Step | Hyp | Ref
| Expression |
1 | | simpll 763 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ ((𝐽 ↾t 𝑆) ∈ Comp ∧ (𝐽 ↾t 𝑇) ∈ Comp)) → 𝐽 ∈ Top) |
2 | | simpll 763 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) → 𝐽 ∈ Top) |
3 | | ssun1 4102 |
. . . . . . . . . 10
⊢ 𝑆 ⊆ (𝑆 ∪ 𝑇) |
4 | | sseq2 3943 |
. . . . . . . . . 10
⊢ (𝑋 = (𝑆 ∪ 𝑇) → (𝑆 ⊆ 𝑋 ↔ 𝑆 ⊆ (𝑆 ∪ 𝑇))) |
5 | 3, 4 | mpbiri 257 |
. . . . . . . . 9
⊢ (𝑋 = (𝑆 ∪ 𝑇) → 𝑆 ⊆ 𝑋) |
6 | 5 | ad2antlr 723 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) → 𝑆 ⊆ 𝑋) |
7 | | uncmp.1 |
. . . . . . . . 9
⊢ 𝑋 = ∪
𝐽 |
8 | 7 | cmpsub 22459 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Comp ↔ ∀𝑚 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑚 → ∃𝑛 ∈ (𝒫 𝑚 ∩ Fin)𝑆 ⊆ ∪ 𝑛))) |
9 | 2, 6, 8 | syl2anc 583 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) → ((𝐽 ↾t 𝑆) ∈ Comp ↔ ∀𝑚 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑚 → ∃𝑛 ∈ (𝒫 𝑚 ∩ Fin)𝑆 ⊆ ∪ 𝑛))) |
10 | | simprr 769 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) → 𝑋 = ∪ 𝑐) |
11 | 6, 10 | sseqtrd 3957 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) → 𝑆 ⊆ ∪ 𝑐) |
12 | | unieq 4847 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑐 → ∪ 𝑚 = ∪
𝑐) |
13 | 12 | sseq2d 3949 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑐 → (𝑆 ⊆ ∪ 𝑚 ↔ 𝑆 ⊆ ∪ 𝑐)) |
14 | | pweq 4546 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑐 → 𝒫 𝑚 = 𝒫 𝑐) |
15 | 14 | ineq1d 4142 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑐 → (𝒫 𝑚 ∩ Fin) = (𝒫 𝑐 ∩ Fin)) |
16 | 15 | rexeqdv 3340 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑐 → (∃𝑛 ∈ (𝒫 𝑚 ∩ Fin)𝑆 ⊆ ∪ 𝑛 ↔ ∃𝑛 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑛)) |
17 | 13, 16 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑐 → ((𝑆 ⊆ ∪ 𝑚 → ∃𝑛 ∈ (𝒫 𝑚 ∩ Fin)𝑆 ⊆ ∪ 𝑛) ↔ (𝑆 ⊆ ∪ 𝑐 → ∃𝑛 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑛))) |
18 | 17 | rspcv 3547 |
. . . . . . . . 9
⊢ (𝑐 ∈ 𝒫 𝐽 → (∀𝑚 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑚 → ∃𝑛 ∈ (𝒫 𝑚 ∩ Fin)𝑆 ⊆ ∪ 𝑛) → (𝑆 ⊆ ∪ 𝑐 → ∃𝑛 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑛))) |
19 | 18 | ad2antrl 724 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) → (∀𝑚 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑚 → ∃𝑛 ∈ (𝒫 𝑚 ∩ Fin)𝑆 ⊆ ∪ 𝑛) → (𝑆 ⊆ ∪ 𝑐 → ∃𝑛 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑛))) |
20 | 11, 19 | mpid 44 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) → (∀𝑚 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑚 → ∃𝑛 ∈ (𝒫 𝑚 ∩ Fin)𝑆 ⊆ ∪ 𝑛) → ∃𝑛 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑛)) |
21 | 9, 20 | sylbid 239 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) → ((𝐽 ↾t 𝑆) ∈ Comp → ∃𝑛 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑛)) |
22 | | ssun2 4103 |
. . . . . . . . . 10
