MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volcn Structured version   Visualization version   GIF version

Theorem volcn 24779
Description: The function formed by restricting a measurable set to a closed interval with a varying endpoint produces an increasing continuous function on the reals. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypothesis
Ref Expression
volcn.1 𝐹 = (𝑥 ∈ ℝ ↦ (vol‘(𝐴 ∩ (𝐵[,]𝑥))))
Assertion
Ref Expression
volcn ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → 𝐹 ∈ (ℝ–cn→ℝ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem volcn
Dummy variables 𝑢 𝑒 𝑣 𝑦 𝑧 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 764 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ dom vol)
2 iccmbl 24739 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵[,]𝑥) ∈ dom vol)
32adantll 711 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐵[,]𝑥) ∈ dom vol)
4 inmbl 24715 . . . . . 6 ((𝐴 ∈ dom vol ∧ (𝐵[,]𝑥) ∈ dom vol) → (𝐴 ∩ (𝐵[,]𝑥)) ∈ dom vol)
51, 3, 4syl2anc 584 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐴 ∩ (𝐵[,]𝑥)) ∈ dom vol)
6 mblvol 24703 . . . . 5 ((𝐴 ∩ (𝐵[,]𝑥)) ∈ dom vol → (vol‘(𝐴 ∩ (𝐵[,]𝑥))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑥))))
75, 6syl 17 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol‘(𝐴 ∩ (𝐵[,]𝑥))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑥))))
8 inss2 4164 . . . . 5 (𝐴 ∩ (𝐵[,]𝑥)) ⊆ (𝐵[,]𝑥)
9 mblss 24704 . . . . . 6 ((𝐵[,]𝑥) ∈ dom vol → (𝐵[,]𝑥) ⊆ ℝ)
103, 9syl 17 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐵[,]𝑥) ⊆ ℝ)
11 mblvol 24703 . . . . . . 7 ((𝐵[,]𝑥) ∈ dom vol → (vol‘(𝐵[,]𝑥)) = (vol*‘(𝐵[,]𝑥)))
123, 11syl 17 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol‘(𝐵[,]𝑥)) = (vol*‘(𝐵[,]𝑥)))
13 iccvolcl 24740 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (vol‘(𝐵[,]𝑥)) ∈ ℝ)
1413adantll 711 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol‘(𝐵[,]𝑥)) ∈ ℝ)
1512, 14eqeltrrd 2841 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol*‘(𝐵[,]𝑥)) ∈ ℝ)
16 ovolsscl 24659 . . . . 5 (((𝐴 ∩ (𝐵[,]𝑥)) ⊆ (𝐵[,]𝑥) ∧ (𝐵[,]𝑥) ⊆ ℝ ∧ (vol*‘(𝐵[,]𝑥)) ∈ ℝ) → (vol*‘(𝐴 ∩ (𝐵[,]𝑥))) ∈ ℝ)
178, 10, 15, 16mp3an2i 1465 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol*‘(𝐴 ∩ (𝐵[,]𝑥))) ∈ ℝ)
187, 17eqeltrd 2840 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (vol‘(𝐴 ∩ (𝐵[,]𝑥))) ∈ ℝ)
19 volcn.1 . . 3 𝐹 = (𝑥 ∈ ℝ ↦ (vol‘(𝐴 ∩ (𝐵[,]𝑥))))
2018, 19fmptd 6997 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
21 simprr 770 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+)) → 𝑒 ∈ ℝ+)
22 oveq12 7293 . . . . . . . . . . . . 13 ((𝑣 = 𝑧𝑢 = 𝑦) → (𝑣𝑢) = (𝑧𝑦))
2322ancoms 459 . . . . . . . . . . . 12 ((𝑢 = 𝑦𝑣 = 𝑧) → (𝑣𝑢) = (𝑧𝑦))
2423fveq2d 6787 . . . . . . . . . . 11 ((𝑢 = 𝑦𝑣 = 𝑧) → (abs‘(𝑣𝑢)) = (abs‘(𝑧𝑦)))
2524breq1d 5085 . . . . . . . . . 10 ((𝑢 = 𝑦𝑣 = 𝑧) → ((abs‘(𝑣𝑢)) < 𝑒 ↔ (abs‘(𝑧𝑦)) < 𝑒))
26 fveq2 6783 . . . . . . . . . . . . 13 (𝑣 = 𝑧 → (𝐹𝑣) = (𝐹𝑧))
27 fveq2 6783 . . . . . . . . . . . . 13 (𝑢 = 𝑦 → (𝐹𝑢) = (𝐹𝑦))
2826, 27oveqan12rd 7304 . . . . . . . . . . . 12 ((𝑢 = 𝑦𝑣 = 𝑧) → ((𝐹𝑣) − (𝐹𝑢)) = ((𝐹𝑧) − (𝐹𝑦)))
2928fveq2d 6787 . . . . . . . . . . 11 ((𝑢 = 𝑦𝑣 = 𝑧) → (abs‘((𝐹𝑣) − (𝐹𝑢))) = (abs‘((𝐹𝑧) − (𝐹𝑦))))
3029breq1d 5085 . . . . . . . . . 10 ((𝑢 = 𝑦𝑣 = 𝑧) → ((abs‘((𝐹𝑣) − (𝐹𝑢))) < 𝑒 ↔ (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
3125, 30imbi12d 345 . . . . . . . . 9 ((𝑢 = 𝑦𝑣 = 𝑧) → (((abs‘(𝑣𝑢)) < 𝑒 → (abs‘((𝐹𝑣) − (𝐹𝑢))) < 𝑒) ↔ ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒)))
