MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem6 Structured version   Visualization version   GIF version

Theorem lsppratlem6 21059
Description: Lemma for lspprat 21060. Negating the assumption on 𝑦, we arrive close to the desired conclusion. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
lsppratlem6.o 0 = (0g𝑊)
Assertion
Ref Expression
lsppratlem6 (𝜑 → (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑥})))

Proof of Theorem lsppratlem6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lspprat.p . . . . . . 7 (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
21adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
3 lspprat.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
4 lspprat.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑊)
5 lspprat.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
6 lspprat.w . . . . . . . . . 10 (𝜑𝑊 ∈ LVec)
76adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑊 ∈ LVec)
8 lspprat.u . . . . . . . . . 10 (𝜑𝑈𝑆)
98adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑈𝑆)
10 lspprat.x . . . . . . . . . 10 (𝜑𝑋𝑉)
1110adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑋𝑉)
12 lspprat.y . . . . . . . . . 10 (𝜑𝑌𝑉)
1312adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑌𝑉)
141adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
15 lsppratlem6.o . . . . . . . . 9 0 = (0g𝑊)
16 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑥 ∈ (𝑈 ∖ { 0 }))
17 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
183, 4, 5, 7, 9, 11, 13, 14, 15, 16, 17lsppratlem5 21058 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈)
19 ssnpss 4057 . . . . . . . 8 ((𝑁‘{𝑋, 𝑌}) ⊆ 𝑈 → ¬ 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
2018, 19syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → ¬ 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
2120expr 456 . . . . . 6 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → (𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})) → ¬ 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})))
222, 21mt2d 136 . . . . 5 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → ¬ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
2322eq0rdv 4358 . . . 4 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → (𝑈 ∖ (𝑁‘{𝑥})) = ∅)
24 ssdif0 4317 . . . 4 (𝑈 ⊆ (𝑁‘{𝑥}) ↔ (𝑈 ∖ (𝑁‘{𝑥})) = ∅)
2523, 24sylibr 234 . . 3 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 ⊆ (𝑁‘{𝑥}))
26 lveclmod 21010 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
276, 26syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
2827adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑊 ∈ LMod)
298adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈𝑆)
30 eldifi 4082 . . . . 5 (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑥𝑈)
3130adantl 481 . . . 4 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑥𝑈)
324, 5, 28, 29, 31ellspsn5 20899 . . 3 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → (𝑁‘{𝑥}) ⊆ 𝑈)
3325, 32eqssd 3953 . 2 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 = (𝑁‘{𝑥}))
3433ex 412 1 (𝜑 → (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3900  wss 3903  wpss 3904  c0 4284  {csn 4577  {cpr 4579  cfv 6482  Basecbs 17120  0gc0g 17343  LModclmod 20763  LSubSpclss 20834  LSpanclspn 20874  LVecclvec 21006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-drng 20616  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lvec 21007
This theorem is referenced by:  lspprat  21060
  Copyright terms: Public domain W3C validator