MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sstp Structured version   Visualization version   GIF version

Theorem sstp 4764
Description: The subsets of an unordered triple. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
sstp (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))))

Proof of Theorem sstp
StepHypRef Expression
1 df-tp 4563 . . 3 {𝐵, 𝐶, 𝐷} = ({𝐵, 𝐶} ∪ {𝐷})
21sseq2i 3946 . 2 (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ 𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷}))
3 0ss 4327 . . 3 ∅ ⊆ 𝐴
43biantrur 530 . 2 (𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷}) ↔ (∅ ⊆ 𝐴𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷})))
5 ssunsn2 4757 . . 3 ((∅ ⊆ 𝐴𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷})) ↔ ((∅ ⊆ 𝐴𝐴 ⊆ {𝐵, 𝐶}) ∨ ((∅ ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷}))))
63biantrur 530 . . . . 5 (𝐴 ⊆ {𝐵, 𝐶} ↔ (∅ ⊆ 𝐴𝐴 ⊆ {𝐵, 𝐶}))
7 sspr 4763 . . . . 5 (𝐴 ⊆ {𝐵, 𝐶} ↔ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})))
86, 7bitr3i 276 . . . 4 ((∅ ⊆ 𝐴𝐴 ⊆ {𝐵, 𝐶}) ↔ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})))
9 uncom 4083 . . . . . . . 8 (∅ ∪ {𝐷}) = ({𝐷} ∪ ∅)
10 un0 4321 . . . . . . . 8 ({𝐷} ∪ ∅) = {𝐷}
119, 10eqtri 2766 . . . . . . 7 (∅ ∪ {𝐷}) = {𝐷}
1211sseq1i 3945 . . . . . 6 ((∅ ∪ {𝐷}) ⊆ 𝐴 ↔ {𝐷} ⊆ 𝐴)
13 uncom 4083 . . . . . . 7 ({𝐵, 𝐶} ∪ {𝐷}) = ({𝐷} ∪ {𝐵, 𝐶})
1413sseq2i 3946 . . . . . 6 (𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷}) ↔ 𝐴 ⊆ ({𝐷} ∪ {𝐵, 𝐶}))
1512, 14anbi12i 626 . . . . 5 (((∅ ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷})) ↔ ({𝐷} ⊆ 𝐴𝐴 ⊆ ({𝐷} ∪ {𝐵, 𝐶})))
16 ssunpr 4762 . . . . 5 (({𝐷} ⊆ 𝐴𝐴 ⊆ ({𝐷} ∪ {𝐵, 𝐶})) ↔ ((𝐴 = {𝐷} ∨ 𝐴 = ({𝐷} ∪ {𝐵})) ∨ (𝐴 = ({𝐷} ∪ {𝐶}) ∨ 𝐴 = ({𝐷} ∪ {𝐵, 𝐶}))))
17 uncom 4083 . . . . . . . . 9 ({𝐷} ∪ {𝐵}) = ({𝐵} ∪ {𝐷})
18 df-pr 4561 . . . . . . . . 9 {𝐵, 𝐷} = ({𝐵} ∪ {𝐷})
1917, 18eqtr4i 2769 . . . . . . . 8 ({𝐷} ∪ {𝐵}) = {𝐵, 𝐷}
2019eqeq2i 2751 . . . . . . 7 (𝐴 = ({𝐷} ∪ {𝐵}) ↔ 𝐴 = {𝐵, 𝐷})
2120orbi2i 909 . . . . . 6 ((𝐴 = {𝐷} ∨ 𝐴 = ({𝐷} ∪ {𝐵})) ↔ (𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}))
22 uncom 4083 . . . . . . . . 9 ({𝐷} ∪ {𝐶}) = ({𝐶} ∪ {𝐷})
23 df-pr 4561 . . . . . . . . 9 {𝐶, 𝐷} = ({𝐶} ∪ {𝐷})
2422, 23eqtr4i 2769 . . . . . . . 8 ({𝐷} ∪ {𝐶}) = {𝐶, 𝐷}
2524eqeq2i 2751 . . . . . . 7 (𝐴 = ({𝐷} ∪ {𝐶}) ↔ 𝐴 = {𝐶, 𝐷})
261, 13eqtr2i 2767 . . . . . . . 8 ({𝐷} ∪ {𝐵, 𝐶}) = {𝐵, 𝐶, 𝐷}
2726eqeq2i 2751 . . . . . . 7 (𝐴 = ({𝐷} ∪ {𝐵, 𝐶}) ↔ 𝐴 = {𝐵, 𝐶, 𝐷})
2825, 27orbi12i 911 . . . . . 6 ((𝐴 = ({𝐷} ∪ {𝐶}) ∨ 𝐴 = ({𝐷} ∪ {𝐵, 𝐶})) ↔ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))
2921, 28orbi12i 911 . . . . 5 (((𝐴 = {𝐷} ∨ 𝐴 = ({𝐷} ∪ {𝐵})) ∨ (𝐴 = ({𝐷} ∪ {𝐶}) ∨ 𝐴 = ({𝐷} ∪ {𝐵, 𝐶}))) ↔ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷})))
3015, 16, 293bitri 296 . . . 4 (((∅ ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷})) ↔ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷})))
318, 30orbi12i 911 . . 3 (((∅ ⊆ 𝐴𝐴 ⊆ {𝐵, 𝐶}) ∨ ((∅ ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷}))) ↔ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))))
325, 31bitri 274 . 2 ((∅ ⊆ 𝐴𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷})) ↔ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))))
332, 4, 323bitri 296 1 (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wo 843   = wceq 1539  cun 3881  wss 3883  c0 4253  {csn 4558  {cpr 4560  {ctp 4562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559  df-pr 4561  df-tp 4563
This theorem is referenced by:  pwtp  4831
  Copyright terms: Public domain W3C validator