32 oveq12 7293 . . . . . . . . . . . . 13 ((𝑣 = 𝑦𝑢 = 𝑧) → (𝑣𝑢) = (𝑦𝑧))
3332ancoms 459 . . . . . . . . . . . 12 ((𝑢 = 𝑧𝑣 = 𝑦) → (𝑣𝑢) = (𝑦𝑧))
3433fveq2d 6787 . . . . . . . . . . 11 ((𝑢 = 𝑧𝑣 = 𝑦) → (abs‘(𝑣𝑢)) = (abs‘(𝑦𝑧)))
3534breq1d 5085 . . . . . . . . . 10 ((𝑢 = 𝑧𝑣 = 𝑦) → ((abs‘(𝑣𝑢)) < 𝑒 ↔ (abs‘(𝑦𝑧)) < 𝑒))
36 fveq2 6783 . . . . . . . . . . . . 13 (𝑣 = 𝑦 → (𝐹𝑣) = (𝐹𝑦))
37 fveq2 6783 . . . . . . . . . . . . 13 (𝑢 = 𝑧 → (𝐹𝑢) = (𝐹𝑧))
3836, 37oveqan12rd 7304 . . . . . . . . . . . 12 ((𝑢 = 𝑧𝑣 = 𝑦) → ((𝐹𝑣) − (𝐹𝑢)) = ((𝐹𝑦) − (𝐹𝑧)))
3938fveq2d 6787 . . . . . . . . . . 11 ((𝑢 = 𝑧𝑣 = 𝑦) → (abs‘((𝐹𝑣) − (𝐹𝑢))) = (abs‘((𝐹𝑦) − (𝐹𝑧))))
4039breq1d 5085 . . . . . . . . . 10 ((𝑢 = 𝑧𝑣 = 𝑦) → ((abs‘((𝐹𝑣) − (𝐹𝑢))) < 𝑒 ↔ (abs‘((𝐹𝑦) − (𝐹𝑧))) < 𝑒))
4135, 40imbi12d 345 . . . . . . . . 9 ((𝑢 = 𝑧𝑣 = 𝑦) → (((abs‘(𝑣𝑢)) < 𝑒 → (abs‘((𝐹𝑣) − (𝐹𝑢))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑒 → (abs‘((𝐹𝑦) − (𝐹𝑧))) < 𝑒)))
42 ssidd 3945 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) → ℝ ⊆ ℝ)
43 recn 10970 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
44 recn 10970 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
45 abssub 15047 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
4643, 44, 45syl2anr 597 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
4746adantl 482 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
4847breq1d 5085 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘(𝑧𝑦)) < 𝑒 ↔ (abs‘(𝑦𝑧)) < 𝑒))
4920adantr 481 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) → 𝐹:ℝ⟶ℝ)
50 ffvelrn 6968 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶ℝ ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
51 ffvelrn 6968 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶ℝ ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℝ)
5250, 51anim12dan 619 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶ℝ ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ))
5349, 52sylan 580 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ))
54 recn 10970 . . . . . . . . . . . . 13 ((𝐹𝑧) ∈ ℝ → (𝐹𝑧) ∈ ℂ)
55 recn 10970 . . . . . . . . . . . . 13 ((𝐹𝑦) ∈ ℝ → (𝐹𝑦) ∈ ℂ)
56 abssub 15047 . . . . . . . . . . . . 13 (((𝐹𝑧) ∈ ℂ ∧ (𝐹𝑦) ∈ ℂ) → (abs‘((𝐹𝑧) − (𝐹𝑦))) = (abs‘((𝐹𝑦) − (𝐹𝑧))))
5754, 55, 56syl2anr 597 . . . . . . . . . . . 12 (((𝐹𝑦) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (abs‘((𝐹𝑧) − (𝐹𝑦))) = (abs‘((𝐹𝑦) − (𝐹𝑧))))
5853, 57syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘((𝐹𝑧) − (𝐹𝑦))) = (abs‘((𝐹𝑦) − (𝐹𝑧))))
5958breq1d 5085 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒 ↔ (abs‘((𝐹𝑦) − (𝐹𝑧))) < 𝑒))
6048, 59imbi12d 345 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑒 → (abs‘((𝐹𝑦) − (𝐹𝑧))) < 𝑒)))
61 simpr2 1194 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝑧 ∈ ℝ)
62 oveq2 7292 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝐵[,]𝑥) = (𝐵[,]𝑧))
6362ineq2d 4147 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝐴 ∩ (𝐵[,]𝑥)) = (𝐴 ∩ (𝐵[,]𝑧)))
6463fveq2d 6787 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (vol‘(𝐴 ∩ (𝐵[,]𝑥))) = (vol‘(𝐴 ∩ (𝐵[,]𝑧))))
65 fvex 6796 . . . . . . . . . . . . . . . 16 (vol‘(𝐴 ∩ (𝐵[,]𝑧))) ∈ V
6664, 19, 65fvmpt 6884 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ → (𝐹𝑧) = (vol‘(𝐴 ∩ (𝐵[,]𝑧))))
6761, 66syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑧) = (vol‘(𝐴 ∩ (𝐵[,]𝑧))))
68 simplll 772 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝐴 ∈ dom vol)
69 simplr 766 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) → 𝐵 ∈ ℝ)
