![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsppratlem6 | Structured version Visualization version GIF version |
Description: Lemma for lspprat 21043. Negating the assumption on π¦, we arrive close to the desired conclusion. (Contributed by NM, 29-Aug-2014.) |
Ref | Expression |
---|---|
lspprat.v | β’ π = (Baseβπ) |
lspprat.s | β’ π = (LSubSpβπ) |
lspprat.n | β’ π = (LSpanβπ) |
lspprat.w | β’ (π β π β LVec) |
lspprat.u | β’ (π β π β π) |
lspprat.x | β’ (π β π β π) |
lspprat.y | β’ (π β π β π) |
lspprat.p | β’ (π β π β (πβ{π, π})) |
lsppratlem6.o | β’ 0 = (0gβπ) |
Ref | Expression |
---|---|
lsppratlem6 | β’ (π β (π₯ β (π β { 0 }) β π = (πβ{π₯}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspprat.p | . . . . . . 7 β’ (π β π β (πβ{π, π})) | |
2 | 1 | adantr 479 | . . . . . 6 β’ ((π β§ π₯ β (π β { 0 })) β π β (πβ{π, π})) |
3 | lspprat.v | . . . . . . . . 9 β’ π = (Baseβπ) | |
4 | lspprat.s | . . . . . . . . 9 β’ π = (LSubSpβπ) | |
5 | lspprat.n | . . . . . . . . 9 β’ π = (LSpanβπ) | |
6 | lspprat.w | . . . . . . . . . 10 β’ (π β π β LVec) | |
7 | 6 | adantr 479 | . . . . . . . . 9 β’ ((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β (πβ{π₯})))) β π β LVec) |
8 | lspprat.u | . . . . . . . . . 10 β’ (π β π β π) | |
9 | 8 | adantr 479 | . . . . . . . . 9 β’ ((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β (πβ{π₯})))) β π β π) |
10 | lspprat.x | . . . . . . . . . 10 β’ (π β π β π) | |
11 | 10 | adantr 479 | . . . . . . . . 9 β’ ((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β (πβ{π₯})))) β π β π) |
12 | lspprat.y | . . . . . . . . . 10 β’ (π β π β π) | |
13 | 12 | adantr 479 | . . . . . . . . 9 β’ ((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β (πβ{π₯})))) β π β π) |
14 | 1 | adantr 479 | . . . . . . . . 9 β’ ((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β (πβ{π₯})))) β π β (πβ{π, π})) |
15 | lsppratlem6.o | . . . . . . . . 9 β’ 0 = (0gβπ) | |
16 | simprl 769 | . . . . . . . . 9 β’ ((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β (πβ{π₯})))) β π₯ β (π β { 0 })) | |
17 | simprr 771 | . . . . . . . . 9 β’ ((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β (πβ{π₯})))) β π¦ β (π β (πβ{π₯}))) | |
18 | 3, 4, 5, 7, 9, 11, 13, 14, 15, 16, 17 | lsppratlem5 21041 | . . . . . . . 8 β’ ((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β (πβ{π₯})))) β (πβ{π, π}) β π) |
19 | ssnpss 4095 | . . . . . . . 8 β’ ((πβ{π, π}) β π β Β¬ π β (πβ{π, π})) | |
20 | 18, 19 | syl 17 | . . . . . . 7 β’ ((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β (πβ{π₯})))) β Β¬ π β (πβ{π, π})) |
21 | 20 | expr 455 | . . . . . 6 β’ ((π β§ π₯ β (π β { 0 })) β (π¦ β (π β (πβ{π₯})) β Β¬ π β (πβ{π, π}))) |
22 | 2, 21 | mt2d 136 | . . . . 5 β’ ((π β§ π₯ β (π β { 0 })) β Β¬ π¦ β (π β (πβ{π₯}))) |
23 | 22 | eq0rdv 4400 | . . . 4 β’ ((π β§ π₯ β (π β { 0 })) β (π β (πβ{π₯})) = β ) |
24 | ssdif0 4359 | . . . 4 β’ (π β (πβ{π₯}) β (π β (πβ{π₯})) = β ) | |
25 | 23, 24 | sylibr 233 | . . 3 β’ ((π β§ π₯ β (π β { 0 })) β π β (πβ{π₯})) |
26 | lveclmod 20993 | . . . . . 6 β’ (π β LVec β π β LMod) | |
27 | 6, 26 | syl 17 | . . . . 5 β’ (π β π β LMod) |
28 | 27 | adantr 479 | . . . 4 β’ ((π β§ π₯ β (π β { 0 })) β π β LMod) |
29 | 8 | adantr 479 | . . . 4 β’ ((π β§ π₯ β (π β { 0 })) β π β π) |
30 | eldifi 4119 | . . . . 5 β’ (π₯ β (π β { 0 }) β π₯ β π) | |
31 | 30 | adantl 480 | . . . 4 β’ ((π β§ π₯ β (π β { 0 })) β π₯ β π) |
32 | 4, 5, 28, 29, 31 | lspsnel5a 20882 | . . 3 β’ ((π β§ π₯ β (π β { 0 })) β (πβ{π₯}) β π) |
33 | 25, 32 | eqssd 3990 | . 2 β’ ((π β§ π₯ β (π β { 0 })) β π = (πβ{π₯})) |
34 | 33 | ex 411 | 1 β’ (π β (π₯ β (π β { 0 }) β π = (πβ{π₯}))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β cdif 3937 β wss 3940 β wpss 3941 β c0 4318 {csn 4624 {cpr 4626 βcfv 6542 Basecbs 17177 0gc0g 17418 LModclmod 20745 LSubSpclss 20817 LSpanclspn 20857 LVecclvec 20989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-tpos 8228 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-0g 17420 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-grp 18895 df-minusg 18896 df-sbg 18897 df-cmn 19739 df-abl 19740 df-mgp 20077 df-rng 20095 df-ur 20124 df-ring 20177 df-oppr 20275 df-dvdsr 20298 df-unit 20299 df-invr 20329 df-drng 20628 df-lmod 20747 df-lss 20818 df-lsp 20858 df-lvec 20990 |
This theorem is referenced by: lspprat 21043 |
Copyright terms: Public domain | W3C validator |