Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvrcl0 Structured version   Visualization version   GIF version

Theorem cnvrcl0 43607
Description: The converse of the reflexive closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.)
Assertion
Ref Expression
cnvrcl0 (𝑋𝑉 {𝑥 ∣ (𝑋𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} = {𝑦 ∣ (𝑋𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)})
Distinct variable groups:   𝑥,𝑦,𝑉   𝑥,𝑋,𝑦

Proof of Theorem cnvrcl0
StepHypRef Expression
1 cnvresid 6579 . . . . . . 7 ( I ↾ (dom 𝑦 ∪ ran 𝑦)) = ( I ↾ (dom 𝑦 ∪ ran 𝑦))
2 cnvnonrel 43570 . . . . . . . . . . . . . . . 16 (𝑋𝑋) = ∅
3 cnv0 6101 . . . . . . . . . . . . . . . 16 ∅ = ∅
42, 3eqtr4i 2755 . . . . . . . . . . . . . . 15 (𝑋𝑋) =
54dmeqi 5858 . . . . . . . . . . . . . 14 dom (𝑋𝑋) = dom
6 df-rn 5642 . . . . . . . . . . . . . 14 ran (𝑋𝑋) = dom (𝑋𝑋)
7 df-rn 5642 . . . . . . . . . . . . . 14 ran ∅ = dom
85, 6, 73eqtr4i 2762 . . . . . . . . . . . . 13 ran (𝑋𝑋) = ran ∅
9 0ss 4359 . . . . . . . . . . . . . 14 ∅ ⊆ 𝑦
109rnssi 5893 . . . . . . . . . . . . 13 ran ∅ ⊆ ran 𝑦
118, 10eqsstri 3990 . . . . . . . . . . . 12 ran (𝑋𝑋) ⊆ ran 𝑦
12 ssequn2 4148 . . . . . . . . . . . 12 (ran (𝑋𝑋) ⊆ ran 𝑦 ↔ (ran 𝑦 ∪ ran (𝑋𝑋)) = ran 𝑦)
1311, 12mpbi 230 . . . . . . . . . . 11 (ran 𝑦 ∪ ran (𝑋𝑋)) = ran 𝑦
14 rnun 6106 . . . . . . . . . . 11 ran (𝑦 ∪ (𝑋𝑋)) = (ran 𝑦 ∪ ran (𝑋𝑋))
15 dfdm4 5849 . . . . . . . . . . 11 dom 𝑦 = ran 𝑦
1613, 14, 153eqtr4ri 2763 . . . . . . . . . 10 dom 𝑦 = ran (𝑦 ∪ (𝑋𝑋))
174rneqi 5890 . . . . . . . . . . . . . 14 ran (𝑋𝑋) = ran
18 dfdm4 5849 . . . . . . . . . . . . . 14 dom (𝑋𝑋) = ran (𝑋𝑋)
19 dfdm4 5849 . . . . . . . . . . . . . 14 dom ∅ = ran
2017, 18, 193eqtr4i 2762 . . . . . . . . . . . . 13 dom (𝑋𝑋) = dom ∅
21 dmss 5856 . . . . . . . . . . . . . 14 (∅ ⊆ 𝑦 → dom ∅ ⊆ dom 𝑦)
229, 21ax-mp 5 . . . . . . . . . . . . 13 dom ∅ ⊆ dom 𝑦
2320, 22eqsstri 3990 . . . . . . . . . . . 12 dom (𝑋𝑋) ⊆ dom 𝑦
24 ssequn2 4148 . . . . . . . . . . . 12 (dom (𝑋𝑋) ⊆ dom 𝑦 ↔ (dom 𝑦 ∪ dom (𝑋𝑋)) = dom 𝑦)
2523, 24mpbi 230 . . . . . . . . . . 11 (dom 𝑦 ∪ dom (𝑋𝑋)) = dom 𝑦
26 dmun 5864 . . . . . . . . . . 11 dom (𝑦 ∪ (𝑋𝑋)) = (dom 𝑦 ∪ dom (𝑋𝑋))
27 df-rn 5642 . . . . . . . . . . 11 ran 𝑦 = dom 𝑦
2825, 26, 273eqtr4ri 2763 . . . . . . . . . 10 ran 𝑦 = dom (𝑦 ∪ (𝑋𝑋))
2916, 28uneq12i 4125 . . . . . . . . 9 (dom 𝑦 ∪ ran 𝑦) = (ran (𝑦 ∪ (𝑋𝑋)) ∪ dom (𝑦 ∪ (𝑋𝑋)))
3029equncomi 4119 . . . . . . . 8 (dom 𝑦 ∪ ran 𝑦) = (dom (𝑦 ∪ (𝑋𝑋)) ∪ ran (𝑦 ∪ (𝑋𝑋)))
3130reseq2i 5936 . . . . . . 7 ( I ↾ (dom 𝑦 ∪ ran 𝑦)) = ( I ↾ (dom (𝑦 ∪ (𝑋𝑋)) ∪ ran (𝑦 ∪ (𝑋𝑋))))
321, 31eqtr2i 2753 . . . . . 6 ( I ↾ (dom (𝑦 ∪ (𝑋𝑋)) ∪ ran (𝑦 ∪ (𝑋𝑋)))) = ( I ↾ (dom 𝑦 ∪ ran 𝑦))
33 cnvss 5826 . . . . . 6 (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)
3432, 33eqsstrid 3982 . . . . 5 (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 → ( I ↾ (dom (𝑦 ∪ (𝑋𝑋)) ∪ ran (𝑦 ∪ (𝑋𝑋)))) ⊆ 𝑦)
35 ssun1 4137 . . . . 5 𝑦 ⊆ (𝑦 ∪ (𝑋𝑋))
3634, 35sstrdi 3956 . . . 4 (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 → ( I ↾ (dom (𝑦 ∪ (𝑋𝑋)) ∪ ran (𝑦 ∪ (𝑋𝑋)))) ⊆ (𝑦 ∪ (𝑋𝑋)))
