MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volcn Structured version   Visualization version   GIF version

Theorem volcn 25505
Description: The function formed by restricting a measurable set to a closed interval with a varying endpoint produces an increasing continuous function on the reals. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypothesis
Ref Expression
volcn.1 𝐹 = (𝑥 ∈ ℝ ↦ (vol‘(𝐴 ∩ (𝐵[,]𝑥))))
Assertion
Ref Expression
volcn ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → 𝐹 ∈ (ℝ–cn→ℝ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem volcn
Dummy variables 𝑢 𝑒 𝑣 𝑦 𝑧 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ dom vol)
2 iccmbl 25465 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵[,]𝑥) ∈ dom vol)
32adantll 714 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐵[,]𝑥) ∈ dom vol)
4 inmbl 25441 . . . . . 6 ((𝐴 ∈ dom vol ∧ (𝐵[,]𝑥) ∈ dom vol) → (𝐴 ∩ (𝐵[,]𝑥)) ∈ dom vol)
51, 3, 4syl2anc 584 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐴 ∩ (𝐵[,]𝑥)) ∈ dom vol)
6 mblvol 25429 . . . . 5 ((𝐴 ∩ (𝐵[,]𝑥)) ∈ dom vol → (vol‘(𝐴 ∩ (𝐵[,]𝑥))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑥))))
75, 6syl 17 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol‘(𝐴 ∩ (𝐵[,]𝑥))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑥))))
8 inss2 4189 . . . . 5 (𝐴 ∩ (𝐵[,]𝑥)) ⊆ (𝐵[,]𝑥)
9 mblss 25430 . . . . . 6 ((𝐵[,]𝑥) ∈ dom vol → (𝐵[,]𝑥) ⊆ ℝ)
103, 9syl 17 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐵[,]𝑥) ⊆ ℝ)
11 mblvol 25429 . . . . . . 7 ((𝐵[,]𝑥) ∈ dom vol → (vol‘(𝐵[,]𝑥)) = (vol*‘(𝐵[,]𝑥)))
123, 11syl 17 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol‘(𝐵[,]𝑥)) = (vol*‘(𝐵[,]𝑥)))
13 iccvolcl 25466 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (vol‘(𝐵[,]𝑥)) ∈ ℝ)
1413adantll 714 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol‘(𝐵[,]𝑥)) ∈ ℝ)
1512, 14eqeltrrd 2829 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol*‘(𝐵[,]𝑥)) ∈ ℝ)
16 ovolsscl 25385 . . . . 5 (((𝐴 ∩ (𝐵[,]𝑥)) ⊆ (𝐵[,]𝑥) ∧ (𝐵[,]𝑥) ⊆ ℝ ∧ (vol*‘(𝐵[,]𝑥)) ∈ ℝ) → (vol*‘(𝐴 ∩ (𝐵[,]𝑥))) ∈ ℝ)
178, 10, 15, 16mp3an2i 1468 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol*‘(𝐴 ∩ (𝐵[,]𝑥))) ∈ ℝ)
187, 17eqeltrd 2828 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol‘(𝐴 ∩ (𝐵[,]𝑥))) ∈ ℝ)
19 volcn.1 . . 3 𝐹 = (𝑥 ∈ ℝ ↦ (vol‘(𝐴 ∩ (𝐵[,]𝑥))))
2018, 19fmptd 7048 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
21 simprr 772 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+)) → 𝑒 ∈ ℝ+)
22 oveq12 7358 . . . . . . . . . . . . 13 ((𝑣 = 𝑧𝑢 = 𝑦) → (𝑣𝑢) = (𝑧𝑦))
2322ancoms 458 . . . . . . . . . . . 12 ((𝑢 = 𝑦𝑣 = 𝑧) → (𝑣𝑢) = (𝑧𝑦))
2423fveq2d 6826 . . . . . . . . . . 11 ((𝑢 = 𝑦𝑣 = 𝑧) → (abs‘(𝑣𝑢)) = (abs‘(𝑧𝑦)))
2524breq1d 5102 . . . . . . . . . 10 ((𝑢 = 𝑦𝑣 = 𝑧) → ((abs‘(𝑣𝑢)) < 𝑒 ↔ (abs‘(𝑧𝑦)) < 𝑒))
26 fveq2 6822 . . . . . . . . . . . . 13 (𝑣 = 𝑧 → (𝐹𝑣) = (𝐹𝑧))
27 fveq2 6822 . . . . . . . . . . . . 13 (𝑢 = 𝑦 → (𝐹𝑢) = (𝐹𝑦))
2826, 27oveqan12rd 7369 . . . . . . . . . . . 12 ((𝑢 = 𝑦𝑣 = 𝑧) → ((𝐹𝑣) − (𝐹𝑢)) = ((𝐹𝑧) − (𝐹𝑦)))
2928fveq2d 6826 . . . . . . . . . . 11 ((𝑢 = 𝑦𝑣 = 𝑧) → (abs‘((𝐹𝑣) − (𝐹𝑢))) = (abs‘((𝐹𝑧) − (𝐹𝑦))))
3029breq1d 5102 . . . . . . . . . 10 ((𝑢 = 𝑦𝑣 = 𝑧) → ((abs‘((𝐹𝑣) − (𝐹𝑢))) < 𝑒 ↔ (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
3125, 30imbi12d 344 . . . . . . . . 9 ((𝑢 = 𝑦𝑣 = 𝑧) → (((abs‘(𝑣𝑢)) < 𝑒 → (abs‘((𝐹𝑣) − (𝐹𝑢))) < 𝑒) ↔ ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒)))