⊢ 𝑇 ⊆ (𝑆 ∪ 𝑇) |
23 | | sseq2 3943 |
. . . . . . . . . 10
⊢ (𝑋 = (𝑆 ∪ 𝑇) → (𝑇 ⊆ 𝑋 ↔ 𝑇 ⊆ (𝑆 ∪ 𝑇))) |
24 | 22, 23 | mpbiri 257 |
. . . . . . . . 9
⊢ (𝑋 = (𝑆 ∪ 𝑇) → 𝑇 ⊆ 𝑋) |
25 | 24 | ad2antlr 723 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) → 𝑇 ⊆ 𝑋) |
26 | 7 | cmpsub 22459 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋) → ((𝐽 ↾t 𝑇) ∈ Comp ↔ ∀𝑟 ∈ 𝒫 𝐽(𝑇 ⊆ ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑇 ⊆ ∪ 𝑠))) |
27 | 2, 25, 26 | syl2anc 583 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) → ((𝐽 ↾t 𝑇) ∈ Comp ↔ ∀𝑟 ∈ 𝒫 𝐽(𝑇 ⊆ ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑇 ⊆ ∪ 𝑠))) |
28 | 25, 10 | sseqtrd 3957 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) → 𝑇 ⊆ ∪ 𝑐) |
29 | | unieq 4847 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑐 → ∪ 𝑟 = ∪
𝑐) |
30 | 29 | sseq2d 3949 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑐 → (𝑇 ⊆ ∪ 𝑟 ↔ 𝑇 ⊆ ∪ 𝑐)) |
31 | | pweq 4546 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑐 → 𝒫 𝑟 = 𝒫 𝑐) |
32 | 31 | ineq1d 4142 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑐 → (𝒫 𝑟 ∩ Fin) = (𝒫 𝑐 ∩ Fin)) |
33 | 32 | rexeqdv 3340 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑐 → (∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑇 ⊆ ∪ 𝑠 ↔ ∃𝑠 ∈ (𝒫 𝑐 ∩ Fin)𝑇 ⊆ ∪ 𝑠)) |
34 | 30, 33 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑐 → ((𝑇 ⊆ ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑇 ⊆ ∪ 𝑠) ↔ (𝑇 ⊆ ∪ 𝑐 → ∃𝑠 ∈ (𝒫 𝑐 ∩ Fin)𝑇 ⊆ ∪ 𝑠))) |
35 | 34 | rspcv 3547 |
. . . . . . . . 9
⊢ (𝑐 ∈ 𝒫 𝐽 → (∀𝑟 ∈ 𝒫 𝐽(𝑇 ⊆ ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑇 ⊆ ∪ 𝑠) → (𝑇 ⊆ ∪ 𝑐 → ∃𝑠 ∈ (𝒫 𝑐 ∩ Fin)𝑇 ⊆ ∪ 𝑠))) |
36 | 35 | ad2antrl 724 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) → (∀𝑟 ∈ 𝒫 𝐽(𝑇 ⊆ ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑇 ⊆ ∪ 𝑠) → (𝑇 ⊆ ∪ 𝑐 → ∃𝑠 ∈ (𝒫 𝑐 ∩ Fin)𝑇 ⊆ ∪ 𝑠))) |
37 | 28, 36 | mpid 44 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) → (∀𝑟 ∈ 𝒫 𝐽(𝑇 ⊆ ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)𝑇 ⊆ ∪ 𝑠) → ∃𝑠 ∈ (𝒫 𝑐 ∩ Fin)𝑇 ⊆ ∪ 𝑠)) |
38 | 27, 37 | sylbid 239 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) → ((𝐽 ↾t 𝑇) ∈ Comp → ∃𝑠 ∈ (𝒫 𝑐 ∩ Fin)𝑇 ⊆ ∪ 𝑠)) |
39 | | reeanv 3292 |
. . . . . . 7
⊢
(∃𝑛 ∈
(𝒫 𝑐 ∩
Fin)∃𝑠 ∈
(𝒫 𝑐 ∩
Fin)(𝑆 ⊆ ∪ 𝑛
∧ 𝑇 ⊆ ∪ 𝑠)
↔ (∃𝑛 ∈
(𝒫 𝑐 ∩
Fin)𝑆 ⊆ ∪ 𝑛
∧ ∃𝑠 ∈
(𝒫 𝑐 ∩
Fin)𝑇 ⊆ ∪ 𝑠)) |
40 | | elinel1 4125 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ (𝒫 𝑐 ∩ Fin) → 𝑛 ∈ 𝒫 𝑐) |
41 | 40 | elpwid 4541 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (𝒫 𝑐 ∩ Fin) → 𝑛 ⊆ 𝑐) |
42 | | elinel1 4125 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ (𝒫 𝑐 ∩ Fin) → 𝑠 ∈ 𝒫 𝑐) |
43 | 42 | elpwid 4541 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ (𝒫 𝑐 ∩ Fin) → 𝑠 ⊆ 𝑐) |
44 | 41, 43 | anim12i 612 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) → (𝑛 ⊆ 𝑐 ∧ 𝑠 ⊆ 𝑐)) |
