MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspr Structured version   Visualization version   GIF version

Theorem sspr 4763
Description: The subsets of a pair. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
sspr (𝐴 ⊆ {𝐵, 𝐶} ↔ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})))

Proof of Theorem sspr
StepHypRef Expression
1 uncom 4083 . . . . 5 (∅ ∪ {𝐵, 𝐶}) = ({𝐵, 𝐶} ∪ ∅)
2 un0 4321 . . . . 5 ({𝐵, 𝐶} ∪ ∅) = {𝐵, 𝐶}
31, 2eqtri 2766 . . . 4 (∅ ∪ {𝐵, 𝐶}) = {𝐵, 𝐶}
43sseq2i 3946 . . 3 (𝐴 ⊆ (∅ ∪ {𝐵, 𝐶}) ↔ 𝐴 ⊆ {𝐵, 𝐶})
5 0ss 4327 . . . 4 ∅ ⊆ 𝐴
65biantrur 530 . . 3 (𝐴 ⊆ (∅ ∪ {𝐵, 𝐶}) ↔ (∅ ⊆ 𝐴𝐴 ⊆ (∅ ∪ {𝐵, 𝐶})))
74, 6bitr3i 276 . 2 (𝐴 ⊆ {𝐵, 𝐶} ↔ (∅ ⊆ 𝐴𝐴 ⊆ (∅ ∪ {𝐵, 𝐶})))
8 ssunpr 4762 . 2 ((∅ ⊆ 𝐴𝐴 ⊆ (∅ ∪ {𝐵, 𝐶})) ↔ ((𝐴 = ∅ ∨ 𝐴 = (∅ ∪ {𝐵})) ∨ (𝐴 = (∅ ∪ {𝐶}) ∨ 𝐴 = (∅ ∪ {𝐵, 𝐶}))))
9 uncom 4083 . . . . . 6 (∅ ∪ {𝐵}) = ({𝐵} ∪ ∅)
10 un0 4321 . . . . . 6 ({𝐵} ∪ ∅) = {𝐵}
119, 10eqtri 2766 . . . . 5 (∅ ∪ {𝐵}) = {𝐵}
1211eqeq2i 2751 . . . 4 (𝐴 = (∅ ∪ {𝐵}) ↔ 𝐴 = {𝐵})
1312orbi2i 909 . . 3 ((𝐴 = ∅ ∨ 𝐴 = (∅ ∪ {𝐵})) ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))
14 uncom 4083 . . . . . 6 (∅ ∪ {𝐶}) = ({𝐶} ∪ ∅)
15 un0 4321 . . . . . 6 ({𝐶} ∪ ∅) = {𝐶}
1614, 15eqtri 2766 . . . . 5 (∅ ∪ {𝐶}) = {𝐶}
1716eqeq2i 2751 . . . 4 (𝐴 = (∅ ∪ {𝐶}) ↔ 𝐴 = {𝐶})
183eqeq2i 2751 . . . 4 (𝐴 = (∅ ∪ {𝐵, 𝐶}) ↔ 𝐴 = {𝐵, 𝐶})
1917, 18orbi12i 911 . . 3 ((𝐴 = (∅ ∪ {𝐶}) ∨ 𝐴 = (∅ ∪ {𝐵, 𝐶})) ↔ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶}))
2013, 19orbi12i 911 . 2 (((𝐴 = ∅ ∨ 𝐴 = (∅ ∪ {𝐵})) ∨ (𝐴 = (∅ ∪ {𝐶}) ∨ 𝐴 = (∅ ∪ {𝐵, 𝐶}))) ↔ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})))
217, 8, 203bitri 296 1 (𝐴 ⊆ {𝐵, 𝐶} ↔ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wo 843   = wceq 1539  cun 3881  wss 3883  c0 4253  {csn 4558  {cpr 4560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559  df-pr 4561
This theorem is referenced by:  sstp  4764  pwpr  4830  propssopi  5416  indistopon  22059  bj-prmoore  35213
  Copyright terms: Public domain W3C validator