Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrfi Structured version   Visualization version   GIF version

Theorem elrfi 39298
Description: Elementhood in a set of relative finite intersections. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
elrfi ((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ 𝐶)) ↔ ∃𝑣 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = (𝐵 𝑣)))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐵   𝑣,𝐶   𝑣,𝑉

Proof of Theorem elrfi
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 3514 . . 3 (𝐴 ∈ (fi‘({𝐵} ∪ 𝐶)) → 𝐴 ∈ V)
21a1i 11 . 2 ((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ 𝐶)) → 𝐴 ∈ V))
3 inex1g 5225 . . . . 5 (𝐵𝑉 → (𝐵 𝑣) ∈ V)
4 eleq1 2902 . . . . 5 (𝐴 = (𝐵 𝑣) → (𝐴 ∈ V ↔ (𝐵 𝑣) ∈ V))
53, 4syl5ibrcom 249 . . . 4 (𝐵𝑉 → (𝐴 = (𝐵 𝑣) → 𝐴 ∈ V))
65rexlimdvw 3292 . . 3 (𝐵𝑉 → (∃𝑣 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = (𝐵 𝑣) → 𝐴 ∈ V))
76adantr 483 . 2 ((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) → (∃𝑣 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = (𝐵 𝑣) → 𝐴 ∈ V))
8 simpr 487 . . . . 5 (((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) → 𝐴 ∈ V)
9 snex 5334 . . . . . 6 {𝐵} ∈ V
10 pwexg 5281 . . . . . . . 8 (𝐵𝑉 → 𝒫 𝐵 ∈ V)
1110ad2antrr 724 . . . . . . 7 (((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) → 𝒫 𝐵 ∈ V)
12 simplr 767 . . . . . . 7 (((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) → 𝐶 ⊆ 𝒫 𝐵)
1311, 12ssexd 5230 . . . . . 6 (((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) → 𝐶 ∈ V)
14 unexg 7474 . . . . . 6 (({𝐵} ∈ V ∧ 𝐶 ∈ V) → ({𝐵} ∪ 𝐶) ∈ V)
159, 13, 14sylancr 589 . . . . 5 (((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) → ({𝐵} ∪ 𝐶) ∈ V)
16 elfi 8879 . . . . 5 ((𝐴 ∈ V ∧ ({𝐵} ∪ 𝐶) ∈ V) → (𝐴 ∈ (fi‘({𝐵} ∪ 𝐶)) ↔ ∃𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin)𝐴 = 𝑤))
178, 15, 16syl2anc 586 . . . 4 (((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) → (𝐴 ∈ (fi‘({𝐵} ∪ 𝐶)) ↔ ∃𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin)𝐴 = 𝑤))
18 inss1 4207 . . . . . . . . . . . 12 (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ⊆ 𝒫 ({𝐵} ∪ 𝐶)
19 uncom 4131 . . . . . . . . . . . . 13 ({𝐵} ∪ 𝐶) = (𝐶 ∪ {𝐵})
2019pweqi 4559 . . . . . . . . . . . 12 𝒫 ({𝐵} ∪ 𝐶) = 𝒫 (𝐶 ∪ {𝐵})
2118, 20sseqtri 4005 . . . . . . . . . . 11 (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ⊆ 𝒫 (𝐶 ∪ {𝐵})
2221sseli 3965 . . . . . . . . . 10 (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) → 𝑤 ∈ 𝒫 (𝐶 ∪ {𝐵}))
239elpwun 7493 . . . . . . . . . 10 (𝑤 ∈ 𝒫 (𝐶 ∪ {𝐵}) ↔ (𝑤 ∖ {𝐵}) ∈ 𝒫 𝐶)
2422, 23sylib 220 . . . . . . . . 9 (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) → (𝑤 ∖ {𝐵}) ∈ 𝒫 𝐶)
2524ad2antrl 726 . . . . . . . 8 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → (𝑤 ∖ {𝐵}) ∈ 𝒫 𝐶)
26 inss2 4208 . . . . . . . . . . 11 (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ⊆ Fin
2726sseli 3965 . . . . . . . . . 10 (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) → 𝑤 ∈ Fin)
28 diffi 8752 . . . . . . . . . 10 (𝑤 ∈ Fin → (𝑤 ∖ {𝐵}) ∈ Fin)
2927, 28syl 17 . . . . . . . . 9 (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) → (𝑤 ∖ {𝐵}) ∈ Fin)
