Proof of Theorem cnvrcl0
Step | Hyp | Ref
| Expression |
1 | | cnvresid 6414 |
. . . . . . 7
⊢ ◡( I ↾ (dom 𝑦 ∪ ran 𝑦)) = ( I ↾ (dom 𝑦 ∪ ran 𝑦)) |
2 | | cnvnonrel 40683 |
. . . . . . . . . . . . . . . 16
⊢ ◡(𝑋 ∖ ◡◡𝑋) = ∅ |
3 | | cnv0 5971 |
. . . . . . . . . . . . . . . 16
⊢ ◡∅ = ∅ |
4 | 2, 3 | eqtr4i 2784 |
. . . . . . . . . . . . . . 15
⊢ ◡(𝑋 ∖ ◡◡𝑋) = ◡∅ |
5 | 4 | dmeqi 5744 |
. . . . . . . . . . . . . 14
⊢ dom ◡(𝑋 ∖ ◡◡𝑋) = dom ◡∅ |
6 | | df-rn 5535 |
. . . . . . . . . . . . . 14
⊢ ran
(𝑋 ∖ ◡◡𝑋) = dom ◡(𝑋 ∖ ◡◡𝑋) |
7 | | df-rn 5535 |
. . . . . . . . . . . . . 14
⊢ ran
∅ = dom ◡∅ |
8 | 5, 6, 7 | 3eqtr4i 2791 |
. . . . . . . . . . . . 13
⊢ ran
(𝑋 ∖ ◡◡𝑋) = ran ∅ |
9 | | 0ss 4292 |
. . . . . . . . . . . . . 14
⊢ ∅
⊆ ◡𝑦 |
10 | 9 | rnssi 5781 |
. . . . . . . . . . . . 13
⊢ ran
∅ ⊆ ran ◡𝑦 |
11 | 8, 10 | eqsstri 3926 |
. . . . . . . . . . . 12
⊢ ran
(𝑋 ∖ ◡◡𝑋) ⊆ ran ◡𝑦 |
12 | | ssequn2 4088 |
. . . . . . . . . . . 12
⊢ (ran
(𝑋 ∖ ◡◡𝑋) ⊆ ran ◡𝑦 ↔ (ran ◡𝑦 ∪ ran (𝑋 ∖ ◡◡𝑋)) = ran ◡𝑦) |
13 | 11, 12 | mpbi 233 |
. . . . . . . . . . 11
⊢ (ran
◡𝑦 ∪ ran (𝑋 ∖ ◡◡𝑋)) = ran ◡𝑦 |
14 | | rnun 5976 |
. . . . . . . . . . 11
⊢ ran
(◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) = (ran ◡𝑦 ∪ ran (𝑋 ∖ ◡◡𝑋)) |
15 | | dfdm4 5735 |
. . . . . . . . . . 11
⊢ dom 𝑦 = ran ◡𝑦 |
16 | 13, 14, 15 | 3eqtr4ri 2792 |
. . . . . . . . . 10
⊢ dom 𝑦 = ran (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) |
17 | 4 | rneqi 5778 |
. . . . . . . . . . . . . 14
⊢ ran ◡(𝑋 ∖ ◡◡𝑋) = ran ◡∅ |
18 | | dfdm4 5735 |
. . . . . . . . . . . . . 14
⊢ dom
(𝑋 ∖ ◡◡𝑋) = ran ◡(𝑋 ∖ ◡◡𝑋) |
19 | | dfdm4 5735 |
. . . . . . . . . . . . . 14
⊢ dom
∅ = ran ◡∅ |
20 | 17, 18, 19 | 3eqtr4i 2791 |
. . . . . . . . . . . . 13
⊢ dom
(𝑋 ∖ ◡◡𝑋) = dom ∅ |
21 | | dmss 5742 |
. . . . . . . . . . . . . 14
⊢ (∅
⊆ ◡𝑦 → dom ∅ ⊆ dom ◡𝑦) |
22 | 9, 21 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ dom
∅ ⊆ dom ◡𝑦 |
23 | 20, 22 | eqsstri 3926 |
. . . . . . . . . . . 12
⊢ dom
(𝑋 ∖ ◡◡𝑋) ⊆ dom ◡𝑦 |
24 | | ssequn2 4088 |
. . . . . . . . . . . 12
⊢ (dom
(𝑋 ∖ ◡◡𝑋) ⊆ dom ◡𝑦 ↔ (dom ◡𝑦 ∪ dom (𝑋 ∖ ◡◡𝑋)) = dom ◡𝑦) |
25 | 23, 24 | mpbi 233 |
. . . . . . . . . . 11
⊢ (dom
◡𝑦 ∪ dom (𝑋 ∖ ◡◡𝑋)) = dom ◡𝑦 |
26 | | dmun 5750 |
. . . . . . . . . . 11
⊢ dom
(◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) = (dom ◡𝑦 ∪ dom (𝑋 ∖ ◡◡𝑋)) |
27 | | df-rn 5535 |
. . . . . . . . . . 11
⊢ ran 𝑦 = dom ◡𝑦 |
28 | 25, 26, 27 | 3eqtr4ri 2792 |
. . . . . . . . . 10
⊢ ran 𝑦 = dom (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) |
29 | 16, 28 | uneq12i 4066 |
. . . . . . . . 9
⊢ (dom
𝑦 ∪ ran 𝑦) = (ran (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∪ dom (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) |
30 | 29 | equncomi 4060 |
. . . . . . . 8
⊢ (dom
𝑦 ∪ ran 𝑦) = (dom (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∪ ran (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) |
