MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volcn Structured version   Visualization version   GIF version

Theorem volcn 23772
Description: The function formed by restricting a measurable set to a closed interval with a varying endpoint produces an increasing continuous function on the reals. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypothesis
Ref Expression
volcn.1 𝐹 = (𝑥 ∈ ℝ ↦ (vol‘(𝐴 ∩ (𝐵[,]𝑥))))
Assertion
Ref Expression
volcn ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → 𝐹 ∈ (ℝ–cn→ℝ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem volcn
Dummy variables 𝑢 𝑒 𝑣 𝑦 𝑧 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 785 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ dom vol)
2 iccmbl 23732 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵[,]𝑥) ∈ dom vol)
32adantll 707 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐵[,]𝑥) ∈ dom vol)
4 inmbl 23708 . . . . . 6 ((𝐴 ∈ dom vol ∧ (𝐵[,]𝑥) ∈ dom vol) → (𝐴 ∩ (𝐵[,]𝑥)) ∈ dom vol)
51, 3, 4syl2anc 581 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐴 ∩ (𝐵[,]𝑥)) ∈ dom vol)
6 mblvol 23696 . . . . 5 ((𝐴 ∩ (𝐵[,]𝑥)) ∈ dom vol → (vol‘(𝐴 ∩ (𝐵[,]𝑥))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑥))))
75, 6syl 17 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol‘(𝐴 ∩ (𝐵[,]𝑥))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑥))))
8 inss2 4058 . . . . . 6 (𝐴 ∩ (𝐵[,]𝑥)) ⊆ (𝐵[,]𝑥)
98a1i 11 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐴 ∩ (𝐵[,]𝑥)) ⊆ (𝐵[,]𝑥))
10 mblss 23697 . . . . . 6 ((𝐵[,]𝑥) ∈ dom vol → (𝐵[,]𝑥) ⊆ ℝ)
113, 10syl 17 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐵[,]𝑥) ⊆ ℝ)
12 mblvol 23696 . . . . . . 7 ((𝐵[,]𝑥) ∈ dom vol → (vol‘(𝐵[,]𝑥)) = (vol*‘(𝐵[,]𝑥)))
133, 12syl 17 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol‘(𝐵[,]𝑥)) = (vol*‘(𝐵[,]𝑥)))
14 iccvolcl 23733 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (vol‘(𝐵[,]𝑥)) ∈ ℝ)
1514adantll 707 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol‘(𝐵[,]𝑥)) ∈ ℝ)
1613, 15eqeltrrd 2907 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol*‘(𝐵[,]𝑥)) ∈ ℝ)
17 ovolsscl 23652 . . . . 5 (((𝐴 ∩ (𝐵[,]𝑥)) ⊆ (𝐵[,]𝑥) ∧ (𝐵[,]𝑥) ⊆ ℝ ∧ (vol*‘(𝐵[,]𝑥)) ∈ ℝ) → (vol*‘(𝐴 ∩ (𝐵[,]𝑥))) ∈ ℝ)
189, 11, 16, 17syl3anc 1496 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol*‘(𝐴 ∩ (𝐵[,]𝑥))) ∈ ℝ)
197, 18eqeltrd 2906 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol‘(𝐴 ∩ (𝐵[,]𝑥))) ∈ ℝ)
20 volcn.1 . . 3 𝐹 = (𝑥 ∈ ℝ ↦ (vol‘(𝐴 ∩ (𝐵[,]𝑥))))
2119, 20fmptd 6633 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
22 simprr 791 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+)) → 𝑒 ∈ ℝ+)
23 oveq12 6914 . . . . . . . . . . . . 13 ((𝑣 = 𝑧𝑢 = 𝑦) → (𝑣𝑢) = (𝑧𝑦))
2423ancoms 452 . . . . . . . . . . . 12 ((𝑢 = 𝑦𝑣 = 𝑧) → (𝑣𝑢) = (𝑧𝑦))
2524fveq2d 6437 . . . . . . . . . . 11 ((𝑢 = 𝑦𝑣 = 𝑧) → (abs‘(𝑣𝑢)) = (abs‘(𝑧𝑦)))
2625breq1d 4883 . . . . . . . . . 10 ((𝑢 = 𝑦𝑣 = 𝑧) → ((abs‘(𝑣𝑢)) < 𝑒 ↔ (abs‘(𝑧𝑦)) < 𝑒))
27 fveq2 6433 . . . . . . . . . . . . 13 (𝑣 = 𝑧 → (𝐹𝑣) = (𝐹𝑧))
28 fveq2 6433 . . . . . . . . . . . . 13 (𝑢 = 𝑦 → (𝐹𝑢) = (𝐹𝑦))
2927, 28oveqan12rd 6925 . . . . . . . . . . . 12 ((𝑢 = 𝑦𝑣 = 𝑧) → ((𝐹𝑣) − (𝐹𝑢)) = ((𝐹𝑧) − (𝐹𝑦)))
3029fveq2d 6437 . . . . . . . . . . 11 ((𝑢 = 𝑦𝑣 = 𝑧) → (abs‘((𝐹𝑣) − (𝐹𝑢))) = (abs‘((𝐹𝑧) − (𝐹𝑦))))
3130breq1d 4883 . . . . . . . . . 10 ((𝑢 = 𝑦𝑣 = 𝑧) → ((abs‘((𝐹𝑣) − (𝐹𝑢))) < 𝑒 ↔ (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
3226, 31imbi12d 336 . . . . . . . . 9 ((𝑢 = 𝑦𝑣 = 𝑧) → (((abs‘(𝑣𝑢)) < 𝑒 → (abs‘((𝐹𝑣) − (𝐹𝑢))) < 𝑒) ↔ ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒)))