7069adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝐵 ∈ ℝ)
71 iccmbl 24739 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐵[,]𝑧) ∈ dom vol)
7270, 61, 71syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐵[,]𝑧) ∈ dom vol)
73 inmbl 24715 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ dom vol ∧ (𝐵[,]𝑧) ∈ dom vol) → (𝐴 ∩ (𝐵[,]𝑧)) ∈ dom vol)
7468, 72, 73syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑧)) ∈ dom vol)
75 mblvol 24703 . . . . . . . . . . . . . . 15 ((𝐴 ∩ (𝐵[,]𝑧)) ∈ dom vol → (vol‘(𝐴 ∩ (𝐵[,]𝑧))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑧))))
7674, 75syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol‘(𝐴 ∩ (𝐵[,]𝑧))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑧))))
7767, 76eqtrd 2779 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑧) = (vol*‘(𝐴 ∩ (𝐵[,]𝑧))))
78 simpr1 1193 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝑦 ∈ ℝ)
79 oveq2 7292 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝐵[,]𝑥) = (𝐵[,]𝑦))
8079ineq2d 4147 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝐴 ∩ (𝐵[,]𝑥)) = (𝐴 ∩ (𝐵[,]𝑦)))
8180fveq2d 6787 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (vol‘(𝐴 ∩ (𝐵[,]𝑥))) = (vol‘(𝐴 ∩ (𝐵[,]𝑦))))
82 fvex 6796 . . . . . . . . . . . . . . . 16 (vol‘(𝐴 ∩ (𝐵[,]𝑦))) ∈ V
8381, 19, 82fvmpt 6884 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → (𝐹𝑦) = (vol‘(𝐴 ∩ (𝐵[,]𝑦))))
8478, 83syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑦) = (vol‘(𝐴 ∩ (𝐵[,]𝑦))))
85 simp1 1135 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) → 𝑦 ∈ ℝ)
86 iccmbl 24739 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐵[,]𝑦) ∈ dom vol)
8769, 85, 86syl2an 596 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐵[,]𝑦) ∈ dom vol)
88 inmbl 24715 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ dom vol ∧ (𝐵[,]𝑦) ∈ dom vol) → (𝐴 ∩ (𝐵[,]𝑦)) ∈ dom vol)
8968, 87, 88syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑦)) ∈ dom vol)
90 mblvol 24703 . . . . . . . . . . . . . . 15 ((𝐴 ∩ (𝐵[,]𝑦)) ∈ dom vol → (vol‘(𝐴 ∩ (𝐵[,]𝑦))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑦))))
9189, 90syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol‘(𝐴 ∩ (𝐵[,]𝑦))) = (vol*‘(𝐴 ∩ (𝐵[,]𝑦))))
9284, 91eqtrd 2779 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑦) = (vol*‘(𝐴 ∩ (𝐵[,]𝑦))))
9377, 92oveq12d 7302 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((𝐹𝑧) − (𝐹𝑦)) = ((vol*‘(𝐴 ∩ (𝐵[,]𝑧))) − (vol*‘(𝐴 ∩ (𝐵[,]𝑦)))))
9449adantr 481 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝐹:ℝ⟶ℝ)
9594, 61ffvelrnd 6971 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑧) ∈ ℝ)
9677, 95eqeltrrd 2841 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝐴 ∩ (𝐵[,]𝑧))) ∈ ℝ)
9770leidd 11550 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝐵𝐵)
98 simpr3 1195 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝑦𝑧)
99 iccss 13156 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (𝐵𝐵𝑦𝑧)) → (𝐵[,]𝑦) ⊆ (𝐵[,]𝑧))
10070, 61, 97, 98, 99syl22anc 836 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐵[,]𝑦) ⊆ (𝐵[,]𝑧))
101 sslin 4169 . . . . . . . . . . . . . . . . . 18 ((𝐵[,]𝑦) ⊆ (𝐵[,]𝑧) → (𝐴 ∩ (𝐵[,]𝑦)) ⊆ (𝐴 ∩ (𝐵[,]𝑧)))
102100, 101syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑦)) ⊆ (𝐴 ∩ (𝐵[,]𝑧)))
103 mblss 24704 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∩ (𝐵[,]𝑧)) ∈ dom vol → (𝐴 ∩ (𝐵[,]𝑧)) ⊆ ℝ)
10474, 103syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑧)) ⊆ ℝ)
105102, 104sstrd 3932 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑦)) ⊆ ℝ)