31 | 30 | reseq2i 5820 |
. . . . . . 7
⊢ ( I
↾ (dom 𝑦 ∪ ran
𝑦)) = ( I ↾ (dom
(◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∪ ran (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)))) |
32 | 1, 31 | eqtr2i 2782 |
. . . . . 6
⊢ ( I
↾ (dom (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∪ ran (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)))) = ◡( I ↾ (dom 𝑦 ∪ ran 𝑦)) |
33 | | cnvss 5712 |
. . . . . 6
⊢ (( I
↾ (dom 𝑦 ∪ ran
𝑦)) ⊆ 𝑦 → ◡( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ ◡𝑦) |
34 | 32, 33 | eqsstrid 3940 |
. . . . 5
⊢ (( I
↾ (dom 𝑦 ∪ ran
𝑦)) ⊆ 𝑦 → ( I ↾ (dom (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∪ ran (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)))) ⊆ ◡𝑦) |
35 | | ssun1 4077 |
. . . . 5
⊢ ◡𝑦 ⊆ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) |
36 | 34, 35 | sstrdi 3904 |
. . . 4
⊢ (( I
↾ (dom 𝑦 ∪ ran
𝑦)) ⊆ 𝑦 → ( I ↾ (dom (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∪ ran (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)))) ⊆ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) |
37 | | dmeq 5743 |
. . . . . . 7
⊢ (𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) → dom 𝑥 = dom (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) |
38 | | rneq 5777 |
. . . . . . 7
⊢ (𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) → ran 𝑥 = ran (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) |
39 | 37, 38 | uneq12d 4069 |
. . . . . 6
⊢ (𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) → (dom 𝑥 ∪ ran 𝑥) = (dom (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∪ ran (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)))) |
40 | 39 | reseq2d 5823 |
. . . . 5
⊢ (𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∪ ran (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))))) |
41 | | id 22 |
. . . . 5
⊢ (𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) → 𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) |
42 | 40, 41 | sseq12d 3925 |
. . . 4
⊢ (𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 ↔ ( I ↾ (dom (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∪ ran (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)))) ⊆ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)))) |
43 | 36, 42 | syl5ibr 249 |
. . 3
⊢ (𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)) |
44 | 43 | adantl 485 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)) |
45 | | cnvresid 6414 |
. . . . . 6
⊢ ◡( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom 𝑥 ∪ ran 𝑥)) |
46 | | dfdm4 5735 |
. . . . . . . . 9
⊢ dom 𝑥 = ran ◡𝑥 |
47 | | df-rn 5535 |
. . . . . . . . 9
⊢ ran 𝑥 = dom ◡𝑥 |
48 | 46, 47 | uneq12i 4066 |
. . . . . . . 8
⊢ (dom
𝑥 ∪ ran 𝑥) = (ran ◡𝑥 ∪ dom ◡𝑥) |
49 | 48 | equncomi 4060 |