33 oveq12 6914 . . . . . . . . . . . . 13 ((𝑣 = 𝑦𝑢 = 𝑧) → (𝑣𝑢) = (𝑦𝑧))
3433ancoms 452 . . . . . . . . . . . 12 ((𝑢 = 𝑧𝑣 = 𝑦) → (𝑣𝑢) = (𝑦𝑧))
3534fveq2d 6437 . . . . . . . . . . 11 ((𝑢 = 𝑧𝑣 = 𝑦) → (abs‘(𝑣𝑢)) = (abs‘(𝑦𝑧)))
3635breq1d 4883 . . . . . . . . . 10 ((𝑢 = 𝑧𝑣 = 𝑦) → ((abs‘(𝑣𝑢)) < 𝑒 ↔ (abs‘(𝑦𝑧)) < 𝑒))
37 fveq2 6433 . . . . . . . . . . . . 13 (𝑣 = 𝑦 → (𝐹𝑣) = (𝐹𝑦))
38 fveq2 6433 . . . . . . . . . . . . 13 (𝑢 = 𝑧 → (𝐹𝑢) = (𝐹𝑧))
3937, 38oveqan12rd 6925 . . . . . . . . . . . 12 ((𝑢 = 𝑧𝑣 = 𝑦) → ((𝐹𝑣) − (𝐹𝑢)) = ((𝐹𝑦) − (𝐹𝑧)))
4039fveq2d 6437 . . . . . . . . . . 11 ((𝑢 = 𝑧𝑣 = 𝑦) → (abs‘((𝐹𝑣) − (𝐹𝑢))) = (abs‘((𝐹𝑦) − (𝐹𝑧))))
4140breq1d 4883 . . . . . . . . . 10 ((𝑢 = 𝑧𝑣 = 𝑦) → ((abs‘((𝐹𝑣) − (𝐹𝑢))) < 𝑒 ↔ (abs‘((𝐹𝑦) − (𝐹𝑧))) < 𝑒))
4236, 41imbi12d 336 . . . . . . . . 9 ((𝑢 = 𝑧𝑣 = 𝑦) → (((abs‘(𝑣𝑢)) < 𝑒 → (abs‘((𝐹𝑣) − (𝐹𝑢))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑒 → (abs‘((𝐹𝑦) − (𝐹𝑧))) < 𝑒)))
43 ssidd 3849 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) → ℝ ⊆ ℝ)
44 recn 10342 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
45 recn 10342 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
46 abssub 14443 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
4744, 45, 46syl2anr 592 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
4847adantl 475 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
4948breq1d 4883 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘(𝑧𝑦)) < 𝑒 ↔ (abs‘(𝑦𝑧)) < 𝑒))
5021adantr 474 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) → 𝐹:ℝ⟶ℝ)
51 ffvelrn 6606 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶ℝ ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
52 ffvelrn 6606 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶ℝ ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℝ)
5351, 52anim12dan 614 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶ℝ ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ))
5450, 53sylan 577 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ))
55 recn 10342 . . . . . . . . . . . . 13 ((𝐹𝑧) ∈ ℝ → (𝐹𝑧) ∈ ℂ)
56 recn 10342 . . . . . . . . . . . . 13 ((𝐹𝑦) ∈ ℝ → (𝐹𝑦) ∈ ℂ)
57 abssub 14443 . . . . . . . . . . . . 13 (((𝐹𝑧) ∈ ℂ ∧ (𝐹𝑦) ∈ ℂ) → (abs‘((𝐹𝑧) − (𝐹𝑦))) = (abs‘((𝐹𝑦) − (𝐹𝑧))))
5855, 56, 57syl2anr 592 . . . . . . . . . . . 12 (((𝐹𝑦) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (abs‘((𝐹𝑧) − (𝐹𝑦))) = (abs‘((𝐹𝑦) − (𝐹𝑧))))
5954, 58syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘((𝐹𝑧) − (𝐹𝑦))) = (abs‘((𝐹𝑦) − (𝐹𝑧))))
6059breq1d 4883 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒 ↔ (abs‘((𝐹𝑦) − (𝐹𝑧))) < 𝑒))
6149, 60imbi12d 336 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑒 → (abs‘((𝐹𝑦) − (𝐹𝑧))) < 𝑒)))
62 simpr2 1256 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝑧 ∈ ℝ)
63 oveq2 6913 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝐵[,]𝑥) = (𝐵[,]𝑧))
6463ineq2d 4041 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝐴 ∩ (𝐵[,]𝑥)) = (𝐴 ∩ (𝐵[,]𝑧)))
6564fveq2d 6437 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (vol‘(𝐴 ∩ (𝐵[,]𝑥))) = (vol‘(𝐴 ∩ (𝐵[,]𝑧))))
66 fvex 6446 . . . . . . . . . . . . . . . 16 (vol‘(𝐴 ∩ (𝐵[,]𝑧))) ∈ V
6765, 20, 66fvmpt 6529 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ → (𝐹𝑧) = (vol‘(𝐴 ∩ (𝐵[,]𝑧))))
6862, 67syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑧) = (vol‘(𝐴 ∩ (𝐵[,]𝑧))))
69 simplll 793 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝐴 ∈ dom vol)
70 simplr 787 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) → 𝐵 ∈ ℝ)