106 iccssre 13170 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦[,]𝑧) ⊆ ℝ)
10778, 61, 106syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝑦[,]𝑧) ⊆ ℝ)
108105, 107unssd 4121 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)) ⊆ ℝ)
10994, 78ffvelrnd 6971 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑦) ∈ ℝ)
11092, 109eqeltrrd 2841 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝐴 ∩ (𝐵[,]𝑦))) ∈ ℝ)
11161, 78resubcld 11412 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝑧𝑦) ∈ ℝ)
112110, 111readdcld 11013 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦)) ∈ ℝ)
113 ovolicc 24696 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) → (vol*‘(𝑦[,]𝑧)) = (𝑧𝑦))
114113adantl 482 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝑦[,]𝑧)) = (𝑧𝑦))
115114, 111eqeltrd 2840 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝑦[,]𝑧)) ∈ ℝ)
116 ovolun 24672 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∩ (𝐵[,]𝑦)) ⊆ ℝ ∧ (vol*‘(𝐴 ∩ (𝐵[,]𝑦))) ∈ ℝ) ∧ ((𝑦[,]𝑧) ⊆ ℝ ∧ (vol*‘(𝑦[,]𝑧)) ∈ ℝ)) → (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (vol*‘(𝑦[,]𝑧))))
117105, 110, 107, 115, 116syl22anc 836 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (vol*‘(𝑦[,]𝑧))))
118114oveq2d 7300 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (vol*‘(𝑦[,]𝑧))) = ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦)))
119117, 118breqtrd 5101 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦)))
120 ovollecl 24656 . . . . . . . . . . . . . . 15 ((((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)) ⊆ ℝ ∧ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦)) ∈ ℝ ∧ (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦))) → (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ∈ ℝ)
121108, 112, 119, 120syl3anc 1370 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))) ∈ ℝ)
12270adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝐵 ∈ ℝ)
12361adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝑧 ∈ ℝ)
12478adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝑦 ∈ ℝ)
125 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝐵𝑦)
12698adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝑦𝑧)
127 simp2 1136 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) → 𝑧 ∈ ℝ)
128 elicc2 13153 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 ∈ (𝐵[,]𝑧) ↔ (𝑦 ∈ ℝ ∧ 𝐵𝑦𝑦𝑧)))
12969, 127, 128syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝑦 ∈ (𝐵[,]𝑧) ↔ (𝑦 ∈ ℝ ∧ 𝐵𝑦𝑦𝑧)))
130129adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → (𝑦 ∈ (𝐵[,]𝑧) ↔ (𝑦 ∈ ℝ ∧ 𝐵𝑦𝑦𝑧)))
131124, 125, 126, 130mpbir3and 1341 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → 𝑦 ∈ (𝐵[,]𝑧))
132 iccsplit 13226 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ∈ (𝐵[,]𝑧)) → (𝐵[,]𝑧) = ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
133122, 123, 131, 132syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → (𝐵[,]𝑧) = ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
134 eqimss 3978 . . . . . . . . . . . . . . . . . . 19 ((𝐵[,]𝑧) = ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)) → (𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
135133, 134syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝐵𝑦) → (𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
13678adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
13761adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → 𝑧 ∈ ℝ)
138 simpr 485 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → 𝑦𝐵)
