Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  volcn Structured version   Visualization version   GIF version

Theorem volcn 24206
 Description: The function formed by restricting a measurable set to a closed interval with a varying endpoint produces an increasing continuous function on the reals. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypothesis
Ref Expression
volcn.1 𝐹 = (𝑥 ∈ ℝ ↦ (vol‘(𝐴 ∩ (𝐵[,]𝑥))))
Assertion
Ref Expression
volcn ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → 𝐹 ∈ (ℝ–cn→ℝ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem volcn
Dummy variables 𝑢 𝑒 𝑣 𝑦 𝑧 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ dom vol)
2 iccmbl 24166 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵[,]𝑥) ∈ dom vol)
32adantll 713 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐵[,]𝑥) ∈ dom vol)
4 inmbl 24142 . . . . . 6 ((𝐴 ∈ dom vol ∧ (𝐵[,]𝑥) ∈ dom vol) → (𝐴 ∩ (𝐵[,]𝑥)) ∈ dom vol)
51, 3, 4syl2anc 587 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐴 ∩ (𝐵[,]𝑥)) ∈ dom vol)
6 mblvol 24130 . . . . 5 ((𝐴 ∩ (𝐵[,]𝑥)) ∈ dom vol → (vol‘(𝐴 ∩ (𝐵[,]𝑥))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑥))))
75, 6syl 17 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol‘(𝐴 ∩ (𝐵[,]𝑥))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑥))))
8 inss2 4190 . . . . 5 (𝐴 ∩ (𝐵[,]𝑥)) ⊆ (𝐵[,]𝑥)
9 mblss 24131 . . . . . 6 ((𝐵[,]𝑥) ∈ dom vol → (𝐵[,]𝑥) ⊆ ℝ)
103, 9syl 17 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐵[,]𝑥) ⊆ ℝ)
11 mblvol 24130 . . . . . . 7 ((𝐵[,]𝑥) ∈ dom vol → (vol‘(𝐵[,]𝑥)) = (vol*‘(𝐵[,]𝑥)))
123, 11syl 17 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol‘(𝐵[,]𝑥)) = (vol*‘(𝐵[,]𝑥)))
13 iccvolcl 24167 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (vol‘(𝐵[,]𝑥)) ∈ ℝ)
1413adantll 713 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol‘(𝐵[,]𝑥)) ∈ ℝ)
1512, 14eqeltrrd 2917 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol*‘(𝐵[,]𝑥)) ∈ ℝ)
16 ovolsscl 24086 . . . . 5 (((𝐴 ∩ (𝐵[,]𝑥)) ⊆ (𝐵[,]𝑥) ∧ (𝐵[,]𝑥) ⊆ ℝ ∧ (vol*‘(𝐵[,]𝑥)) ∈ ℝ) → (vol*‘(𝐴 ∩ (𝐵[,]𝑥))) ∈ ℝ)
178, 10, 15, 16mp3an2i 1463 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol*‘(𝐴 ∩ (𝐵[,]𝑥))) ∈ ℝ)
187, 17eqeltrd 2916 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol‘(𝐴 ∩ (𝐵[,]𝑥))) ∈ ℝ)
19 volcn.1 . . 3 𝐹 = (𝑥 ∈ ℝ ↦ (vol‘(𝐴 ∩ (𝐵[,]𝑥))))
2018, 19fmptd 6866 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
21 simprr 772 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+)) → 𝑒 ∈ ℝ+)
22 oveq12 7154 . . . . . . . . . . . . 13 ((𝑣 = 𝑧𝑢 = 𝑦) → (𝑣𝑢) = (𝑧𝑦))
2322ancoms 462 . . . . . . . . . . . 12 ((𝑢 = 𝑦𝑣 = 𝑧) → (𝑣𝑢) = (𝑧𝑦))
2423fveq2d 6662 . . . . . . . . . . 11 ((𝑢 = 𝑦𝑣 = 𝑧) → (abs‘(𝑣𝑢)) = (abs‘(𝑧𝑦)))
2524breq1d 5062 . . . . . . . . . 10 ((𝑢 = 𝑦𝑣 = 𝑧) → ((abs‘(𝑣𝑢)) < 𝑒 ↔ (abs‘(𝑧𝑦)) < 𝑒))
26 fveq2 6658 . . . . . . . . . . . . 13 (𝑣 = 𝑧 → (𝐹𝑣) = (𝐹𝑧))
27 fveq2 6658 . . . . . . . . . . . . 13 (𝑢 = 𝑦 → (𝐹𝑢) = (𝐹𝑦))
2826, 27oveqan12rd 7165 . . . . . . . . . . . 12 ((𝑢 = 𝑦𝑣 = 𝑧) → ((𝐹𝑣) − (𝐹𝑢)) = ((𝐹𝑧) − (𝐹𝑦)))
2928fveq2d 6662 . . . . . . . . . . 11 ((𝑢 = 𝑦𝑣 = 𝑧) → (abs‘((𝐹𝑣) − (𝐹𝑢))) = (abs‘((𝐹𝑧) − (𝐹𝑦))))
3029breq1d 5062 . . . . . . . . . 10 ((𝑢 = 𝑦𝑣 = 𝑧) → ((abs‘((𝐹𝑣) − (𝐹𝑢))) < 𝑒 ↔ (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
3125, 30imbi12d 348 . . . . . . . . 9 ((𝑢 = 𝑦𝑣 = 𝑧) → (((abs‘(𝑣𝑢)) < 𝑒 → (abs‘((𝐹𝑣) − (𝐹𝑢))) < 𝑒) ↔ ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒)))
32 oveq12 7154 . . . . . . . . . . . . 13 ((𝑣 = 𝑦𝑢 = 𝑧) → (𝑣𝑢) = (𝑦𝑧))
3332ancoms 462 . . . . . . . . . . . 12 ((𝑢 = 𝑧𝑣 = 𝑦) → (𝑣𝑢) = (𝑦𝑧))
