| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsppratlem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for lspprat 21085. Negating the assumption on 𝑦, we arrive close to the desired conclusion. (Contributed by NM, 29-Aug-2014.) |
| Ref | Expression |
|---|---|
| lspprat.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspprat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspprat.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lspprat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lspprat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lspprat.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lspprat.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| lspprat.p | ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
| lsppratlem6.o | ⊢ 0 = (0g‘𝑊) |
| Ref | Expression |
|---|---|
| lsppratlem6 | ⊢ (𝜑 → (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑥}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprat.p | . . . . . . 7 ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
| 3 | lspprat.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | lspprat.s | . . . . . . . . 9 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 5 | lspprat.n | . . . . . . . . 9 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 6 | lspprat.w | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 7 | 6 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑊 ∈ LVec) |
| 8 | lspprat.u | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 9 | 8 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑈 ∈ 𝑆) |
| 10 | lspprat.x | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 11 | 10 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑋 ∈ 𝑉) |
| 12 | lspprat.y | . . . . . . . . . 10 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 13 | 12 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑌 ∈ 𝑉) |
| 14 | 1 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
| 15 | lsppratlem6.o | . . . . . . . . 9 ⊢ 0 = (0g‘𝑊) | |
| 16 | simprl 770 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑥 ∈ (𝑈 ∖ { 0 })) | |
| 17 | simprr 772 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) | |
| 18 | 3, 4, 5, 7, 9, 11, 13, 14, 15, 16, 17 | lsppratlem5 21083 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
| 19 | ssnpss 4051 | . . . . . . . 8 ⊢ ((𝑁‘{𝑋, 𝑌}) ⊆ 𝑈 → ¬ 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) | |
| 20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → ¬ 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
| 21 | 20 | expr 456 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → (𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})) → ¬ 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))) |
| 22 | 2, 21 | mt2d 136 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → ¬ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
| 23 | 22 | eq0rdv 4352 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → (𝑈 ∖ (𝑁‘{𝑥})) = ∅) |
| 24 | ssdif0 4311 | . . . 4 ⊢ (𝑈 ⊆ (𝑁‘{𝑥}) ↔ (𝑈 ∖ (𝑁‘{𝑥})) = ∅) | |
| 25 | 23, 24 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 ⊆ (𝑁‘{𝑥})) |
| 26 | lveclmod 21035 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 27 | 6, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 28 | 27 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑊 ∈ LMod) |
| 29 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 ∈ 𝑆) |
| 30 | eldifi 4076 | . . . . 5 ⊢ (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑥 ∈ 𝑈) | |
| 31 | 30 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑥 ∈ 𝑈) |
| 32 | 4, 5, 28, 29, 31 | ellspsn5 20924 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → (𝑁‘{𝑥}) ⊆ 𝑈) |
| 33 | 25, 32 | eqssd 3947 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 = (𝑁‘{𝑥})) |
| 34 | 33 | ex 412 | 1 ⊢ (𝜑 → (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑥}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ⊆ wss 3897 ⊊ wpss 3898 ∅c0 4278 {csn 4571 {cpr 4573 ‘cfv 6476 Basecbs 17115 0gc0g 17338 LModclmod 20788 LSubSpclss 20859 LSpanclspn 20899 LVecclvec 21031 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-oppr 20250 df-dvdsr 20270 df-unit 20271 df-invr 20301 df-drng 20641 df-lmod 20790 df-lss 20860 df-lsp 20900 df-lvec 21032 |
| This theorem is referenced by: lspprat 21085 |
| Copyright terms: Public domain | W3C validator |