3029ad2antrl 726 . . . . . . . 8 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → (𝑤 ∖ {𝐵}) ∈ Fin)
3125, 30elind 4173 . . . . . . 7 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → (𝑤 ∖ {𝐵}) ∈ (𝒫 𝐶 ∩ Fin))
32 incom 4180 . . . . . . . . . . . 12 (𝐵𝐴) = (𝐴𝐵)
33 simprr 771 . . . . . . . . . . . . . 14 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → 𝐴 = 𝑤)
34 simplr 767 . . . . . . . . . . . . . . . . . 18 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → 𝐴 ∈ V)
3533, 34eqeltrrd 2916 . . . . . . . . . . . . . . . . 17 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → 𝑤 ∈ V)
36 intex 5242 . . . . . . . . . . . . . . . . 17 (𝑤 ≠ ∅ ↔ 𝑤 ∈ V)
3735, 36sylibr 236 . . . . . . . . . . . . . . . 16 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → 𝑤 ≠ ∅)
38 intssuni 4900 . . . . . . . . . . . . . . . 16 (𝑤 ≠ ∅ → 𝑤 𝑤)
3937, 38syl 17 . . . . . . . . . . . . . . 15 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → 𝑤 𝑤)
4018sseli 3965 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) → 𝑤 ∈ 𝒫 ({𝐵} ∪ 𝐶))
4140elpwid 4552 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) → 𝑤 ⊆ ({𝐵} ∪ 𝐶))
4241ad2antrl 726 . . . . . . . . . . . . . . . . 17 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → 𝑤 ⊆ ({𝐵} ∪ 𝐶))
43 pwidg 4563 . . . . . . . . . . . . . . . . . . . . 21 (𝐵𝑉𝐵 ∈ 𝒫 𝐵)
4443snssd 4744 . . . . . . . . . . . . . . . . . . . 20 (𝐵𝑉 → {𝐵} ⊆ 𝒫 𝐵)
4544adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) → {𝐵} ⊆ 𝒫 𝐵)
46 simpr 487 . . . . . . . . . . . . . . . . . . 19 ((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) → 𝐶 ⊆ 𝒫 𝐵)
4745, 46unssd 4164 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) → ({𝐵} ∪ 𝐶) ⊆ 𝒫 𝐵)
4847ad2antrr 724 . . . . . . . . . . . . . . . . 17 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → ({𝐵} ∪ 𝐶) ⊆ 𝒫 𝐵)
4942, 48sstrd 3979 . . . . . . . . . . . . . . . 16 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → 𝑤 ⊆ 𝒫 𝐵)
50 sspwuni 5024 . . . . . . . . . . . . . . . 16 (𝑤 ⊆ 𝒫 𝐵 𝑤𝐵)
5149, 50sylib 220 . . . . . . . . . . . . . . 15 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → 𝑤𝐵)
5239, 51sstrd 3979 . . . . . . . . . . . . . 14 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → 𝑤𝐵)
5333, 52eqsstrd 4007 . . . . . . . . . . . . 13 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → 𝐴𝐵)
54 df-ss 3954 . . . . . . . . . . . . 13 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
5553, 54sylib 220 . . . . . . . . . . . 12 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → (𝐴𝐵) = 𝐴)
5632, 55syl5req 2871 . . . . . . . . . . 11 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → 𝐴 = (𝐵𝐴))
57 ineq2 4185 . . . . . . . . . . . 12 (𝐴 = 𝑤 → (𝐵𝐴) = (𝐵 𝑤))
5857ad2antll 727 . . . . . . . . . . 11 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → (𝐵𝐴) = (𝐵 𝑤))
5956, 58eqtrd 2858 . . . . . . . . . 10 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → 𝐴 = (𝐵 𝑤))
60 intun 4910 . . . . . . . . . . . 12 ({𝐵} ∪ 𝑤) = ( {𝐵} ∩ 𝑤)
61 intsng 4913 . . . . . . . . . . . . 13 (𝐵𝑉 {𝐵} = 𝐵)
6261ineq1d 4190 . . . . . . . . . . . 12 (𝐵𝑉 → ( {𝐵} ∩ 𝑤) = (𝐵 𝑤))