3433fveq2d 6662 . . . . . . . . . . 11 ((𝑢 = 𝑧𝑣 = 𝑦) → (abs‘(𝑣𝑢)) = (abs‘(𝑦𝑧)))
3534breq1d 5062 . . . . . . . . . 10 ((𝑢 = 𝑧𝑣 = 𝑦) → ((abs‘(𝑣𝑢)) < 𝑒 ↔ (abs‘(𝑦𝑧)) < 𝑒))
36 fveq2 6658 . . . . . . . . . . . . 13 (𝑣 = 𝑦 → (𝐹𝑣) = (𝐹𝑦))
37 fveq2 6658 . . . . . . . . . . . . 13 (𝑢 = 𝑧 → (𝐹𝑢) = (𝐹𝑧))
3836, 37oveqan12rd 7165 . . . . . . . . . . . 12 ((𝑢 = 𝑧𝑣 = 𝑦) → ((𝐹𝑣) − (𝐹𝑢)) = ((𝐹𝑦) − (𝐹𝑧)))
3938fveq2d 6662 . . . . . . . . . . 11 ((𝑢 = 𝑧𝑣 = 𝑦) → (abs‘((𝐹𝑣) − (𝐹𝑢))) = (abs‘((𝐹𝑦) − (𝐹𝑧))))
4039breq1d 5062 . . . . . . . . . 10 ((𝑢 = 𝑧𝑣 = 𝑦) → ((abs‘((𝐹𝑣) − (𝐹𝑢))) < 𝑒 ↔ (abs‘((𝐹𝑦) − (𝐹𝑧))) < 𝑒))
4135, 40imbi12d 348 . . . . . . . . 9 ((𝑢 = 𝑧𝑣 = 𝑦) → (((abs‘(𝑣𝑢)) < 𝑒 → (abs‘((𝐹𝑣) − (𝐹𝑢))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑒 → (abs‘((𝐹𝑦) − (𝐹𝑧))) < 𝑒)))
42 ssidd 3975 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) → ℝ ⊆ ℝ)
43 recn 10619 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
44 recn 10619 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
45 abssub 14682 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
4643, 44, 45syl2anr 599 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
4746adantl 485 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
4847breq1d 5062 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘(𝑧𝑦)) < 𝑒 ↔ (abs‘(𝑦𝑧)) < 𝑒))
4920adantr 484 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) → 𝐹:ℝ⟶ℝ)
50 ffvelrn 6837 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶ℝ ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
51 ffvelrn 6837 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶ℝ ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℝ)
5250, 51anim12dan 621 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶ℝ ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ))
5349, 52sylan 583 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ))
54 recn 10619 . . . . . . . . . . . . 13 ((𝐹𝑧) ∈ ℝ → (𝐹𝑧) ∈ ℂ)
55 recn 10619 . . . . . . . . . . . . 13 ((𝐹𝑦) ∈ ℝ → (𝐹𝑦) ∈ ℂ)
56 abssub 14682 . . . . . . . . . . . . 13 (((𝐹𝑧) ∈ ℂ ∧ (𝐹𝑦) ∈ ℂ) → (abs‘((𝐹𝑧) − (𝐹𝑦))) = (abs‘((𝐹𝑦) − (𝐹𝑧))))
5754, 55, 56syl2anr 599 . . . . . . . . . . . 12 (((𝐹𝑦) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (abs‘((𝐹𝑧) − (𝐹𝑦))) = (abs‘((𝐹𝑦) − (𝐹𝑧))))
5853, 57syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘((𝐹𝑧) − (𝐹𝑦))) = (abs‘((𝐹𝑦) − (𝐹𝑧))))
5958breq1d 5062 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒 ↔ (abs‘((𝐹𝑦) − (𝐹𝑧))) < 𝑒))
6048, 59imbi12d 348 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑒 → (abs‘((𝐹𝑦) − (𝐹𝑧))) < 𝑒)))
61 simpr2 1192 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝑧 ∈ ℝ)
62 oveq2 7153 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝐵[,]𝑥) = (𝐵[,]𝑧))
6362ineq2d 4173 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝐴 ∩ (𝐵[,]𝑥)) = (𝐴 ∩ (𝐵[,]𝑧)))
6463fveq2d 6662 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (vol‘(𝐴 ∩ (𝐵[,]𝑥))) = (vol‘(𝐴 ∩ (𝐵[,]𝑧))))
65 fvex 6671 . . . . . . . . . . . . . . . 16 (vol‘(𝐴 ∩ (𝐵[,]𝑧))) ∈ V
6664, 19, 65fvmpt 6756 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ → (𝐹𝑧) = (vol‘(𝐴 ∩ (𝐵[,]𝑧))))
6761, 66syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑧) = (vol‘(𝐴 ∩ (𝐵[,]𝑧))))
68 simplll 774 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝐴 ∈ dom vol)
69 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) → 𝐵 ∈ ℝ)
7069adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝐵 ∈ ℝ)
71 iccmbl 24166 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐵[,]𝑧) ∈ dom vol)
7270, 61, 71syl2anc 587 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐵[,]𝑧) ∈ dom vol)