37 dmeq 5857 . . . . . . 7 (𝑥 = (𝑦 ∪ (𝑋𝑋)) → dom 𝑥 = dom (𝑦 ∪ (𝑋𝑋)))
38 rneq 5889 . . . . . . 7 (𝑥 = (𝑦 ∪ (𝑋𝑋)) → ran 𝑥 = ran (𝑦 ∪ (𝑋𝑋)))
3937, 38uneq12d 4128 . . . . . 6 (𝑥 = (𝑦 ∪ (𝑋𝑋)) → (dom 𝑥 ∪ ran 𝑥) = (dom (𝑦 ∪ (𝑋𝑋)) ∪ ran (𝑦 ∪ (𝑋𝑋))))
4039reseq2d 5939 . . . . 5 (𝑥 = (𝑦 ∪ (𝑋𝑋)) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom (𝑦 ∪ (𝑋𝑋)) ∪ ran (𝑦 ∪ (𝑋𝑋)))))
41 id 22 . . . . 5 (𝑥 = (𝑦 ∪ (𝑋𝑋)) → 𝑥 = (𝑦 ∪ (𝑋𝑋)))
4240, 41sseq12d 3977 . . . 4 (𝑥 = (𝑦 ∪ (𝑋𝑋)) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 ↔ ( I ↾ (dom (𝑦 ∪ (𝑋𝑋)) ∪ ran (𝑦 ∪ (𝑋𝑋)))) ⊆ (𝑦 ∪ (𝑋𝑋))))
4336, 42imbitrrid 246 . . 3 (𝑥 = (𝑦 ∪ (𝑋𝑋)) → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))
4443adantl 481 . 2 ((𝑋𝑉𝑥 = (𝑦 ∪ (𝑋𝑋))) → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))
45 cnvresid 6579 . . . . . 6 ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom 𝑥 ∪ ran 𝑥))
46 dfdm4 5849 . . . . . . . . 9 dom 𝑥 = ran 𝑥
47 df-rn 5642 . . . . . . . . 9 ran 𝑥 = dom 𝑥
4846, 47uneq12i 4125 . . . . . . . 8 (dom 𝑥 ∪ ran 𝑥) = (ran 𝑥 ∪ dom 𝑥)
4948equncomi 4119 . . . . . . 7 (dom 𝑥 ∪ ran 𝑥) = (dom 𝑥 ∪ ran 𝑥)
5049reseq2i 5936 . . . . . 6 ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom 𝑥 ∪ ran 𝑥))
5145, 50eqtr2i 2753 . . . . 5 ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom 𝑥 ∪ ran 𝑥))
52 cnvss 5826 . . . . 5 (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)
5351, 52eqsstrid 3982 . . . 4 (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)
54 dmeq 5857 . . . . . . 7 (𝑦 = 𝑥 → dom 𝑦 = dom 𝑥)
55 rneq 5889 . . . . . . 7 (𝑦 = 𝑥 → ran 𝑦 = ran 𝑥)
5654, 55uneq12d 4128 . . . . . 6 (𝑦 = 𝑥 → (dom 𝑦 ∪ ran 𝑦) = (dom 𝑥 ∪ ran 𝑥))
5756reseq2d 5939 . . . . 5 (𝑦 = 𝑥 → ( I ↾ (dom 𝑦 ∪ ran 𝑦)) = ( I ↾ (dom 𝑥 ∪ ran 𝑥)))
58 id 22 . . . . 5 (𝑦 = 𝑥𝑦 = 𝑥)
5957, 58sseq12d 3977 . . . 4 (𝑦 = 𝑥 → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ↔ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))
6053, 59imbitrrid 246 . . 3 (𝑦 = 𝑥 → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 → ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))
6160adantl 481 . 2 ((𝑋𝑉𝑦 = 𝑥) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 → ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))
62 dmeq 5857 . . . . 5 (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → dom 𝑥 = dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))
63 rneq 5889 . . . . 5 (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → ran 𝑥 = ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))
6462, 63uneq12d 4128 . . . 4 (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → (dom 𝑥 ∪ ran 𝑥) = (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))))
6564reseq2d 5939 . . 3 (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))))
66 id 22 . . 3 (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → 𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))
6765, 66sseq12d 3977 . 2 (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 ↔ ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))))