. . . . . . 7
⊢ (dom
𝑥 ∪ ran 𝑥) = (dom ◡𝑥 ∪ ran ◡𝑥) |
50 | 49 | reseq2i 5820 |
. . . . . 6
⊢ ( I
↾ (dom 𝑥 ∪ ran
𝑥)) = ( I ↾ (dom
◡𝑥 ∪ ran ◡𝑥)) |
51 | 45, 50 | eqtr2i 2782 |
. . . . 5
⊢ ( I
↾ (dom ◡𝑥 ∪ ran ◡𝑥)) = ◡( I ↾ (dom 𝑥 ∪ ran 𝑥)) |
52 | | cnvss 5712 |
. . . . 5
⊢ (( I
↾ (dom 𝑥 ∪ ran
𝑥)) ⊆ 𝑥 → ◡( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ ◡𝑥) |
53 | 51, 52 | eqsstrid 3940 |
. . . 4
⊢ (( I
↾ (dom 𝑥 ∪ ran
𝑥)) ⊆ 𝑥 → ( I ↾ (dom ◡𝑥 ∪ ran ◡𝑥)) ⊆ ◡𝑥) |
54 | | dmeq 5743 |
. . . . . . 7
⊢ (𝑦 = ◡𝑥 → dom 𝑦 = dom ◡𝑥) |
55 | | rneq 5777 |
. . . . . . 7
⊢ (𝑦 = ◡𝑥 → ran 𝑦 = ran ◡𝑥) |
56 | 54, 55 | uneq12d 4069 |
. . . . . 6
⊢ (𝑦 = ◡𝑥 → (dom 𝑦 ∪ ran 𝑦) = (dom ◡𝑥 ∪ ran ◡𝑥)) |
57 | 56 | reseq2d 5823 |
. . . . 5
⊢ (𝑦 = ◡𝑥 → ( I ↾ (dom 𝑦 ∪ ran 𝑦)) = ( I ↾ (dom ◡𝑥 ∪ ran ◡𝑥))) |
58 | | id 22 |
. . . . 5
⊢ (𝑦 = ◡𝑥 → 𝑦 = ◡𝑥) |
59 | 57, 58 | sseq12d 3925 |
. . . 4
⊢ (𝑦 = ◡𝑥 → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ↔ ( I ↾ (dom ◡𝑥 ∪ ran ◡𝑥)) ⊆ ◡𝑥)) |
60 | 53, 59 | syl5ibr 249 |
. . 3
⊢ (𝑦 = ◡𝑥 → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 → ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) |
61 | 60 | adantl 485 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = ◡𝑥) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 → ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) |
62 | | dmeq 5743 |
. . . . 5
⊢ (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → dom 𝑥 = dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))) |
63 | | rneq 5777 |
. . . . 5
⊢ (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → ran 𝑥 = ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))) |
64 | 62, 63 | uneq12d 4069 |
. . . 4
⊢ (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → (dom 𝑥 ∪ ran 𝑥) = (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) |
65 | 64 | reseq2d 5823 |
. . 3
⊢ (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))))) |
66 | | id 22 |
. . 3
⊢ (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → 𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))) |
67 | 65, 66 | sseq12d 3925 |
. 2
⊢ (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 ↔ ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) |
68 | | ssun1 4077 |
. . 3
⊢ 𝑋 ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) |
69 | 68 | a1i 11 |
. 2
⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))) |
70 | | dmexg 7613 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → dom 𝑋 ∈ V) |
71 | | rnexg 7614 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → ran 𝑋 ∈ V) |
72 | | unexg 7470 |
. . . . 5
⊢ ((dom
𝑋 ∈ V ∧ ran 𝑋 ∈ V) → (dom 𝑋 ∪ ran 𝑋) ∈ V) |
73 | 70, 71, 72 | syl2anc 587 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → (dom 𝑋 ∪ ran 𝑋) ∈ V) |
74 | 73 | resiexd 6970 |
. . 3
⊢ (𝑋 ∈ 𝑉 → ( I ↾ (dom 𝑋 ∪ ran 𝑋)) ∈ V) |