73 inmbl 24142 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ dom vol ∧ (𝐵[,]𝑧) ∈ dom vol) → (𝐴 ∩ (𝐵[,]𝑧)) ∈ dom vol)
7468, 72, 73syl2anc 587 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑧)) ∈ dom vol)
75 mblvol 24130 . . . . . . . . . . . . . . 15 ((𝐴 ∩ (𝐵[,]𝑧)) ∈ dom vol → (vol‘(𝐴 ∩ (𝐵[,]𝑧))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑧))))
7674, 75syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol‘(𝐴 ∩ (𝐵[,]𝑧))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑧))))
7767, 76eqtrd 2859 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑧) = (vol*‘(𝐴 ∩ (𝐵[,]𝑧))))
78 simpr1 1191 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝑦 ∈ ℝ)
79 oveq2 7153 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝐵[,]𝑥) = (𝐵[,]𝑦))
8079ineq2d 4173 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝐴 ∩ (𝐵[,]𝑥)) = (𝐴 ∩ (𝐵[,]𝑦)))
8180fveq2d 6662 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (vol‘(𝐴 ∩ (𝐵[,]𝑥))) = (vol‘(𝐴 ∩ (𝐵[,]𝑦))))
82 fvex 6671 . . . . . . . . . . . . . . . 16 (vol‘(𝐴 ∩ (𝐵[,]𝑦))) ∈ V
8381, 19, 82fvmpt 6756 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → (𝐹𝑦) = (vol‘(𝐴 ∩ (𝐵[,]𝑦))))
8478, 83syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑦) = (vol‘(𝐴 ∩ (𝐵[,]𝑦))))
85 simp1 1133 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) → 𝑦 ∈ ℝ)
86 iccmbl 24166 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐵[,]𝑦) ∈ dom vol)
8769, 85, 86syl2an 598 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐵[,]𝑦) ∈ dom vol)
88 inmbl 24142 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ dom vol ∧ (𝐵[,]𝑦) ∈ dom vol) → (𝐴 ∩ (𝐵[,]𝑦)) ∈ dom vol)
8968, 87, 88syl2anc 587 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑦)) ∈ dom vol)
90 mblvol 24130 . . . . . . . . . . . . . . 15 ((𝐴 ∩ (𝐵[,]𝑦)) ∈ dom vol → (vol‘(𝐴 ∩ (𝐵[,]𝑦))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑦))))
9189, 90syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol‘(𝐴 ∩ (𝐵[,]𝑦))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑦))))
9284, 91eqtrd 2859 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑦) = (vol*‘(𝐴 ∩ (𝐵[,]𝑦))))
9377, 92oveq12d 7163 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((𝐹𝑧) − (𝐹𝑦)) = ((vol*‘(𝐴 ∩ (𝐵[,]𝑧))) − (vol*‘(𝐴 ∩ (𝐵[,]𝑦)))))
9449adantr 484 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝐹:ℝ⟶ℝ)
9594, 61ffvelrnd 6840 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑧) ∈ ℝ)
9677, 95eqeltrrd 2917 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝐴 ∩ (𝐵[,]𝑧))) ∈ ℝ)
9770leidd 11198 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝐵𝐵)
98 simpr3 1193 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝑦𝑧)
99 iccss 12798 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (𝐵𝐵𝑦𝑧)) → (𝐵[,]𝑦) ⊆ (𝐵[,]𝑧))
10070, 61, 97, 98, 99syl22anc 837 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐵[,]𝑦) ⊆ (𝐵[,]𝑧))
101 sslin 4195 . . . . . . . . . . . . . . . . . 18 ((𝐵[,]𝑦) ⊆ (𝐵[,]𝑧) → (𝐴 ∩ (𝐵[,]𝑦)) ⊆ (𝐴 ∩ (𝐵[,]𝑧)))
102100, 101syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑦)) ⊆ (𝐴 ∩ (𝐵[,]𝑧)))
103 mblss 24131 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∩ (𝐵[,]𝑧)) ∈ dom vol → (𝐴 ∩ (𝐵[,]𝑧)) ⊆ ℝ)
10474, 103syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑧)) ⊆ ℝ)
105102, 104sstrd 3962 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑦)) ⊆ ℝ)
106 iccssre 12812 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦[,]𝑧) ⊆ ℝ)
10778, 61, 106syl2anc 587 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝑦[,]𝑧) ⊆ ℝ)