7170adantr 474 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝐵 ∈ ℝ)
72 iccmbl 23732 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐵[,]𝑧) ∈ dom vol)
7371, 62, 72syl2anc 581 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐵[,]𝑧) ∈ dom vol)
74 inmbl 23708 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ dom vol ∧ (𝐵[,]𝑧) ∈ dom vol) → (𝐴 ∩ (𝐵[,]𝑧)) ∈ dom vol)
7569, 73, 74syl2anc 581 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑧)) ∈ dom vol)
76 mblvol 23696 . . . . . . . . . . . . . . 15 ((𝐴 ∩ (𝐵[,]𝑧)) ∈ dom vol → (vol‘(𝐴 ∩ (𝐵[,]𝑧))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑧))))
7775, 76syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol‘(𝐴 ∩ (𝐵[,]𝑧))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑧))))
7868, 77eqtrd 2861 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑧) = (vol*‘(𝐴 ∩ (𝐵[,]𝑧))))
79 simpr1 1254 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝑦 ∈ ℝ)
80 oveq2 6913 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝐵[,]𝑥) = (𝐵[,]𝑦))
8180ineq2d 4041 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝐴 ∩ (𝐵[,]𝑥)) = (𝐴 ∩ (𝐵[,]𝑦)))
8281fveq2d 6437 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (vol‘(𝐴 ∩ (𝐵[,]𝑥))) = (vol‘(𝐴 ∩ (𝐵[,]𝑦))))
83 fvex 6446 . . . . . . . . . . . . . . . 16 (vol‘(𝐴 ∩ (𝐵[,]𝑦))) ∈ V
8482, 20, 83fvmpt 6529 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → (𝐹𝑦) = (vol‘(𝐴 ∩ (𝐵[,]𝑦))))
8579, 84syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑦) = (vol‘(𝐴 ∩ (𝐵[,]𝑦))))
86 simp1 1172 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) → 𝑦 ∈ ℝ)
87 iccmbl 23732 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐵[,]𝑦) ∈ dom vol)
8870, 86, 87syl2an 591 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐵[,]𝑦) ∈ dom vol)
89 inmbl 23708 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ dom vol ∧ (𝐵[,]𝑦) ∈ dom vol) → (𝐴 ∩ (𝐵[,]𝑦)) ∈ dom vol)
9069, 88, 89syl2anc 581 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑦)) ∈ dom vol)
91 mblvol 23696 . . . . . . . . . . . . . . 15 ((𝐴 ∩ (𝐵[,]𝑦)) ∈ dom vol → (vol‘(𝐴 ∩ (𝐵[,]𝑦))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑦))))
9290, 91syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol‘(𝐴 ∩ (𝐵[,]𝑦))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑦))))
9385, 92eqtrd 2861 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑦) = (vol*‘(𝐴 ∩ (𝐵[,]𝑦))))
9478, 93oveq12d 6923 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((𝐹𝑧) − (𝐹𝑦)) = ((vol*‘(𝐴 ∩ (𝐵[,]𝑧))) − (vol*‘(𝐴 ∩ (𝐵[,]𝑦)))))
9550adantr 474 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝐹:ℝ⟶ℝ)
9695, 62ffvelrnd 6609 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑧) ∈ ℝ)
9778, 96eqeltrrd 2907 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝐴 ∩ (𝐵[,]𝑧))) ∈ ℝ)
9871leidd 10918 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝐵𝐵)
99 simpr3 1258 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝑦𝑧)
100 iccss 12529 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (𝐵𝐵𝑦𝑧)) → (𝐵[,]𝑦) ⊆ (𝐵[,]𝑧))
10171, 62, 98, 99, 100syl22anc 874 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐵[,]𝑦) ⊆ (𝐵[,]𝑧))
102 sslin 4063 . . . . . . . . . . . . . . . . . 18 ((𝐵[,]𝑦) ⊆ (𝐵[,]𝑧) → (𝐴 ∩ (𝐵[,]𝑦)) ⊆ (𝐴 ∩ (𝐵[,]𝑧)))
103101, 102syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑦)) ⊆ (𝐴 ∩ (𝐵[,]𝑧)))
104 mblss 23697 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∩ (𝐵[,]𝑧)) ∈ dom vol → (𝐴 ∩ (𝐵[,]𝑧)) ⊆ ℝ)
10575, 104syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑧)) ⊆ ℝ)