6360, 62syl5req 2871 . . . . . . . . . . 11 (𝐵𝑉 → (𝐵 𝑤) = ({𝐵} ∪ 𝑤))
6463ad3antrrr 728 . . . . . . . . . 10 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → (𝐵 𝑤) = ({𝐵} ∪ 𝑤))
6559, 64eqtrd 2858 . . . . . . . . 9 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → 𝐴 = ({𝐵} ∪ 𝑤))
66 undif2 4427 . . . . . . . . . 10 ({𝐵} ∪ (𝑤 ∖ {𝐵})) = ({𝐵} ∪ 𝑤)
6766inteqi 4882 . . . . . . . . 9 ({𝐵} ∪ (𝑤 ∖ {𝐵})) = ({𝐵} ∪ 𝑤)
6865, 67syl6eqr 2876 . . . . . . . 8 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → 𝐴 = ({𝐵} ∪ (𝑤 ∖ {𝐵})))
69 intun 4910 . . . . . . . . . 10 ({𝐵} ∪ (𝑤 ∖ {𝐵})) = ( {𝐵} ∩ (𝑤 ∖ {𝐵}))
7061ineq1d 4190 . . . . . . . . . 10 (𝐵𝑉 → ( {𝐵} ∩ (𝑤 ∖ {𝐵})) = (𝐵 (𝑤 ∖ {𝐵})))
7169, 70syl5eq 2870 . . . . . . . . 9 (𝐵𝑉 ({𝐵} ∪ (𝑤 ∖ {𝐵})) = (𝐵 (𝑤 ∖ {𝐵})))
7271ad3antrrr 728 . . . . . . . 8 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → ({𝐵} ∪ (𝑤 ∖ {𝐵})) = (𝐵 (𝑤 ∖ {𝐵})))
7368, 72eqtrd 2858 . . . . . . 7 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → 𝐴 = (𝐵 (𝑤 ∖ {𝐵})))
74 inteq 4881 . . . . . . . . 9 (𝑣 = (𝑤 ∖ {𝐵}) → 𝑣 = (𝑤 ∖ {𝐵}))
7574ineq2d 4191 . . . . . . . 8 (𝑣 = (𝑤 ∖ {𝐵}) → (𝐵 𝑣) = (𝐵 (𝑤 ∖ {𝐵})))
7675rspceeqv 3640 . . . . . . 7 (((𝑤 ∖ {𝐵}) ∈ (𝒫 𝐶 ∩ Fin) ∧ 𝐴 = (𝐵 (𝑤 ∖ {𝐵}))) → ∃𝑣 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = (𝐵 𝑣))
7731, 73, 76syl2anc 586 . . . . . 6 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ (𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ 𝐴 = 𝑤)) → ∃𝑣 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = (𝐵 𝑣))
7877rexlimdvaa 3287 . . . . 5 (((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) → (∃𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin)𝐴 = 𝑤 → ∃𝑣 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = (𝐵 𝑣)))
79 ssun1 4150 . . . . . . . . . . . 12 {𝐵} ⊆ ({𝐵} ∪ 𝐶)
8079a1i 11 . . . . . . . . . . 11 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ 𝑣 ∈ (𝒫 𝐶 ∩ Fin)) → {𝐵} ⊆ ({𝐵} ∪ 𝐶))
81 inss1 4207 . . . . . . . . . . . . . 14 (𝒫 𝐶 ∩ Fin) ⊆ 𝒫 𝐶
8281sseli 3965 . . . . . . . . . . . . 13 (𝑣 ∈ (𝒫 𝐶 ∩ Fin) → 𝑣 ∈ 𝒫 𝐶)
83 elpwi 4550 . . . . . . . . . . . . 13 (𝑣 ∈ 𝒫 𝐶𝑣𝐶)
84 ssun4 4153 . . . . . . . . . . . . 13 (𝑣𝐶𝑣 ⊆ ({𝐵} ∪ 𝐶))
8582, 83, 843syl 18 . . . . . . . . . . . 12 (𝑣 ∈ (𝒫 𝐶 ∩ Fin) → 𝑣 ⊆ ({𝐵} ∪ 𝐶))
8685adantl 484 . . . . . . . . . . 11 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ 𝑣 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑣 ⊆ ({𝐵} ∪ 𝐶))
8780, 86unssd 4164 . . . . . . . . . 10 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ 𝑣 ∈ (𝒫 𝐶 ∩ Fin)) → ({𝐵} ∪ 𝑣) ⊆ ({𝐵} ∪ 𝐶))
88 vex 3499 . . . . . . . . . . . 12 𝑣 ∈ V
899, 88unex 7471 . . . . . . . . . . 11 ({𝐵} ∪ 𝑣) ∈ V
9089elpw 4545 . . . . . . . . . 10 (({𝐵} ∪ 𝑣) ∈ 𝒫 ({𝐵} ∪ 𝐶) ↔ ({𝐵} ∪ 𝑣) ⊆ ({𝐵} ∪ 𝐶))
9187, 90sylibr 236 . . . . . . . . 9 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ 𝑣 ∈ (𝒫 𝐶 ∩ Fin)) → ({𝐵} ∪ 𝑣) ∈ 𝒫 ({𝐵} ∪ 𝐶))
92 snfi 8596 . . . . . . . . . 10 {𝐵} ∈ Fin
93 inss2 4208 . . . . . . . . . . . 12 (𝒫 𝐶 ∩ Fin) ⊆ Fin
9493sseli 3965 . . . . . . . . . . 11 (𝑣 ∈ (𝒫 𝐶 ∩ Fin) → 𝑣 ∈ Fin)