68 ssun1 4137 . . 3 𝑋 ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))
6968a1i 11 . 2 (𝑋𝑉𝑋 ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))
70 dmexg 7857 . . . . 5 (𝑋𝑉 → dom 𝑋 ∈ V)
71 rnexg 7858 . . . . 5 (𝑋𝑉 → ran 𝑋 ∈ V)
7270, 71unexd 7710 . . . 4 (𝑋𝑉 → (dom 𝑋 ∪ ran 𝑋) ∈ V)
7372resiexd 7172 . . 3 (𝑋𝑉 → ( I ↾ (dom 𝑋 ∪ ran 𝑋)) ∈ V)
74 unexg 7699 . . 3 ((𝑋𝑉 ∧ ( I ↾ (dom 𝑋 ∪ ran 𝑋)) ∈ V) → (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∈ V)
7573, 74mpdan 687 . 2 (𝑋𝑉 → (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∈ V)
76 dmun 5864 . . . . . 6 dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) = (dom 𝑋 ∪ dom ( I ↾ (dom 𝑋 ∪ ran 𝑋)))
77 ssun1 4137 . . . . . . 7 dom 𝑋 ⊆ (dom 𝑋 ∪ ran 𝑋)
78 resdmss 6196 . . . . . . 7 dom ( I ↾ (dom 𝑋 ∪ ran 𝑋)) ⊆ (dom 𝑋 ∪ ran 𝑋)
7977, 78unssi 4150 . . . . . 6 (dom 𝑋 ∪ dom ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋)
8076, 79eqsstri 3990 . . . . 5 dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋)
81 rnun 6106 . . . . . 6 ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) = (ran 𝑋 ∪ ran ( I ↾ (dom 𝑋 ∪ ran 𝑋)))
82 ssun2 4138 . . . . . . 7 ran 𝑋 ⊆ (dom 𝑋 ∪ ran 𝑋)
83 rnresi 6035 . . . . . . . 8 ran ( I ↾ (dom 𝑋 ∪ ran 𝑋)) = (dom 𝑋 ∪ ran 𝑋)
8483eqimssi 4004 . . . . . . 7 ran ( I ↾ (dom 𝑋 ∪ ran 𝑋)) ⊆ (dom 𝑋 ∪ ran 𝑋)
8582, 84unssi 4150 . . . . . 6 (ran 𝑋 ∪ ran ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋)
8681, 85eqsstri 3990 . . . . 5 ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋)
8780, 86pm3.2i 470 . . . 4 (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋) ∧ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋))
88 unss 4149 . . . . 5 ((dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋) ∧ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋)) ↔ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))) ⊆ (dom 𝑋 ∪ ran 𝑋))
89 ssres2 5964 . . . . 5 ((dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))) ⊆ (dom 𝑋 ∪ ran 𝑋) → ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))
9088, 89sylbi 217 . . . 4 ((dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋) ∧ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋)) → ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))
91 ssun4 4140 . . . 4 (( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ ( I ↾ (dom 𝑋 ∪ ran 𝑋)) → ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))
9287, 90, 91mp2b 10 . . 3 ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))
9392a1i 11 . 2 (𝑋𝑉 → ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))
9444, 61, 67, 69, 75, 93clcnvlem 43605 1 (𝑋𝑉 {𝑥 ∣ (𝑋𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} = {𝑦 ∣ (𝑋𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3444  cdif 3908  cun 3909  wss 3911  c0 4292   cint 4906   I cid 5525  ccnv 5630  dom cdm 5631  ran crn 5632  cres 5633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-1st 7947  df-2nd 7948
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator