Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvrcl0 Structured version   Visualization version   GIF version

Theorem cnvrcl0 41989
Description: The converse of the reflexive closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.)
Assertion
Ref Expression
cnvrcl0 (𝑋𝑉 {𝑥 ∣ (𝑋𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} = {𝑦 ∣ (𝑋𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)})
Distinct variable groups:   𝑥,𝑦,𝑉   𝑥,𝑋,𝑦

Proof of Theorem cnvrcl0
StepHypRef Expression
1 cnvresid 6584 . . . . . . 7 ( I ↾ (dom 𝑦 ∪ ran 𝑦)) = ( I ↾ (dom 𝑦 ∪ ran 𝑦))
2 cnvnonrel 41952 . . . . . . . . . . . . . . . 16 (𝑋𝑋) = ∅
3 cnv0 6097 . . . . . . . . . . . . . . . 16 ∅ = ∅
42, 3eqtr4i 2764 . . . . . . . . . . . . . . 15 (𝑋𝑋) =
54dmeqi 5864 . . . . . . . . . . . . . 14 dom (𝑋𝑋) = dom
6 df-rn 5648 . . . . . . . . . . . . . 14 ran (𝑋𝑋) = dom (𝑋𝑋)
7 df-rn 5648 . . . . . . . . . . . . . 14 ran ∅ = dom
85, 6, 73eqtr4i 2771 . . . . . . . . . . . . 13 ran (𝑋𝑋) = ran ∅
9 0ss 4360 . . . . . . . . . . . . . 14 ∅ ⊆ 𝑦
109rnssi 5899 . . . . . . . . . . . . 13 ran ∅ ⊆ ran 𝑦
118, 10eqsstri 3982 . . . . . . . . . . . 12 ran (𝑋𝑋) ⊆ ran 𝑦
12 ssequn2 4147 . . . . . . . . . . . 12 (ran (𝑋𝑋) ⊆ ran 𝑦 ↔ (ran 𝑦 ∪ ran (𝑋𝑋)) = ran 𝑦)
1311, 12mpbi 229 . . . . . . . . . . 11 (ran 𝑦 ∪ ran (𝑋𝑋)) = ran 𝑦
14 rnun 6102 . . . . . . . . . . 11 ran (𝑦 ∪ (𝑋𝑋)) = (ran 𝑦 ∪ ran (𝑋𝑋))
15 dfdm4 5855 . . . . . . . . . . 11 dom 𝑦 = ran 𝑦
1613, 14, 153eqtr4ri 2772 . . . . . . . . . 10 dom 𝑦 = ran (𝑦 ∪ (𝑋𝑋))
174rneqi 5896 . . . . . . . . . . . . . 14 ran (𝑋𝑋) = ran
18 dfdm4 5855 . . . . . . . . . . . . . 14 dom (𝑋𝑋) = ran (𝑋𝑋)
19 dfdm4 5855 . . . . . . . . . . . . . 14 dom ∅ = ran
2017, 18, 193eqtr4i 2771 . . . . . . . . . . . . 13 dom (𝑋𝑋) = dom ∅
21 dmss 5862 . . . . . . . . . . . . . 14 (∅ ⊆ 𝑦 → dom ∅ ⊆ dom 𝑦)
229, 21ax-mp 5 . . . . . . . . . . . . 13 dom ∅ ⊆ dom 𝑦
2320, 22eqsstri 3982 . . . . . . . . . . . 12 dom (𝑋𝑋) ⊆ dom 𝑦
24 ssequn2 4147 . . . . . . . . . . . 12 (dom (𝑋𝑋) ⊆ dom 𝑦 ↔ (dom 𝑦 ∪ dom (𝑋𝑋)) = dom 𝑦)
2523, 24mpbi 229 . . . . . . . . . . 11 (dom 𝑦 ∪ dom (𝑋𝑋)) = dom 𝑦
26 dmun 5870 . . . . . . . . . . 11 dom (𝑦 ∪ (𝑋𝑋)) = (dom 𝑦 ∪ dom (𝑋𝑋))
27 df-rn 5648 . . . . . . . . . . 11 ran 𝑦 = dom 𝑦
2825, 26, 273eqtr4ri 2772 . . . . . . . . . 10 ran 𝑦 = dom (𝑦 ∪ (𝑋𝑋))
2916, 28uneq12i 4125 . . . . . . . . 9 (dom 𝑦 ∪ ran 𝑦) = (ran (𝑦 ∪ (𝑋𝑋)) ∪ dom (𝑦 ∪ (𝑋𝑋)))
3029equncomi 4119 . . . . . . . 8 (dom 𝑦 ∪ ran 𝑦) = (dom (𝑦 ∪ (𝑋𝑋)) ∪ ran (𝑦 ∪ (𝑋𝑋)))
3130reseq2i 5938 . . . . . . 7 ( I ↾ (dom 𝑦 ∪ ran 𝑦)) = ( I ↾ (dom (𝑦 ∪ (𝑋𝑋)) ∪ ran (𝑦 ∪ (𝑋𝑋))))
321, 31eqtr2i 2762 . . . . . 6 ( I ↾ (dom (𝑦 ∪ (𝑋𝑋)) ∪ ran (𝑦 ∪ (𝑋𝑋)))) = ( I ↾ (dom 𝑦 ∪ ran 𝑦))
33 cnvss 5832 . . . . . 6 (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)
3432, 33eqsstrid 3996 . . . . 5 (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 → ( I ↾ (dom (𝑦 ∪ (𝑋𝑋)) ∪ ran (𝑦 ∪ (𝑋𝑋)))) ⊆ 𝑦)
35 ssun1 4136 . . . . 5 𝑦 ⊆ (𝑦 ∪ (𝑋𝑋))
3634, 35sstrdi 3960 . . . 4 (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 → ( I ↾ (dom (𝑦 ∪ (𝑋𝑋)) ∪ ran (𝑦 ∪ (𝑋𝑋)))) ⊆ (𝑦 ∪ (𝑋𝑋)))