108105, 107unssd 4147 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)) ⊆ ℝ)
10994, 78ffvelrnd 6840 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑦) ∈ ℝ)
11092, 109eqeltrrd 2917 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝐴 ∩ (𝐵[,]𝑦))) ∈ ℝ)
11161, 78resubcld 11060 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝑧𝑦) ∈ ℝ)
112110, 111readdcld 10662 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦)) ∈ ℝ)
113 ovolicc 24123 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) → (vol*‘(𝑦[,]𝑧)) = (𝑧𝑦))
114113adantl 485 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝑦[,]𝑧)) = (𝑧𝑦))
115114, 111eqeltrd 2916 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝑦[,]𝑧)) ∈ ℝ)
116 ovolun 24099 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∩ (𝐵[,]𝑦)) ⊆ ℝ ∧ (vol*‘(𝐴 ∩ (𝐵[,]𝑦))) ∈ ℝ) ∧ ((𝑦[,]𝑧) ⊆ ℝ ∧ (vol*‘(𝑦[,]𝑧)) ∈ ℝ)) → (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (vol*‘(𝑦[,]𝑧))))
117105, 110, 107, 115, 116syl22anc 837 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (vol*‘(𝑦[,]𝑧))))
118114oveq2d 7161 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (vol*‘(𝑦[,]𝑧))) = ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦)))
119117, 118breqtrd 5078 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦)))
120 ovollecl 24083 . . . . . . . . . . . . . . 15 ((((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)) ⊆ ℝ ∧ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦)) ∈ ℝ ∧ (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦))) → (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ∈ ℝ)
121108, 112, 119, 120syl3anc 1368 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ∈ ℝ)
12270adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝐵 ∈ ℝ)
12361adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝑧 ∈ ℝ)
12478adantr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝑦 ∈ ℝ)
125 simpr 488 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝐵𝑦)
12698adantr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝑦𝑧)
127 simp2 1134 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) → 𝑧 ∈ ℝ)
128 elicc2 12795 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 ∈ (𝐵[,]𝑧) ↔ (𝑦 ∈ ℝ ∧ 𝐵𝑦𝑦𝑧)))
12969, 127, 128syl2an 598 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝑦 ∈ (𝐵[,]𝑧) ↔ (𝑦 ∈ ℝ ∧ 𝐵𝑦𝑦𝑧)))
130129adantr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → (𝑦 ∈ (𝐵[,]𝑧) ↔ (𝑦 ∈ ℝ ∧ 𝐵𝑦𝑦𝑧)))
131124, 125, 126, 130mpbir3and 1339 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝑦 ∈ (𝐵[,]𝑧))
132 iccsplit 12868 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ∈ (𝐵[,]𝑧)) → (𝐵[,]𝑧) = ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
133122, 123, 131, 132syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → (𝐵[,]𝑧) = ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
134 eqimss 4008 . . . . . . . . . . . . . . . . . . 19 ((𝐵[,]𝑧) = ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)) → (𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
135133, 134syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → (𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
13678adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
13761adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → 𝑧 ∈ ℝ)
138 simpr 488 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → 𝑦𝐵)
139137leidd 11198 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → 𝑧𝑧)
140 iccss 12798 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (𝑦𝐵𝑧𝑧)) → (𝐵[,]𝑧) ⊆ (𝑦[,]𝑧))