9594adantl 484 . . . . . . . . . 10 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ 𝑣 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑣 ∈ Fin)
96 unfi 8787 . . . . . . . . . 10 (({𝐵} ∈ Fin ∧ 𝑣 ∈ Fin) → ({𝐵} ∪ 𝑣) ∈ Fin)
9792, 95, 96sylancr 589 . . . . . . . . 9 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ 𝑣 ∈ (𝒫 𝐶 ∩ Fin)) → ({𝐵} ∪ 𝑣) ∈ Fin)
9891, 97elind 4173 . . . . . . . 8 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ 𝑣 ∈ (𝒫 𝐶 ∩ Fin)) → ({𝐵} ∪ 𝑣) ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin))
9961eqcomd 2829 . . . . . . . . . . 11 (𝐵𝑉𝐵 = {𝐵})
10099ineq1d 4190 . . . . . . . . . 10 (𝐵𝑉 → (𝐵 𝑣) = ( {𝐵} ∩ 𝑣))
101 intun 4910 . . . . . . . . . 10 ({𝐵} ∪ 𝑣) = ( {𝐵} ∩ 𝑣)
102100, 101syl6eqr 2876 . . . . . . . . 9 (𝐵𝑉 → (𝐵 𝑣) = ({𝐵} ∪ 𝑣))
103102ad3antrrr 728 . . . . . . . 8 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ 𝑣 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐵 𝑣) = ({𝐵} ∪ 𝑣))
104 inteq 4881 . . . . . . . . 9 (𝑤 = ({𝐵} ∪ 𝑣) → 𝑤 = ({𝐵} ∪ 𝑣))
105104rspceeqv 3640 . . . . . . . 8 ((({𝐵} ∪ 𝑣) ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin) ∧ (𝐵 𝑣) = ({𝐵} ∪ 𝑣)) → ∃𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin)(𝐵 𝑣) = 𝑤)
10698, 103, 105syl2anc 586 . . . . . . 7 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ 𝑣 ∈ (𝒫 𝐶 ∩ Fin)) → ∃𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin)(𝐵 𝑣) = 𝑤)
107 eqeq1 2827 . . . . . . . 8 (𝐴 = (𝐵 𝑣) → (𝐴 = 𝑤 ↔ (𝐵 𝑣) = 𝑤))
108107rexbidv 3299 . . . . . . 7 (𝐴 = (𝐵 𝑣) → (∃𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin)𝐴 = 𝑤 ↔ ∃𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin)(𝐵 𝑣) = 𝑤))
109106, 108syl5ibrcom 249 . . . . . 6 ((((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) ∧ 𝑣 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐴 = (𝐵 𝑣) → ∃𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin)𝐴 = 𝑤))
110109rexlimdva 3286 . . . . 5 (((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) → (∃𝑣 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = (𝐵 𝑣) → ∃𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin)𝐴 = 𝑤))
11178, 110impbid 214 . . . 4 (((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) → (∃𝑤 ∈ (𝒫 ({𝐵} ∪ 𝐶) ∩ Fin)𝐴 = 𝑤 ↔ ∃𝑣 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = (𝐵 𝑣)))
11217, 111bitrd 281 . . 3 (((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) ∧ 𝐴 ∈ V) → (𝐴 ∈ (fi‘({𝐵} ∪ 𝐶)) ↔ ∃𝑣 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = (𝐵 𝑣)))
113112ex 415 . 2 ((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) → (𝐴 ∈ V → (𝐴 ∈ (fi‘({𝐵} ∪ 𝐶)) ↔ ∃𝑣 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = (𝐵 𝑣))))
1142, 7, 113pm5.21ndd 383 1 ((𝐵𝑉𝐶 ⊆ 𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ 𝐶)) ↔ ∃𝑣 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = (𝐵 𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wrex 3141  Vcvv 3496  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569   cuni 4840   cint 4878  cfv 6357  Fincfn 8511  ficfi 8876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-fin 8515  df-fi 8877
This theorem is referenced by:  elrfirn  39299
  Copyright terms: Public domain W3C validator