106103, 105sstrd 3837 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑦)) ⊆ ℝ)
107 iccssre 12543 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦[,]𝑧) ⊆ ℝ)
10879, 62, 107syl2anc 581 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝑦[,]𝑧) ⊆ ℝ)
109106, 108unssd 4016 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)) ⊆ ℝ)
11095, 79ffvelrnd 6609 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑦) ∈ ℝ)
11193, 110eqeltrrd 2907 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝐴 ∩ (𝐵[,]𝑦))) ∈ ℝ)
11262, 79resubcld 10782 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝑧𝑦) ∈ ℝ)
113111, 112readdcld 10386 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦)) ∈ ℝ)
114 ovolicc 23689 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) → (vol*‘(𝑦[,]𝑧)) = (𝑧𝑦))
115114adantl 475 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝑦[,]𝑧)) = (𝑧𝑦))
116115, 112eqeltrd 2906 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝑦[,]𝑧)) ∈ ℝ)
117 ovolun 23665 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∩ (𝐵[,]𝑦)) ⊆ ℝ ∧ (vol*‘(𝐴 ∩ (𝐵[,]𝑦))) ∈ ℝ) ∧ ((𝑦[,]𝑧) ⊆ ℝ ∧ (vol*‘(𝑦[,]𝑧)) ∈ ℝ)) → (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (vol*‘(𝑦[,]𝑧))))
118106, 111, 108, 116, 117syl22anc 874 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (vol*‘(𝑦[,]𝑧))))
119115oveq2d 6921 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (vol*‘(𝑦[,]𝑧))) = ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦)))
120118, 119breqtrd 4899 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦)))
121 ovollecl 23649 . . . . . . . . . . . . . . 15 ((((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)) ⊆ ℝ ∧ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦)) ∈ ℝ ∧ (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦))) → (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ∈ ℝ)
122109, 113, 120, 121syl3anc 1496 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ∈ ℝ)
12371adantr 474 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝐵 ∈ ℝ)
12462adantr 474 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝑧 ∈ ℝ)
12579adantr 474 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝑦 ∈ ℝ)
126 simpr 479 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝐵𝑦)
12799adantr 474 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝑦𝑧)
128 simp2 1173 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) → 𝑧 ∈ ℝ)
129 elicc2 12526 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 ∈ (𝐵[,]𝑧) ↔ (𝑦 ∈ ℝ ∧ 𝐵𝑦𝑦𝑧)))
13070, 128, 129syl2an 591 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝑦 ∈ (𝐵[,]𝑧) ↔ (𝑦 ∈ ℝ ∧ 𝐵𝑦𝑦𝑧)))
131130adantr 474 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → (𝑦 ∈ (𝐵[,]𝑧) ↔ (𝑦 ∈ ℝ ∧ 𝐵𝑦𝑦𝑧)))
132125, 126, 127, 131mpbir3and 1448 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝑦 ∈ (𝐵[,]𝑧))
133 iccsplit 12598 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ∈ (𝐵[,]𝑧)) → (𝐵[,]𝑧) = ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
134123, 124, 132, 133syl3anc 1496 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → (𝐵[,]𝑧) = ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
135 eqimss 3882 . . . . . . . . . . . . . . . . . . 19 ((𝐵[,]𝑧) = ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)) → (𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
136134, 135syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → (𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
13779adantr 474 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
13862adantr 474 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → 𝑧 ∈ ℝ)