141136, 137, 138, 139, 140syl22anc 837 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → (𝐵[,]𝑧) ⊆ (𝑦[,]𝑧))
142 ssun4 4136 . . . . . . . . . . . . . . . . . . 19 ((𝐵[,]𝑧) ⊆ (𝑦[,]𝑧) → (𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
143141, 142syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → (𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
14470, 78, 135, 143lecasei 10738 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
145 sslin 4195 . . . . . . . . . . . . . . . . 17 ((𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)) → (𝐴 ∩ (𝐵[,]𝑧)) ⊆ (𝐴 ∩ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧))))
146144, 145syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑧)) ⊆ (𝐴 ∩ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧))))
147 indi 4234 . . . . . . . . . . . . . . . . 17 (𝐴 ∩ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧))) = ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝐴 ∩ (𝑦[,]𝑧)))
148 inss2 4190 . . . . . . . . . . . . . . . . . 18 (𝐴 ∩ (𝑦[,]𝑧)) ⊆ (𝑦[,]𝑧)
149 unss2 4142 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∩ (𝑦[,]𝑧)) ⊆ (𝑦[,]𝑧) → ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝐴 ∩ (𝑦[,]𝑧))) ⊆ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)))
150148, 149ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝐴 ∩ (𝑦[,]𝑧))) ⊆ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))
151147, 150eqsstri 3986 . . . . . . . . . . . . . . . 16 (𝐴 ∩ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧))) ⊆ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))
152146, 151sstrdi 3964 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑧)) ⊆ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)))
153 ovolss 24085 . . . . . . . . . . . . . . 15 (((𝐴 ∩ (𝐵[,]𝑧)) ⊆ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)) ∧ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)) ⊆ ℝ) → (vol*‘(𝐴 ∩ (𝐵[,]𝑧))) ≤ (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))))
154152, 108, 153syl2anc 587 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝐴 ∩ (𝐵[,]𝑧))) ≤ (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))))
15596, 121, 112, 154, 119letrd 10789 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝐴 ∩ (𝐵[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦)))
15696, 110, 111lesubadd2d 11231 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (((vol*‘(𝐴 ∩ (𝐵[,]𝑧))) − (vol*‘(𝐴 ∩ (𝐵[,]𝑦)))) ≤ (𝑧𝑦) ↔ (vol*‘(𝐴 ∩ (𝐵[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦))))
157155, 156mpbird 260 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((vol*‘(𝐴 ∩ (𝐵[,]𝑧))) − (vol*‘(𝐴 ∩ (𝐵[,]𝑦)))) ≤ (𝑧𝑦))
15893, 157eqbrtrd 5074 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((𝐹𝑧) − (𝐹𝑦)) ≤ (𝑧𝑦))
15995, 109resubcld 11060 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((𝐹𝑧) − (𝐹𝑦)) ∈ ℝ)
160 simplr 768 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝑒 ∈ ℝ+)
161160rpred 12424 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝑒 ∈ ℝ)
162 lelttr 10723 . . . . . . . . . . . 12 ((((𝐹𝑧) − (𝐹𝑦)) ∈ ℝ ∧ (𝑧𝑦) ∈ ℝ ∧ 𝑒 ∈ ℝ) → ((((𝐹𝑧) − (𝐹𝑦)) ≤ (𝑧𝑦) ∧ (𝑧𝑦) < 𝑒) → ((𝐹𝑧) − (𝐹𝑦)) < 𝑒))
163159, 111, 161, 162syl3anc 1368 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((((𝐹𝑧) − (𝐹𝑦)) ≤ (𝑧𝑦) ∧ (𝑧𝑦) < 𝑒) → ((𝐹𝑧) − (𝐹𝑦)) < 𝑒))
164158, 163mpand 694 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((𝑧𝑦) < 𝑒 → ((𝐹𝑧) − (𝐹𝑦)) < 𝑒))
165 abssubge0 14683 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) → (abs‘(𝑧𝑦)) = (𝑧𝑦))
166165adantl 485 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (abs‘(𝑧𝑦)) = (𝑧𝑦))