139137leidd 11550 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → 𝑧𝑧)
140 iccss 13156 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (𝑦𝐵𝑧𝑧)) → (𝐵[,]𝑧) ⊆ (𝑦[,]𝑧))
141136, 137, 138, 139, 140syl22anc 836 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → (𝐵[,]𝑧) ⊆ (𝑦[,]𝑧))
142 ssun4 4110 . . . . . . . . . . . . . . . . . . 19 ((𝐵[,]𝑧) ⊆ (𝑦[,]𝑧) → (𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
143141, 142syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) ∧ 𝑦𝐵) → (𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
14470, 78, 135, 143lecasei 11090 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)))
145 sslin 4169 . . . . . . . . . . . . . . . . 17 ((𝐵[,]𝑧) ⊆ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧)) → (𝐴 ∩ (𝐵[,]𝑧)) ⊆ (𝐴 ∩ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧))))
146144, 145syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑧)) ⊆ (𝐴 ∩ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧))))
147 indi 4208 . . . . . . . . . . . . . . . . 17 (𝐴 ∩ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧))) = ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝐴 ∩ (𝑦[,]𝑧)))
148 inss2 4164 . . . . . . . . . . . . . . . . . 18 (𝐴 ∩ (𝑦[,]𝑧)) ⊆ (𝑦[,]𝑧)
149 unss2 4116 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∩ (𝑦[,]𝑧)) ⊆ (𝑦[,]𝑧) → ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝐴 ∩ (𝑦[,]𝑧))) ⊆ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)))
150148, 149ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝐴 ∩ (𝑦[,]𝑧))) ⊆ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))
151147, 150eqsstri 3956 . . . . . . . . . . . . . . . 16 (𝐴 ∩ ((𝐵[,]𝑦) ∪ (𝑦[,]𝑧))) ⊆ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))
152146, 151sstrdi 3934 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐴 ∩ (𝐵[,]𝑧)) ⊆ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)))
153 ovolss 24658 . . . . . . . . . . . . . . 15 (((𝐴 ∩ (𝐵[,]𝑧)) ⊆ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)) ∧ ((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧)) ⊆ ℝ) → (vol*‘(𝐴 ∩ (𝐵[,]𝑧))) ≤ (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))))
154152, 108, 153syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝐴 ∩ (𝐵[,]𝑧))) ≤ (vol*‘((𝐴 ∩ (𝐵[,]𝑦)) ∪ (𝑦[,]𝑧))))
15596, 121, 112, 154, 119letrd 11141 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝐴 ∩ (𝐵[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦)))
15696, 110, 111lesubadd2d 11583 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (((vol*‘(𝐴 ∩ (𝐵[,]𝑧))) − (vol*‘(𝐴 ∩ (𝐵[,]𝑦)))) ≤ (𝑧𝑦) ↔ (vol*‘(𝐴 ∩ (𝐵[,]𝑧))) ≤ ((vol*‘(𝐴 ∩ (𝐵[,]𝑦))) + (𝑧𝑦))))
157155, 156mpbird 256 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((vol*‘(𝐴 ∩ (𝐵[,]𝑧))) − (vol*‘(𝐴 ∩ (𝐵[,]𝑦)))) ≤ (𝑧𝑦))
15893, 157eqbrtrd 5097 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((𝐹𝑧) − (𝐹𝑦)) ≤ (𝑧𝑦))
15995, 109resubcld 11412 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((𝐹𝑧) − (𝐹𝑦)) ∈ ℝ)
160 simplr 766 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝑒 ∈ ℝ+)
161160rpred 12781 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → 𝑒 ∈ ℝ)
162 lelttr 11074 . . . . . . . . . . . 12 ((((𝐹𝑧) − (𝐹𝑦)) ∈ ℝ ∧ (𝑧𝑦) ∈ ℝ ∧ 𝑒 ∈ ℝ) → ((((𝐹𝑧) − (𝐹𝑦)) ≤ (𝑧𝑦) ∧ (𝑧𝑦) < 𝑒) → ((𝐹𝑧) − (𝐹𝑦)) < 𝑒))
163159, 111, 161, 162syl3anc 1370 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((((𝐹𝑧) − (𝐹𝑦)) ≤ (𝑧𝑦) ∧ (𝑧𝑦) < 𝑒) → ((𝐹𝑧) − (𝐹𝑦)) < 𝑒))
164158, 163mpand 692 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((𝑧𝑦) < 𝑒 → ((𝐹𝑧) − (𝐹𝑦)) < 𝑒))