75 | | unexg 7470 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ( I ↾ (dom 𝑋 ∪ ran 𝑋)) ∈ V) → (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∈ V) |
76 | 74, 75 | mpdan 686 |
. 2
⊢ (𝑋 ∈ 𝑉 → (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∈ V) |
77 | | dmun 5750 |
. . . . . 6
⊢ dom
(𝑋 ∪ ( I ↾ (dom
𝑋 ∪ ran 𝑋))) = (dom 𝑋 ∪ dom ( I ↾ (dom 𝑋 ∪ ran 𝑋))) |
78 | | ssun1 4077 |
. . . . . . 7
⊢ dom 𝑋 ⊆ (dom 𝑋 ∪ ran 𝑋) |
79 | | dmresi 5893 |
. . . . . . . 8
⊢ dom ( I
↾ (dom 𝑋 ∪ ran
𝑋)) = (dom 𝑋 ∪ ran 𝑋) |
80 | 79 | eqimssi 3950 |
. . . . . . 7
⊢ dom ( I
↾ (dom 𝑋 ∪ ran
𝑋)) ⊆ (dom 𝑋 ∪ ran 𝑋) |
81 | 78, 80 | unssi 4090 |
. . . . . 6
⊢ (dom
𝑋 ∪ dom ( I ↾
(dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋) |
82 | 77, 81 | eqsstri 3926 |
. . . . 5
⊢ dom
(𝑋 ∪ ( I ↾ (dom
𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋) |
83 | | rnun 5976 |
. . . . . 6
⊢ ran
(𝑋 ∪ ( I ↾ (dom
𝑋 ∪ ran 𝑋))) = (ran 𝑋 ∪ ran ( I ↾ (dom 𝑋 ∪ ran 𝑋))) |
84 | | ssun2 4078 |
. . . . . . 7
⊢ ran 𝑋 ⊆ (dom 𝑋 ∪ ran 𝑋) |
85 | | rnresi 5915 |
. . . . . . . 8
⊢ ran ( I
↾ (dom 𝑋 ∪ ran
𝑋)) = (dom 𝑋 ∪ ran 𝑋) |
86 | 85 | eqimssi 3950 |
. . . . . . 7
⊢ ran ( I
↾ (dom 𝑋 ∪ ran
𝑋)) ⊆ (dom 𝑋 ∪ ran 𝑋) |
87 | 84, 86 | unssi 4090 |
. . . . . 6
⊢ (ran
𝑋 ∪ ran ( I ↾
(dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋) |
88 | 83, 87 | eqsstri 3926 |
. . . . 5
⊢ ran
(𝑋 ∪ ( I ↾ (dom
𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋) |
89 | 82, 88 | pm3.2i 474 |
. . . 4
⊢ (dom
(𝑋 ∪ ( I ↾ (dom
𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋) ∧ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋)) |
90 | | unss 4089 |
. . . . 5
⊢ ((dom
(𝑋 ∪ ( I ↾ (dom
𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋) ∧ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋)) ↔ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))) ⊆ (dom 𝑋 ∪ ran 𝑋)) |
91 | | ssres2 5851 |
. . . . 5
⊢ ((dom
(𝑋 ∪ ( I ↾ (dom
𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))) ⊆ (dom 𝑋 ∪ ran 𝑋) → ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) |
92 | 90, 91 | sylbi 220 |
. . . 4
⊢ ((dom
(𝑋 ∪ ( I ↾ (dom
𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋) ∧ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋)) → ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) |
93 | | ssun4 4080 |
. . . 4
⊢ (( I
↾ (dom (𝑋 ∪ ( I
↾ (dom 𝑋 ∪ ran
𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ ( I ↾ (dom 𝑋 ∪ ran 𝑋)) → ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))) |
94 | 89, 92, 93 | mp2b 10 |
. . 3
⊢ ( I
↾ (dom (𝑋 ∪ ( I
↾ (dom 𝑋 ∪ ran
𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) |
95 | 94 | a1i 11 |
. 2
⊢ (𝑋 ∈ 𝑉 → ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))) |
96 | 44, 61, 67, 69, 76, 95 | clcnvlem 40718 |
1
⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)}) |