32 oveq12 7358 . . . . . . . . . . . . 13 ((𝑣 = 𝑦𝑢 = 𝑧) → (𝑣𝑢) = (𝑦𝑧))
3332ancoms 458 . . . . . . . . . . . 12 ((𝑢 = 𝑧𝑣 = 𝑦) → (𝑣𝑢) = (𝑦𝑧))
3433fveq2d 6826 . . . . . . . . . . 11 ((𝑢 = 𝑧𝑣 = 𝑦) → (abs‘(𝑣𝑢)) = (abs‘(𝑦𝑧)))
3534breq1d 5102 . . . . . . . . . 10 ((𝑢 = 𝑧𝑣 = 𝑦) → ((abs‘(𝑣𝑢)) < 𝑒 ↔ (abs‘(𝑦𝑧)) < 𝑒))
36 fveq2 6822 . . . . . . . . . . . . 13 (𝑣 = 𝑦 → (𝐹𝑣) = (𝐹𝑦))
37 fveq2 6822 . . . . . . . . . . . . 13 (𝑢 = 𝑧 → (𝐹𝑢) = (𝐹𝑧))
3836, 37oveqan12rd 7369 . . . . . . . . . . . 12 ((𝑢 = 𝑧𝑣 = 𝑦) → ((𝐹𝑣) − (𝐹𝑢)) = ((𝐹𝑦) − (𝐹𝑧)))
3938fveq2d 6826 . . . . . . . . . . 11 ((𝑢 = 𝑧𝑣 = 𝑦) → (abs‘((𝐹𝑣) − (𝐹𝑢))) = (abs‘((𝐹𝑦) − (𝐹𝑧))))
4039breq1d 5102 . . . . . . . . . 10 ((𝑢 = 𝑧𝑣 = 𝑦) → ((abs‘((𝐹𝑣) − (𝐹𝑢))) < 𝑒 ↔ (abs‘((𝐹𝑦) − (𝐹𝑧))) < 𝑒))
4135, 40imbi12d 344 . . . . . . . . 9 ((𝑢 = 𝑧𝑣 = 𝑦) → (((abs‘(𝑣𝑢)) < 𝑒 → (abs‘((𝐹𝑣) − (𝐹𝑢))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑒 → (abs‘((𝐹𝑦) − (𝐹𝑧))) < 𝑒)))
42 ssidd 3959 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) → ℝ ⊆ ℝ)
43 recn 11099 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
44 recn 11099 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
45 abssub 15234 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
4643, 44, 45syl2anr 597 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
4746adantl 481 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
4847breq1d 5102 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘(𝑧𝑦)) < 𝑒 ↔ (abs‘(𝑦𝑧)) < 𝑒))
4920adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) → 𝐹:ℝ⟶ℝ)
50 ffvelcdm 7015 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶ℝ ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
51 ffvelcdm 7015 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶ℝ ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℝ)
5250, 51anim12dan 619 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶ℝ ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ))
5349, 52sylan 580 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ))
54 recn 11099 . . . . . . . . . . . . 13 ((𝐹𝑧) ∈ ℝ → (𝐹𝑧) ∈ ℂ)
55 recn 11099 . . . . . . . . . . . . 13 ((𝐹𝑦) ∈ ℝ → (𝐹𝑦) ∈ ℂ)
56 abssub 15234 . . . . . . . . . . . . 13 (((𝐹𝑧) ∈ ℂ ∧ (𝐹𝑦) ∈ ℂ) → (abs‘((𝐹𝑧) − (𝐹𝑦))) = (abs‘((𝐹𝑦) − (𝐹𝑧))))
5754, 55, 56syl2anr 597 . . . . . . . . . . . 12 (((𝐹𝑦) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (abs‘((𝐹𝑧) − (𝐹𝑦))) = (abs‘((𝐹𝑦) − (𝐹𝑧))))
5853, 57syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘((𝐹𝑧) − (𝐹𝑦))) = (abs‘((𝐹𝑦) − (𝐹𝑧))))
5958breq1d 5102 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒 ↔ (abs‘((𝐹𝑦) − (𝐹𝑧))) < 𝑒))
6048, 59imbi12d 344 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑒 → (abs‘((𝐹𝑦) − (𝐹𝑧))) < 𝑒)))
61 simpr2 1196 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝑧 ∈ ℝ)
62 oveq2 7357 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝐵[,]𝑥) = (𝐵[,]𝑧))
6362ineq2d 4171 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝐴 ∩ (𝐵[,]𝑥)) = (𝐴 ∩ (𝐵[,]𝑧)))
6463fveq2d 6826 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (vol‘(𝐴 ∩ (𝐵[,]𝑥))) = (vol‘(𝐴 ∩ (𝐵[,]𝑧))))
65 fvex 6835 . . . . . . . . . . . . . . . 16 (vol‘(𝐴 ∩ (𝐵[,]𝑧))) ∈ V
6664, 19, 65fvmpt 6930 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ → (𝐹𝑧) = (vol‘(𝐴 ∩ (𝐵[,]𝑧))))
6761, 66syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑧) = (vol‘(𝐴 ∩ (𝐵[,]𝑧))))
68 simplll 774 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝐴 ∈ dom vol)