45 | 44 | ad2antrl 724 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠))) → (𝑛 ⊆ 𝑐 ∧ 𝑠 ⊆ 𝑐)) |
46 | | unss 4114 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ⊆ 𝑐 ∧ 𝑠 ⊆ 𝑐) ↔ (𝑛 ∪ 𝑠) ⊆ 𝑐) |
47 | 45, 46 | sylib 217 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠))) → (𝑛 ∪ 𝑠) ⊆ 𝑐) |
48 | | elinel2 4126 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (𝒫 𝑐 ∩ Fin) → 𝑛 ∈ Fin) |
49 | | elinel2 4126 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ (𝒫 𝑐 ∩ Fin) → 𝑠 ∈ Fin) |
50 | | unfi 8917 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ Fin ∧ 𝑠 ∈ Fin) → (𝑛 ∪ 𝑠) ∈ Fin) |
51 | 48, 49, 50 | syl2an 595 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) → (𝑛 ∪ 𝑠) ∈ Fin) |
52 | 51 | ad2antrl 724 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠))) → (𝑛 ∪ 𝑠) ∈ Fin) |
53 | 47, 52 | jca 511 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠))) → ((𝑛 ∪ 𝑠) ⊆ 𝑐 ∧ (𝑛 ∪ 𝑠) ∈ Fin)) |
54 | | elin 3899 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∪ 𝑠) ∈ (𝒫 𝑐 ∩ Fin) ↔ ((𝑛 ∪ 𝑠) ∈ 𝒫 𝑐 ∧ (𝑛 ∪ 𝑠) ∈ Fin)) |
55 | | vex 3426 |
. . . . . . . . . . . . . 14
⊢ 𝑐 ∈ V |
56 | 55 | elpw2 5264 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∪ 𝑠) ∈ 𝒫 𝑐 ↔ (𝑛 ∪ 𝑠) ⊆ 𝑐) |
57 | 56 | anbi1i 623 |
. . . . . . . . . . . 12
⊢ (((𝑛 ∪ 𝑠) ∈ 𝒫 𝑐 ∧ (𝑛 ∪ 𝑠) ∈ Fin) ↔ ((𝑛 ∪ 𝑠) ⊆ 𝑐 ∧ (𝑛 ∪ 𝑠) ∈ Fin)) |
58 | 54, 57 | bitr2i 275 |
. . . . . . . . . . 11
⊢ (((𝑛 ∪ 𝑠) ⊆ 𝑐 ∧ (𝑛 ∪ 𝑠) ∈ Fin) ↔ (𝑛 ∪ 𝑠) ∈ (𝒫 𝑐 ∩ Fin)) |
59 | 53, 58 | sylib 217 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠))) → (𝑛 ∪ 𝑠) ∈ (𝒫 𝑐 ∩ Fin)) |
60 | | simpllr 772 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠))) → 𝑋 = (𝑆 ∪ 𝑇)) |
61 | | ssun3 4104 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 ⊆ ∪ 𝑛
→ 𝑆 ⊆ (∪ 𝑛
∪ ∪ 𝑠)) |
62 | | ssun4 4105 |
. . . . . . . . . . . . . . . 16
⊢ (𝑇 ⊆ ∪ 𝑠
→ 𝑇 ⊆ (∪ 𝑛
∪ ∪ 𝑠)) |
63 | 61, 62 | anim12i 612 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ⊆ ∪ 𝑛
∧ 𝑇 ⊆ ∪ 𝑠)
→ (𝑆 ⊆ (∪ 𝑛
∪ ∪ 𝑠) ∧ 𝑇 ⊆ (∪ 𝑛 ∪ ∪ 𝑠))) |
64 | 63 | ad2antll 725 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠))) → (𝑆 ⊆ (∪ 𝑛 ∪ ∪ 𝑠)
∧ 𝑇 ⊆ (∪ 𝑛
∪ ∪ 𝑠))) |
65 | | unss 4114 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ⊆ (∪ 𝑛
∪ ∪ 𝑠) ∧ 𝑇 ⊆ (∪ 𝑛 ∪ ∪ 𝑠))
↔ (𝑆 ∪ 𝑇) ⊆ (∪ 𝑛
∪ ∪ 𝑠)) |
66 | 64, 65 | sylib 217 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠))) → (𝑆 ∪ 𝑇) ⊆ (∪
𝑛 ∪ ∪ 𝑠)) |
67 | 60, 66 | eqsstrd 3955 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠))) → 𝑋 ⊆ (∪ 𝑛 ∪ ∪ 𝑠)) |
68 | | uniun 4861 |
. . . . . . . . . . . 12
⊢ ∪ (𝑛
∪ 𝑠) = (∪ 𝑛
∪ ∪ 𝑠) |
69 | 67, 68 | sseqtrrdi 3968 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠))) → 𝑋 ⊆ ∪ (𝑛 ∪ 𝑠)) |
70 | | elpwi 4539 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ 𝒫 𝐽 → 𝑐 ⊆ 𝐽) |