139 simpr 479 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → 𝑦𝐵)
140138leidd 10918 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → 𝑧𝑧)
141 iccss 12529 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (𝑦𝐵𝑧𝑧)) → (𝐵[,]𝑧) ⊆ (𝑦[,]𝑧))
142137, 138, 139, 140, 141syl22anc 874 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → (𝐵[,]𝑧) ⊆ (𝑦[,]𝑧))
143 ssun4 4006 . . . . . . . . . . . . . . . . . . 19 ((𝐵[,]𝑧) ⊆ (𝑦[,]𝑧) → (𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
144142, 143syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → (𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
14571, 79, 136, 144lecasei 10462 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
146 sslin 4063 . . . . . . . . . . . . . . . . 17 ((𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)) → (𝐴 ∩ (𝐵[,]𝑧)) ⊆ (𝐴 ∩ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧))))
147145, 146syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑧)) ⊆ (𝐴 ∩ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧))))
148 indi 4103 . . . . . . . . . . . . . . . . 17 (𝐴 ∩ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧))) = ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝐴 ∩ (𝑦[,]𝑧)))
149 inss2 4058 . . . . . . . . . . . . . . . . . 18 (𝐴 ∩ (𝑦[,]𝑧)) ⊆ (𝑦[,]𝑧)
150 unss2 4011 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∩ (𝑦[,]𝑧)) ⊆ (𝑦[,]𝑧) → ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝐴 ∩ (𝑦[,]𝑧))) ⊆ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)))
151149, 150ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝐴 ∩ (𝑦[,]𝑧))) ⊆ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))
152148, 151eqsstri 3860 . . . . . . . . . . . . . . . 16 (𝐴 ∩ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧))) ⊆ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))
153147, 152syl6ss 3839 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑧)) ⊆ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)))
154 ovolss 23651 . . . . . . . . . . . . . . 15 (((𝐴 ∩ (𝐵[,]𝑧)) ⊆ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)) ∧ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)) ⊆ ℝ) → (vol*‘(𝐴 ∩ (𝐵[,]𝑧))) ≤ (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))))
155153, 109, 154syl2anc 581 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝐴 ∩ (𝐵[,]𝑧))) ≤ (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))))
15697, 122, 113, 155, 120letrd 10513 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝐴 ∩ (𝐵[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦)))
15797, 111, 112lesubadd2d 10951 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (((vol*‘(𝐴 ∩ (𝐵[,]𝑧))) − (vol*‘(𝐴 ∩ (𝐵[,]𝑦)))) ≤ (𝑧𝑦) ↔ (vol*‘(𝐴 ∩ (𝐵[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦))))
158156, 157mpbird 249 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((vol*‘(𝐴 ∩ (𝐵[,]𝑧))) − (vol*‘(𝐴 ∩ (𝐵[,]𝑦)))) ≤ (𝑧𝑦))
15994, 158eqbrtrd 4895 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((𝐹𝑧) − (𝐹𝑦)) ≤ (𝑧𝑦))
16096, 110resubcld 10782 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((𝐹𝑧) − (𝐹𝑦)) ∈ ℝ)
161 simplr 787 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝑒 ∈ ℝ+)
162161rpred 12156 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝑒 ∈ ℝ)
163 lelttr 10447 . . . . . . . . . . . 12 ((((𝐹𝑧) − (𝐹𝑦)) ∈ ℝ ∧ (𝑧𝑦) ∈ ℝ ∧ 𝑒 ∈ ℝ) → ((((𝐹𝑧) − (𝐹𝑦)) ≤ (𝑧𝑦) ∧ (𝑧𝑦) < 𝑒) → ((𝐹𝑧) − (𝐹𝑦)) < 𝑒))
164160, 112, 162, 163syl3anc 1496 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((((𝐹𝑧) − (𝐹𝑦)) ≤ (𝑧𝑦) ∧ (𝑧𝑦) < 𝑒) → ((𝐹𝑧) − (𝐹𝑦)) < 𝑒))