69 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) → 𝐵 ∈ ℝ)
7069adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝐵 ∈ ℝ)
71 iccmbl 25465 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐵[,]𝑧) ∈ dom vol)
7270, 61, 71syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐵[,]𝑧) ∈ dom vol)
73 inmbl 25441 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ dom vol ∧ (𝐵[,]𝑧) ∈ dom vol) → (𝐴 ∩ (𝐵[,]𝑧)) ∈ dom vol)
7468, 72, 73syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑧)) ∈ dom vol)
75 mblvol 25429 . . . . . . . . . . . . . . 15 ((𝐴 ∩ (𝐵[,]𝑧)) ∈ dom vol → (vol‘(𝐴 ∩ (𝐵[,]𝑧))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑧))))
7674, 75syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol‘(𝐴 ∩ (𝐵[,]𝑧))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑧))))
7767, 76eqtrd 2764 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑧) = (vol*‘(𝐴 ∩ (𝐵[,]𝑧))))
78 simpr1 1195 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝑦 ∈ ℝ)
79 oveq2 7357 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝐵[,]𝑥) = (𝐵[,]𝑦))
8079ineq2d 4171 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝐴 ∩ (𝐵[,]𝑥)) = (𝐴 ∩ (𝐵[,]𝑦)))
8180fveq2d 6826 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (vol‘(𝐴 ∩ (𝐵[,]𝑥))) = (vol‘(𝐴 ∩ (𝐵[,]𝑦))))
82 fvex 6835 . . . . . . . . . . . . . . . 16 (vol‘(𝐴 ∩ (𝐵[,]𝑦))) ∈ V
8381, 19, 82fvmpt 6930 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → (𝐹𝑦) = (vol‘(𝐴 ∩ (𝐵[,]𝑦))))
8478, 83syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑦) = (vol‘(𝐴 ∩ (𝐵[,]𝑦))))
85 simp1 1136 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) → 𝑦 ∈ ℝ)
86 iccmbl 25465 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐵[,]𝑦) ∈ dom vol)
8769, 85, 86syl2an 596 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐵[,]𝑦) ∈ dom vol)
88 inmbl 25441 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ dom vol ∧ (𝐵[,]𝑦) ∈ dom vol) → (𝐴 ∩ (𝐵[,]𝑦)) ∈ dom vol)
8968, 87, 88syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑦)) ∈ dom vol)
90 mblvol 25429 . . . . . . . . . . . . . . 15 ((𝐴 ∩ (𝐵[,]𝑦)) ∈ dom vol → (vol‘(𝐴 ∩ (𝐵[,]𝑦))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑦))))
9189, 90syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol‘(𝐴 ∩ (𝐵[,]𝑦))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑦))))
9284, 91eqtrd 2764 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑦) = (vol*‘(𝐴 ∩ (𝐵[,]𝑦))))
9377, 92oveq12d 7367 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((𝐹𝑧) − (𝐹𝑦)) = ((vol*‘(𝐴 ∩ (𝐵[,]𝑧))) − (vol*‘(𝐴 ∩ (𝐵[,]𝑦)))))
9449adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝐹:ℝ⟶ℝ)
9594, 61ffvelcdmd 7019 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑧) ∈ ℝ)
9677, 95eqeltrrd 2829 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝐴 ∩ (𝐵[,]𝑧))) ∈ ℝ)
9770leidd 11686 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝐵𝐵)
98 simpr3 1197 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝑦𝑧)
99 iccss 13317 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (𝐵𝐵𝑦𝑧)) → (𝐵[,]𝑦) ⊆ (𝐵[,]𝑧))
10070, 61, 97, 98, 99syl22anc 838 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐵[,]𝑦) ⊆ (𝐵[,]𝑧))
101 sslin 4194 . . . . . . . . . . . . . . . . . 18 ((𝐵[,]𝑦) ⊆ (𝐵[,]𝑧) → (𝐴 ∩ (𝐵[,]𝑦)) ⊆ (𝐴 ∩ (𝐵[,]𝑧)))
102100, 101syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑦)) ⊆ (𝐴 ∩ (𝐵[,]𝑧)))