167166breq1d 5062 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((abs‘(𝑧𝑦)) < 𝑒 ↔ (𝑧𝑦) < 𝑒))
168 ovolss 24085 . . . . . . . . . . . . . 14 (((𝐴 ∩ (𝐵[,]𝑦)) ⊆ (𝐴 ∩ (𝐵[,]𝑧)) ∧ (𝐴 ∩ (𝐵[,]𝑧)) ⊆ ℝ) → (vol*‘(𝐴 ∩ (𝐵[,]𝑦))) ≤ (vol*‘(𝐴 ∩ (𝐵[,]𝑧))))
169102, 104, 168syl2anc 587 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝐴 ∩ (𝐵[,]𝑦))) ≤ (vol*‘(𝐴 ∩ (𝐵[,]𝑧))))
170169, 92, 773brtr4d 5084 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑦) ≤ (𝐹𝑧))
171109, 95, 170abssubge0d 14787 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (abs‘((𝐹𝑧) − (𝐹𝑦))) = ((𝐹𝑧) − (𝐹𝑦)))
172171breq1d 5062 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒 ↔ ((𝐹𝑧) − (𝐹𝑦)) < 𝑒))
173164, 167, 1723imtr4d 297 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
17431, 41, 42, 60, 173wlogle 11165 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
175174anassrs 471 . . . . . . 7 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
176175ralrimiva 3177 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ) → ∀𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
177176anasss 470 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑒 ∈ ℝ+𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
178177ancom2s 649 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+)) → ∀𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
179 breq2 5056 . . . . 5 (𝑑 = 𝑒 → ((abs‘(𝑧𝑦)) < 𝑑 ↔ (abs‘(𝑧𝑦)) < 𝑒))
180179rspceaimv 3614 . . . 4 ((𝑒 ∈ ℝ+ ∧ ∀𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
18121, 178, 180syl2anc 587 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+)) → ∃𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
182181ralrimivva 3186 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
183 ax-resscn 10586 . . 3 ℝ ⊆ ℂ
184 elcncf2 23491 . . 3 ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝐹 ∈ (ℝ–cn→ℝ) ↔ (𝐹:ℝ⟶ℝ ∧ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))))
185183, 183, 184mp2an 691 . 2 (𝐹 ∈ (ℝ–cn→ℝ) ↔ (𝐹:ℝ⟶ℝ ∧ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒)))
18620, 182, 185sylanbrc 586 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → 𝐹 ∈ (ℝ–cn→ℝ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ∀wral 3133  ∃wrex 3134   ∪ cun 3917   ∩ cin 3918   ⊆ wss 3919   class class class wbr 5052   ↦ cmpt 5132  dom cdm 5542  ⟶wf 6339  ‘cfv 6343  (class class class)co 7145  ℂcc 10527  ℝcr 10528   + caddc 10532   < clt 10667   ≤ cle 10668   − cmin 10862  ℝ+crp 12382  [,]cicc 12734  abscabs 14589  –cn→ccncf 23477  vol*covol 24062  volcvol 24063 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-inf2 9095  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7399  df-om 7571  df-1st 7679  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-2o 8093  df-oadd 8096  df-er 8279  df-map 8398  df-pm 8399  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-fi 8866  df-sup 8897  df-inf 8898  df-oi 8965  df-dju 9321  df-card 9359  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11693  df-3 11694  df-n0 11891  df-z 11975  df-uz 12237  df-q 12342  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ico 12737  df-icc 12738  df-fz 12891  df-fzo 13034  df-fl 13162  df-seq 13370  df-exp 13431  df-hash 13692  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-rlim 14842  df-sum 15039  df-rest 16692  df-topgen 16713  df-psmet 20530  df-xmet 20531  df-met 20532  df-bl 20533  df-mopn 20534  df-top 21495  df-topon 21512  df-bases 21547  df-cmp 21988  df-cncf 23479  df-ovol 24064  df-vol 24065 This theorem is referenced by:  volivth  24207
 Copyright terms: Public domain W3C validator