165159, 164mpand 688 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((𝑧𝑦) < 𝑒 → ((𝐹𝑧) − (𝐹𝑦)) < 𝑒))
166 abssubge0 14444 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) → (abs‘(𝑧𝑦)) = (𝑧𝑦))
167166adantl 475 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (abs‘(𝑧𝑦)) = (𝑧𝑦))
168167breq1d 4883 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((abs‘(𝑧𝑦)) < 𝑒 ↔ (𝑧𝑦) < 𝑒))
169 ovolss 23651 . . . . . . . . . . . . . 14 (((𝐴 ∩ (𝐵[,]𝑦)) ⊆ (𝐴 ∩ (𝐵[,]𝑧)) ∧ (𝐴 ∩ (𝐵[,]𝑧)) ⊆ ℝ) → (vol*‘(𝐴 ∩ (𝐵[,]𝑦))) ≤ (vol*‘(𝐴 ∩ (𝐵[,]𝑧))))
170103, 105, 169syl2anc 581 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝐴 ∩ (𝐵[,]𝑦))) ≤ (vol*‘(𝐴 ∩ (𝐵[,]𝑧))))
171170, 93, 783brtr4d 4905 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑦) ≤ (𝐹𝑧))
172110, 96, 171abssubge0d 14547 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (abs‘((𝐹𝑧) − (𝐹𝑦))) = ((𝐹𝑧) − (𝐹𝑦)))
173172breq1d 4883 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒 ↔ ((𝐹𝑧) − (𝐹𝑦)) < 𝑒))
174165, 168, 1733imtr4d 286 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
17532, 42, 43, 61, 174wlogle 10885 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
176175anassrs 461 . . . . . . 7 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
177176ralrimiva 3175 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ) → ∀𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
178177anasss 460 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑒 ∈ ℝ+𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
179178ancom2s 642 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+)) → ∀𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
180 breq2 4877 . . . . 5 (𝑑 = 𝑒 → ((abs‘(𝑧𝑦)) < 𝑑 ↔ (abs‘(𝑧𝑦)) < 𝑒))
181180rspceaimv 3534 . . . 4 ((𝑒 ∈ ℝ+ ∧ ∀𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
18222, 179, 181syl2anc 581 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+)) → ∃𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
183182ralrimivva 3180 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
184 ax-resscn 10309 . . 3 ℝ ⊆ ℂ
185 elcncf2 23063 . . 3 ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝐹 ∈ (ℝ–cn→ℝ) ↔ (𝐹:ℝ⟶ℝ ∧ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))))
186184, 184, 185mp2an 685 . 2 (𝐹 ∈ (ℝ–cn→ℝ) ↔ (𝐹:ℝ⟶ℝ ∧ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒)))
18721, 183, 186sylanbrc 580 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → 𝐹 ∈ (ℝ–cn→ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wral 3117  wrex 3118  cun 3796  cin 3797  wss 3798   class class class wbr 4873  cmpt 4952  dom cdm 5342  wf 6119  cfv 6123  (class class class)co 6905  cc 10250  cr 10251   + caddc 10255   < clt 10391  cle 10392  cmin 10585  +crp 12112  [,]cicc 12466  abscabs 14351  cnccncf 23049  vol*covol 23628  volcvol 23629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fi 8586  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-z 11705  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-ioo 12467  df-ico 12469  df-icc 12470  df-fz 12620  df-fzo 12761  df-fl 12888  df-seq 13096  df-exp 13155  df-hash 13411  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-clim 14596  df-rlim 14597  df-sum 14794  df-rest 16436  df-topgen 16457  df-psmet 20098  df-xmet 20099  df-met 20100  df-bl 20101  df-mopn 20102  df-top 21069  df-topon 21086  df-bases 21121  df-cmp 21561  df-cncf 23051  df-ovol 23630  df-vol 23631
This theorem is referenced by:  volivth  23773
  Copyright terms: Public domain W3C validator