103 mblss 25430 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∩ (𝐵[,]𝑧)) ∈ dom vol → (𝐴 ∩ (𝐵[,]𝑧)) ⊆ ℝ)
10474, 103syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑧)) ⊆ ℝ)
105102, 104sstrd 3946 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑦)) ⊆ ℝ)
106 iccssre 13332 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦[,]𝑧) ⊆ ℝ)
10778, 61, 106syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝑦[,]𝑧) ⊆ ℝ)
108105, 107unssd 4143 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)) ⊆ ℝ)
10994, 78ffvelcdmd 7019 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑦) ∈ ℝ)
11092, 109eqeltrrd 2829 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝐴 ∩ (𝐵[,]𝑦))) ∈ ℝ)
11161, 78resubcld 11548 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝑧𝑦) ∈ ℝ)
112110, 111readdcld 11144 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦)) ∈ ℝ)
113 ovolicc 25422 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) → (vol*‘(𝑦[,]𝑧)) = (𝑧𝑦))
114113adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝑦[,]𝑧)) = (𝑧𝑦))
115114, 111eqeltrd 2828 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝑦[,]𝑧)) ∈ ℝ)
116 ovolun 25398 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∩ (𝐵[,]𝑦)) ⊆ ℝ ∧ (vol*‘(𝐴 ∩ (𝐵[,]𝑦))) ∈ ℝ) ∧ ((𝑦[,]𝑧) ⊆ ℝ ∧ (vol*‘(𝑦[,]𝑧)) ∈ ℝ)) → (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (vol*‘(𝑦[,]𝑧))))
117105, 110, 107, 115, 116syl22anc 838 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (vol*‘(𝑦[,]𝑧))))
118114oveq2d 7365 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (vol*‘(𝑦[,]𝑧))) = ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦)))
119117, 118breqtrd 5118 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦)))
120 ovollecl 25382 . . . . . . . . . . . . . . 15 ((((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)) ⊆ ℝ ∧ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦)) ∈ ℝ ∧ (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦))) → (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ∈ ℝ)
121108, 112, 119, 120syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ∈ ℝ)
12270adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝐵 ∈ ℝ)
12361adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝑧 ∈ ℝ)
12478adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝑦 ∈ ℝ)
125 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝐵𝑦)
12698adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝑦𝑧)
127 simp2 1137 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) → 𝑧 ∈ ℝ)
128 elicc2 13314 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 ∈ (𝐵[,]𝑧) ↔ (𝑦 ∈ ℝ ∧ 𝐵𝑦𝑦𝑧)))
12969, 127, 128syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝑦 ∈ (𝐵[,]𝑧) ↔ (𝑦 ∈ ℝ ∧ 𝐵𝑦𝑦𝑧)))
130129adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → (𝑦 ∈ (𝐵[,]𝑧) ↔ (𝑦 ∈ ℝ ∧ 𝐵𝑦𝑦𝑧)))
131124, 125, 126, 130mpbir3and 1343 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝑦 ∈ (𝐵[,]𝑧))
132 iccsplit 13388 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ∈ (𝐵[,]𝑧)) → (𝐵[,]𝑧) = ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
133122, 123, 131, 132syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → (𝐵[,]𝑧) = ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
134 eqimss 3994 . . . . . . . . . . . . . . . . . . 19 ((𝐵[,]𝑧) = ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)) → (𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
