MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem6 Structured version   Visualization version   GIF version

Theorem lsppratlem6 20425
Description: Lemma for lspprat 20426. Negating the assumption on 𝑦, we arrive close to the desired conclusion. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
lsppratlem6.o 0 = (0g𝑊)
Assertion
Ref Expression
lsppratlem6 (𝜑 → (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑥})))

Proof of Theorem lsppratlem6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lspprat.p . . . . . . 7 (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
21adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
3 lspprat.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
4 lspprat.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑊)
5 lspprat.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
6 lspprat.w . . . . . . . . . 10 (𝜑𝑊 ∈ LVec)
76adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑊 ∈ LVec)
8 lspprat.u . . . . . . . . . 10 (𝜑𝑈𝑆)
98adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑈𝑆)
10 lspprat.x . . . . . . . . . 10 (𝜑𝑋𝑉)
1110adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑋𝑉)
12 lspprat.y . . . . . . . . . 10 (𝜑𝑌𝑉)
1312adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑌𝑉)
141adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
15 lsppratlem6.o . . . . . . . . 9 0 = (0g𝑊)
16 simprl 768 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑥 ∈ (𝑈 ∖ { 0 }))
17 simprr 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
183, 4, 5, 7, 9, 11, 13, 14, 15, 16, 17lsppratlem5 20424 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈)
19 ssnpss 4043 . . . . . . . 8 ((𝑁‘{𝑋, 𝑌}) ⊆ 𝑈 → ¬ 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
2018, 19syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → ¬ 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
2120expr 457 . . . . . 6 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → (𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})) → ¬ 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})))
222, 21mt2d 136 . . . . 5 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → ¬ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
2322eq0rdv 4344 . . . 4 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → (𝑈 ∖ (𝑁‘{𝑥})) = ∅)
24 ssdif0 4303 . . . 4 (𝑈 ⊆ (𝑁‘{𝑥}) ↔ (𝑈 ∖ (𝑁‘{𝑥})) = ∅)
2523, 24sylibr 233 . . 3 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 ⊆ (𝑁‘{𝑥}))
26 lveclmod 20379 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
276, 26syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
2827adantr 481 . . . 4 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑊 ∈ LMod)
298adantr 481 . . . 4 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈𝑆)
30 eldifi 4066 . . . . 5 (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑥𝑈)
3130adantl 482 . . . 4 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑥𝑈)
324, 5, 28, 29, 31lspsnel5a 20269 . . 3 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → (𝑁‘{𝑥}) ⊆ 𝑈)
3325, 32eqssd 3943 . 2 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 = (𝑁‘{𝑥}))
3433ex 413 1 (𝜑 → (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1542  wcel 2110  cdif 3889  wss 3892  wpss 3893  c0 4262  {csn 4567  {cpr 4569  cfv 6432  Basecbs 16923  0gc0g 17161  LModclmod 20134  LSubSpclss 20204  LSpanclspn 20244  LVecclvec 20375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-1st 7825  df-2nd 7826  df-tpos 8034  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-er 8490  df-en 8726  df-dom 8727  df-sdom 8728  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-nn 11985  df-2 12047  df-3 12048  df-sets 16876  df-slot 16894  df-ndx 16906  df-base 16924  df-ress 16953  df-plusg 16986  df-mulr 16987  df-0g 17163  df-mgm 18337  df-sgrp 18386  df-mnd 18397  df-grp 18591  df-minusg 18592  df-sbg 18593  df-cmn 19399  df-abl 19400  df-mgp 19732  df-ur 19749  df-ring 19796  df-oppr 19873  df-dvdsr 19894  df-unit 19895  df-invr 19925  df-drng 20004  df-lmod 20136  df-lss 20205  df-lsp 20245  df-lvec 20376
This theorem is referenced by:  lspprat  20426
  Copyright terms: Public domain W3C validator