37 dmeq 5863 . . . . . . 7 (𝑥 = (𝑦 ∪ (𝑋𝑋)) → dom 𝑥 = dom (𝑦 ∪ (𝑋𝑋)))
38 rneq 5895 . . . . . . 7 (𝑥 = (𝑦 ∪ (𝑋𝑋)) → ran 𝑥 = ran (𝑦 ∪ (𝑋𝑋)))
3937, 38uneq12d 4128 . . . . . 6 (𝑥 = (𝑦 ∪ (𝑋𝑋)) → (dom 𝑥 ∪ ran 𝑥) = (dom (𝑦 ∪ (𝑋𝑋)) ∪ ran (𝑦 ∪ (𝑋𝑋))))
4039reseq2d 5941 . . . . 5 (𝑥 = (𝑦 ∪ (𝑋𝑋)) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom (𝑦 ∪ (𝑋𝑋)) ∪ ran (𝑦 ∪ (𝑋𝑋)))))
41 id 22 . . . . 5 (𝑥 = (𝑦 ∪ (𝑋𝑋)) → 𝑥 = (𝑦 ∪ (𝑋𝑋)))
4240, 41sseq12d 3981 . . . 4 (𝑥 = (𝑦 ∪ (𝑋𝑋)) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 ↔ ( I ↾ (dom (𝑦 ∪ (𝑋𝑋)) ∪ ran (𝑦 ∪ (𝑋𝑋)))) ⊆ (𝑦 ∪ (𝑋𝑋))))
4336, 42syl5ibr 246 . . 3 (𝑥 = (𝑦 ∪ (𝑋𝑋)) → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))
4443adantl 483 . 2 ((𝑋𝑉𝑥 = (𝑦 ∪ (𝑋𝑋))) → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))
45 cnvresid 6584 . . . . . 6 ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom 𝑥 ∪ ran 𝑥))
46 dfdm4 5855 . . . . . . . . 9 dom 𝑥 = ran 𝑥
47 df-rn 5648 . . . . . . . . 9 ran 𝑥 = dom 𝑥
4846, 47uneq12i 4125 . . . . . . . 8 (dom 𝑥 ∪ ran 𝑥) = (ran 𝑥 ∪ dom 𝑥)
4948equncomi 4119 . . . . . . 7 (dom 𝑥 ∪ ran 𝑥) = (dom 𝑥 ∪ ran 𝑥)
5049reseq2i 5938 . . . . . 6 ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom 𝑥 ∪ ran 𝑥))
5145, 50eqtr2i 2762 . . . . 5 ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom 𝑥 ∪ ran 𝑥))
52 cnvss 5832 . . . . 5 (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)
5351, 52eqsstrid 3996 . . . 4 (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)
54 dmeq 5863 . . . . . . 7 (𝑦 = 𝑥 → dom 𝑦 = dom 𝑥)
55 rneq 5895 . . . . . . 7 (𝑦 = 𝑥 → ran 𝑦 = ran 𝑥)
5654, 55uneq12d 4128 . . . . . 6 (𝑦 = 𝑥 → (dom 𝑦 ∪ ran 𝑦) = (dom 𝑥 ∪ ran 𝑥))
5756reseq2d 5941 . . . . 5 (𝑦 = 𝑥 → ( I ↾ (dom 𝑦 ∪ ran 𝑦)) = ( I ↾ (dom 𝑥 ∪ ran 𝑥)))
58 id 22 . . . . 5 (𝑦 = 𝑥𝑦 = 𝑥)
5957, 58sseq12d 3981 . . . 4 (𝑦 = 𝑥 → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ↔ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))
6053, 59syl5ibr 246 . . 3 (𝑦 = 𝑥 → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 → ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))
6160adantl 483 . 2 ((𝑋𝑉𝑦 = 𝑥) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 → ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))
62 dmeq 5863 . . . . 5 (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → dom 𝑥 = dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))
63 rneq 5895 . . . . 5 (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → ran 𝑥 = ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))
6462, 63uneq12d 4128 . . . 4 (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → (dom 𝑥 ∪ ran 𝑥) = (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))))
6564reseq2d 5941 . . 3 (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))))
66 id 22 . . 3 (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → 𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))
6765, 66sseq12d 3981 . 2 (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 ↔ ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))))