135133, 134syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → (𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
13678adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
13761adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → 𝑧 ∈ ℝ)
138 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → 𝑦𝐵)
139137leidd 11686 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → 𝑧𝑧)
140 iccss 13317 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (𝑦𝐵𝑧𝑧)) → (𝐵[,]𝑧) ⊆ (𝑦[,]𝑧))
141136, 137, 138, 139, 140syl22anc 838 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → (𝐵[,]𝑧) ⊆ (𝑦[,]𝑧))
142 ssun4 4132 . . . . . . . . . . . . . . . . . . 19 ((𝐵[,]𝑧) ⊆ (𝑦[,]𝑧) → (𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
143141, 142syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → (𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
14470, 78, 135, 143lecasei 11222 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
145 sslin 4194 . . . . . . . . . . . . . . . . 17 ((𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)) → (𝐴 ∩ (𝐵[,]𝑧)) ⊆ (𝐴 ∩ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧))))
146144, 145syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑧)) ⊆ (𝐴 ∩ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧))))
147 indi 4235 . . . . . . . . . . . . . . . . 17 (𝐴 ∩ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧))) = ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝐴 ∩ (𝑦[,]𝑧)))
148 inss2 4189 . . . . . . . . . . . . . . . . . 18 (𝐴 ∩ (𝑦[,]𝑧)) ⊆ (𝑦[,]𝑧)
149 unss2 4138 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∩ (𝑦[,]𝑧)) ⊆ (𝑦[,]𝑧) → ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝐴 ∩ (𝑦[,]𝑧))) ⊆ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)))
150148, 149ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝐴 ∩ (𝑦[,]𝑧))) ⊆ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))
151147, 150eqsstri 3982 . . . . . . . . . . . . . . . 16 (𝐴 ∩ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧))) ⊆ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))
152146, 151sstrdi 3948 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑧)) ⊆ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)))
153 ovolss 25384 . . . . . . . . . . . . . . 15 (((𝐴 ∩ (𝐵[,]𝑧)) ⊆ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)) ∧ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)) ⊆ ℝ) → (vol*‘(𝐴 ∩ (𝐵[,]𝑧))) ≤ (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))))
154152, 108, 153syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝐴 ∩ (𝐵[,]𝑧))) ≤ (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))))
15596, 121, 112, 154, 119letrd 11273 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝐴 ∩ (𝐵[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦)))
15696, 110, 111lesubadd2d 11719 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (((vol*‘(𝐴 ∩ (𝐵[,]𝑧))) − (vol*‘(𝐴 ∩ (𝐵[,]𝑦)))) ≤ (𝑧𝑦) ↔ (vol*‘(𝐴 ∩ (𝐵[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦))))
157155, 156mpbird 257 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((vol*‘(𝐴 ∩ (𝐵[,]𝑧))) − (vol*‘(𝐴 ∩ (𝐵[,]𝑦)))) ≤ (𝑧𝑦))
15893, 157eqbrtrd 5114 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((𝐹𝑧) − (𝐹𝑦)) ≤ (𝑧𝑦))
15995, 109resubcld 11548 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((𝐹𝑧) − (𝐹𝑦)) ∈ ℝ)
160 simplr 768 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝑒 ∈ ℝ+)
