MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem6 Structured version   Visualization version   GIF version

Theorem lsppratlem6 21129
Description: Lemma for lspprat 21130. Negating the assumption on 𝑦, we arrive close to the desired conclusion. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
lsppratlem6.o 0 = (0g𝑊)
Assertion
Ref Expression
lsppratlem6 (𝜑 → (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑥})))

Proof of Theorem lsppratlem6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lspprat.p . . . . . . 7 (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
21adantr 479 . . . . . 6 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
3 lspprat.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
4 lspprat.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑊)
5 lspprat.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
6 lspprat.w . . . . . . . . . 10 (𝜑𝑊 ∈ LVec)
76adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑊 ∈ LVec)
8 lspprat.u . . . . . . . . . 10 (𝜑𝑈𝑆)
98adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑈𝑆)
10 lspprat.x . . . . . . . . . 10 (𝜑𝑋𝑉)
1110adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑋𝑉)
12 lspprat.y . . . . . . . . . 10 (𝜑𝑌𝑉)
1312adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑌𝑉)
141adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
15 lsppratlem6.o . . . . . . . . 9 0 = (0g𝑊)
16 simprl 769 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑥 ∈ (𝑈 ∖ { 0 }))
17 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
183, 4, 5, 7, 9, 11, 13, 14, 15, 16, 17lsppratlem5 21128 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈)
19 ssnpss 4099 . . . . . . . 8 ((𝑁‘{𝑋, 𝑌}) ⊆ 𝑈 → ¬ 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
2018, 19syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → ¬ 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
2120expr 455 . . . . . 6 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → (𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})) → ¬ 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})))
222, 21mt2d 136 . . . . 5 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → ¬ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
2322eq0rdv 4401 . . . 4 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → (𝑈 ∖ (𝑁‘{𝑥})) = ∅)
24 ssdif0 4359 . . . 4 (𝑈 ⊆ (𝑁‘{𝑥}) ↔ (𝑈 ∖ (𝑁‘{𝑥})) = ∅)
2523, 24sylibr 233 . . 3 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 ⊆ (𝑁‘{𝑥}))
26 lveclmod 21080 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
276, 26syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
2827adantr 479 . . . 4 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑊 ∈ LMod)
298adantr 479 . . . 4 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈𝑆)
30 eldifi 4123 . . . . 5 (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑥𝑈)
3130adantl 480 . . . 4 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑥𝑈)
324, 5, 28, 29, 31ellspsn5 20969 . . 3 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → (𝑁‘{𝑥}) ⊆ 𝑈)
3325, 32eqssd 3996 . 2 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 = (𝑁‘{𝑥}))
3433ex 411 1 (𝜑 → (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1534  wcel 2099  cdif 3943  wss 3946  wpss 3947  c0 4322  {csn 4623  {cpr 4625  cfv 6546  Basecbs 17208  0gc0g 17449  LModclmod 20832  LSubSpclss 20904  LSpanclspn 20944  LVecclvec 21076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-2 12321  df-3 12322  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-0g 17451  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-grp 18926  df-minusg 18927  df-sbg 18928  df-cmn 19776  df-abl 19777  df-mgp 20114  df-rng 20132  df-ur 20161  df-ring 20214  df-oppr 20312  df-dvdsr 20335  df-unit 20336  df-invr 20366  df-drng 20705  df-lmod 20834  df-lss 20905  df-lsp 20945  df-lvec 21077
This theorem is referenced by:  lspprat  21130
  Copyright terms: Public domain W3C validator