71 | 70 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐) → 𝑐 ⊆ 𝐽) |
72 | 71 | ad2antlr 723 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠))) → 𝑐 ⊆ 𝐽) |
73 | 47, 72 | sstrd 3927 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠))) → (𝑛 ∪ 𝑠) ⊆ 𝐽) |
74 | | uniss 4844 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∪ 𝑠) ⊆ 𝐽 → ∪ (𝑛 ∪ 𝑠) ⊆ ∪ 𝐽) |
75 | 74, 7 | sseqtrrdi 3968 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∪ 𝑠) ⊆ 𝐽 → ∪ (𝑛 ∪ 𝑠) ⊆ 𝑋) |
76 | 73, 75 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠))) → ∪ (𝑛
∪ 𝑠) ⊆ 𝑋) |
77 | 69, 76 | eqssd 3934 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠))) → 𝑋 = ∪ (𝑛 ∪ 𝑠)) |
78 | | unieq 4847 |
. . . . . . . . . . 11
⊢ (𝑑 = (𝑛 ∪ 𝑠) → ∪ 𝑑 = ∪
(𝑛 ∪ 𝑠)) |
79 | 78 | rspceeqv 3567 |
. . . . . . . . . 10
⊢ (((𝑛 ∪ 𝑠) ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑋 = ∪ (𝑛 ∪ 𝑠)) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) |
80 | 59, 77, 79 | syl2anc 583 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) ∧ ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠))) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑) |
81 | 80 | exp32 420 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) → ((𝑛 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑠 ∈ (𝒫 𝑐 ∩ Fin)) → ((𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
82 | 81 | rexlimdvv 3221 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) → (∃𝑛 ∈ (𝒫 𝑐 ∩ Fin)∃𝑠 ∈ (𝒫 𝑐 ∩ Fin)(𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) |
83 | 39, 82 | syl5bir 242 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) → ((∃𝑛 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑛 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∩ Fin)𝑇 ⊆ ∪ 𝑠) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) |
84 | 21, 38, 83 | syl2and 607 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ (𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐)) → (((𝐽 ↾t 𝑆) ∈ Comp ∧ (𝐽 ↾t 𝑇) ∈ Comp) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) |
85 | 84 | impancom 451 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ ((𝐽 ↾t 𝑆) ∈ Comp ∧ (𝐽 ↾t 𝑇) ∈ Comp)) → ((𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) |
86 | 85 | expd 415 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ ((𝐽 ↾t 𝑆) ∈ Comp ∧ (𝐽 ↾t 𝑇) ∈ Comp)) → (𝑐 ∈ 𝒫 𝐽 → (𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
87 | 86 | ralrimiv 3106 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ ((𝐽 ↾t 𝑆) ∈ Comp ∧ (𝐽 ↾t 𝑇) ∈ Comp)) → ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑)) |
88 | 7 | iscmp 22447 |
. 2
⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑋 = ∪ 𝑑))) |
89 | 1, 87, 88 | sylanbrc 582 |
1
⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ ((𝐽 ↾t 𝑆) ∈ Comp ∧ (𝐽 ↾t 𝑇) ∈ Comp)) → 𝐽 ∈ Comp) |