![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsppratlem6 | Structured version Visualization version GIF version |
Description: Lemma for lspprat 21130. Negating the assumption on 𝑦, we arrive close to the desired conclusion. (Contributed by NM, 29-Aug-2014.) |
Ref | Expression |
---|---|
lspprat.v | ⊢ 𝑉 = (Base‘𝑊) |
lspprat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspprat.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspprat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspprat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspprat.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lspprat.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lspprat.p | ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
lsppratlem6.o | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
lsppratlem6 | ⊢ (𝜑 → (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑥}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspprat.p | . . . . . . 7 ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) | |
2 | 1 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
3 | lspprat.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑊) | |
4 | lspprat.s | . . . . . . . . 9 ⊢ 𝑆 = (LSubSp‘𝑊) | |
5 | lspprat.n | . . . . . . . . 9 ⊢ 𝑁 = (LSpan‘𝑊) | |
6 | lspprat.w | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
7 | 6 | adantr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑊 ∈ LVec) |
8 | lspprat.u | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
9 | 8 | adantr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑈 ∈ 𝑆) |
10 | lspprat.x | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
11 | 10 | adantr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑋 ∈ 𝑉) |
12 | lspprat.y | . . . . . . . . . 10 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
13 | 12 | adantr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑌 ∈ 𝑉) |
14 | 1 | adantr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
15 | lsppratlem6.o | . . . . . . . . 9 ⊢ 0 = (0g‘𝑊) | |
16 | simprl 769 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑥 ∈ (𝑈 ∖ { 0 })) | |
17 | simprr 771 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) | |
18 | 3, 4, 5, 7, 9, 11, 13, 14, 15, 16, 17 | lsppratlem5 21128 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
19 | ssnpss 4099 | . . . . . . . 8 ⊢ ((𝑁‘{𝑋, 𝑌}) ⊆ 𝑈 → ¬ 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) | |
20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → ¬ 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
21 | 20 | expr 455 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → (𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})) → ¬ 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))) |
22 | 2, 21 | mt2d 136 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → ¬ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
23 | 22 | eq0rdv 4401 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → (𝑈 ∖ (𝑁‘{𝑥})) = ∅) |
24 | ssdif0 4359 | . . . 4 ⊢ (𝑈 ⊆ (𝑁‘{𝑥}) ↔ (𝑈 ∖ (𝑁‘{𝑥})) = ∅) | |
25 | 23, 24 | sylibr 233 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 ⊆ (𝑁‘{𝑥})) |
26 | lveclmod 21080 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
27 | 6, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
28 | 27 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑊 ∈ LMod) |
29 | 8 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 ∈ 𝑆) |
30 | eldifi 4123 | . . . . 5 ⊢ (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑥 ∈ 𝑈) | |
31 | 30 | adantl 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑥 ∈ 𝑈) |
32 | 4, 5, 28, 29, 31 | ellspsn5 20969 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → (𝑁‘{𝑥}) ⊆ 𝑈) |
33 | 25, 32 | eqssd 3996 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 = (𝑁‘{𝑥})) |
34 | 33 | ex 411 | 1 ⊢ (𝜑 → (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑥}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∖ cdif 3943 ⊆ wss 3946 ⊊ wpss 3947 ∅c0 4322 {csn 4623 {cpr 4625 ‘cfv 6546 Basecbs 17208 0gc0g 17449 LModclmod 20832 LSubSpclss 20904 LSpanclspn 20944 LVecclvec 21076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-3 12322 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-0g 17451 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-grp 18926 df-minusg 18927 df-sbg 18928 df-cmn 19776 df-abl 19777 df-mgp 20114 df-rng 20132 df-ur 20161 df-ring 20214 df-oppr 20312 df-dvdsr 20335 df-unit 20336 df-invr 20366 df-drng 20705 df-lmod 20834 df-lss 20905 df-lsp 20945 df-lvec 21077 |
This theorem is referenced by: lspprat 21130 |
Copyright terms: Public domain | W3C validator |