161160rpred 12937 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝑒 ∈ ℝ)
162 lelttr 11206 . . . . . . . . . . . 12 ((((𝐹𝑧) − (𝐹𝑦)) ∈ ℝ ∧ (𝑧𝑦) ∈ ℝ ∧ 𝑒 ∈ ℝ) → ((((𝐹𝑧) − (𝐹𝑦)) ≤ (𝑧𝑦) ∧ (𝑧𝑦) < 𝑒) → ((𝐹𝑧) − (𝐹𝑦)) < 𝑒))
163159, 111, 161, 162syl3anc 1373 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((((𝐹𝑧) − (𝐹𝑦)) ≤ (𝑧𝑦) ∧ (𝑧𝑦) < 𝑒) → ((𝐹𝑧) − (𝐹𝑦)) < 𝑒))
164158, 163mpand 695 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((𝑧𝑦) < 𝑒 → ((𝐹𝑧) − (𝐹𝑦)) < 𝑒))
165 abssubge0 15235 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) → (abs‘(𝑧𝑦)) = (𝑧𝑦))
166165adantl 481 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (abs‘(𝑧𝑦)) = (𝑧𝑦))
167166breq1d 5102 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((abs‘(𝑧𝑦)) < 𝑒 ↔ (𝑧𝑦) < 𝑒))
168 ovolss 25384 . . . . . . . . . . . . . 14 (((𝐴 ∩ (𝐵[,]𝑦)) ⊆ (𝐴 ∩ (𝐵[,]𝑧)) ∧ (𝐴 ∩ (𝐵[,]𝑧)) ⊆ ℝ) → (vol*‘(𝐴 ∩ (𝐵[,]𝑦))) ≤ (vol*‘(𝐴 ∩ (𝐵[,]𝑧))))
169102, 104, 168syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝐴 ∩ (𝐵[,]𝑦))) ≤ (vol*‘(𝐴 ∩ (𝐵[,]𝑧))))
170169, 92, 773brtr4d 5124 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑦) ≤ (𝐹𝑧))
171109, 95, 170abssubge0d 15341 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (abs‘((𝐹𝑧) − (𝐹𝑦))) = ((𝐹𝑧) − (𝐹𝑦)))
172171breq1d 5102 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒 ↔ ((𝐹𝑧) − (𝐹𝑦)) < 𝑒))
173164, 167, 1723imtr4d 294 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
17431, 41, 42, 60, 173wlogle 11653 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
175174anassrs 467 . . . . . . 7 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
176175ralrimiva 3121 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ) → ∀𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
177176anasss 466 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑒 ∈ ℝ+𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
178177ancom2s 650 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+)) → ∀𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
179 breq2 5096 . . . . 5 (𝑑 = 𝑒 → ((abs‘(𝑧𝑦)) < 𝑑 ↔ (abs‘(𝑧𝑦)) < 𝑒))
180179rspceaimv 3583 . . . 4 ((𝑒 ∈ ℝ+ ∧ ∀𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
18121, 178, 180syl2anc 584 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+)) → ∃𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
182181ralrimivva 3172 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
183 ax-resscn 11066 . . 3 ℝ ⊆ ℂ
184 elcncf2 24781 . . 3 ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝐹 ∈ (ℝ–cn→ℝ) ↔ (𝐹:ℝ⟶ℝ ∧ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))))
185183, 183, 184mp2an 692 . 2 (𝐹 ∈ (ℝ–cn→ℝ) ↔ (𝐹:ℝ⟶ℝ ∧ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒)))
18620, 182, 185sylanbrc 583 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → 𝐹 ∈ (ℝ–cn→ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cun 3901  cin 3902  wss 3903   class class class wbr 5092  cmpt 5173  dom cdm 5619  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008   + caddc 11012   < clt 11149  cle 11150  cmin 11347  +crp 12893  [,]cicc 13251  abscabs 15141  cnccncf 24767  vol*covol 25361  volcvol 25362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-rest 17326  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-top 22779  df-topon 22796  df-bases 22831  df-cmp 23272  df-cncf 24769  df-ovol 25363  df-vol 25364
This theorem is referenced by:  volivth  25506
  Copyright terms: Public domain W3C validator