68 ssun1 4136 . . 3 𝑋 ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))
6968a1i 11 . 2 (𝑋𝑉𝑋 ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))
70 dmexg 7844 . . . . 5 (𝑋𝑉 → dom 𝑋 ∈ V)
71 rnexg 7845 . . . . 5 (𝑋𝑉 → ran 𝑋 ∈ V)
7270, 71unexd 7692 . . . 4 (𝑋𝑉 → (dom 𝑋 ∪ ran 𝑋) ∈ V)
7372resiexd 7170 . . 3 (𝑋𝑉 → ( I ↾ (dom 𝑋 ∪ ran 𝑋)) ∈ V)
74 unexg 7687 . . 3 ((𝑋𝑉 ∧ ( I ↾ (dom 𝑋 ∪ ran 𝑋)) ∈ V) → (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∈ V)
7573, 74mpdan 686 . 2 (𝑋𝑉 → (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∈ V)
76 dmun 5870 . . . . . 6 dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) = (dom 𝑋 ∪ dom ( I ↾ (dom 𝑋 ∪ ran 𝑋)))
77 ssun1 4136 . . . . . . 7 dom 𝑋 ⊆ (dom 𝑋 ∪ ran 𝑋)
78 resdmss 6191 . . . . . . 7 dom ( I ↾ (dom 𝑋 ∪ ran 𝑋)) ⊆ (dom 𝑋 ∪ ran 𝑋)
7977, 78unssi 4149 . . . . . 6 (dom 𝑋 ∪ dom ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋)
8076, 79eqsstri 3982 . . . . 5 dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋)
81 rnun 6102 . . . . . 6 ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) = (ran 𝑋 ∪ ran ( I ↾ (dom 𝑋 ∪ ran 𝑋)))
82 ssun2 4137 . . . . . . 7 ran 𝑋 ⊆ (dom 𝑋 ∪ ran 𝑋)
83 rnresi 6031 . . . . . . . 8 ran ( I ↾ (dom 𝑋 ∪ ran 𝑋)) = (dom 𝑋 ∪ ran 𝑋)
8483eqimssi 4006 . . . . . . 7 ran ( I ↾ (dom 𝑋 ∪ ran 𝑋)) ⊆ (dom 𝑋 ∪ ran 𝑋)
8582, 84unssi 4149 . . . . . 6 (ran 𝑋 ∪ ran ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋)
8681, 85eqsstri 3982 . . . . 5 ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋)
8780, 86pm3.2i 472 . . . 4 (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋) ∧ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋))
88 unss 4148 . . . . 5 ((dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋) ∧ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋)) ↔ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))) ⊆ (dom 𝑋 ∪ ran 𝑋))
89 ssres2 5969 . . . . 5 ((dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))) ⊆ (dom 𝑋 ∪ ran 𝑋) → ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))
9088, 89sylbi 216 . . . 4 ((dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋) ∧ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋)) → ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))
91 ssun4 4139 . . . 4 (( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ ( I ↾ (dom 𝑋 ∪ ran 𝑋)) → ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))
9287, 90, 91mp2b 10 . . 3 ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))
9392a1i 11 . 2 (𝑋𝑉 → ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))
9444, 61, 67, 69, 75, 93clcnvlem 41987 1 (𝑋𝑉 {𝑥 ∣ (𝑋𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} = {𝑦 ∣ (𝑋𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {cab 2710  Vcvv 3447  cdif 3911  cun 3912  wss 3914  c0 4286   cint 4911   I cid 5534  ccnv 5636  dom cdm 5637  ran crn 5638  cres 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-1st 7925  df-2nd 7926
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator