-lmod 20136 df-lss 20205 df-lsp 20245 df-lvec 20376 |
This theorem is referenced by: lspprat 20426 |
Copyright terms: Public domain | W3C validator |