165 abssubge0 15048 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) → (abs‘(𝑧𝑦)) = (𝑧𝑦))
166165adantl 482 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (abs‘(𝑧𝑦)) = (𝑧𝑦))
167166breq1d 5085 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((abs‘(𝑧𝑦)) < 𝑒 ↔ (𝑧𝑦) < 𝑒))
168 ovolss 24658 . . . . . . . . . . . . . 14 (((𝐴 ∩ (𝐵[,]𝑦)) ⊆ (𝐴 ∩ (𝐵[,]𝑧)) ∧ (𝐴 ∩ (𝐵[,]𝑧)) ⊆ ℝ) → (vol*‘(𝐴 ∩ (𝐵[,]𝑦))) ≤ (vol*‘(𝐴 ∩ (𝐵[,]𝑧))))
169102, 104, 168syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (vol*‘(𝐴 ∩ (𝐵[,]𝑦))) ≤ (vol*‘(𝐴 ∩ (𝐵[,]𝑧))))
170169, 92, 773brtr4d 5107 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (𝐹𝑦) ≤ (𝐹𝑧))
171109, 95, 170abssubge0d 15152 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → (abs‘((𝐹𝑧) − (𝐹𝑦))) = ((𝐹𝑧) − (𝐹𝑦)))
172171breq1d 5085 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒 ↔ ((𝐹𝑧) − (𝐹𝑦)) < 𝑒))
173164, 167, 1723imtr4d 294 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧)) → ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
17431, 41, 42, 60, 173wlogle 11517 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
175174anassrs 468 . . . . . . 7 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
176175ralrimiva 3104 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ) → ∀𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
177176anasss 467 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑒 ∈ ℝ+𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
178177ancom2s 647 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+)) → ∀𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
179 breq2 5079 . . . . 5 (𝑑 = 𝑒 → ((abs‘(𝑧𝑦)) < 𝑑 ↔ (abs‘(𝑧𝑦)) < 𝑒))
180179rspceaimv 3566 . . . 4 ((𝑒 ∈ ℝ+ ∧ ∀𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
18121, 178, 180syl2anc 584 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+)) → ∃𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
182181ralrimivva 3124 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))
183 ax-resscn 10937 . . 3 ℝ ⊆ ℂ
184 elcncf2 24062 . . 3 ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝐹 ∈ (ℝ–cn→ℝ) ↔ (𝐹:ℝ⟶ℝ ∧ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒))))
185183, 183, 184mp2an 689 . 2 (𝐹 ∈ (ℝ–cn→ℝ) ↔ (𝐹:ℝ⟶ℝ ∧ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑦))) < 𝑒)))
18620, 182, 185sylanbrc 583 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → 𝐹 ∈ (ℝ–cn→ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2107  wral 3065  wrex 3066  cun 3886  cin 3887  wss 3888   class class class wbr 5075  cmpt 5158  dom cdm 5590  wf 6433  cfv 6437  (class class class)co 7284  cc 10878  cr 10879   + caddc 10883   < clt 11018  cle 11019  cmin 11214  +crp 12739  [,]cicc 13091  abscabs 14954  cnccncf 24048  vol*covol 24635  volcvol 24636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-map 8626  df-pm 8627  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-dju 9668  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-n0 12243  df-z 12329  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-seq 13731  df-exp 13792  df-hash 14054  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-clim 15206  df-rlim 15207  df-sum 15407  df-rest 17142  df-topgen 17163  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-top 22052  df-topon 22069  df-bases 22105  df-cmp 22547  df-cncf 24050  df-ovol 24637  df-vol 24638
This theorem is referenced by:  volivth  24780
  Copyright terms: Public domain W3C validator