Proof of Theorem sstp
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-tp 4631 | . . 3
⊢ {𝐵, 𝐶, 𝐷} = ({𝐵, 𝐶} ∪ {𝐷}) | 
| 2 | 1 | sseq2i 4013 | . 2
⊢ (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ 𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷})) | 
| 3 |  | 0ss 4400 | . . 3
⊢ ∅
⊆ 𝐴 | 
| 4 | 3 | biantrur 530 | . 2
⊢ (𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷}) ↔ (∅ ⊆ 𝐴 ∧ 𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷}))) | 
| 5 |  | ssunsn2 4827 | . . 3
⊢ ((∅
⊆ 𝐴 ∧ 𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷})) ↔ ((∅ ⊆ 𝐴 ∧ 𝐴 ⊆ {𝐵, 𝐶}) ∨ ((∅ ∪ {𝐷}) ⊆ 𝐴 ∧ 𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷})))) | 
| 6 | 3 | biantrur 530 | . . . . 5
⊢ (𝐴 ⊆ {𝐵, 𝐶} ↔ (∅ ⊆ 𝐴 ∧ 𝐴 ⊆ {𝐵, 𝐶})) | 
| 7 |  | sspr 4835 | . . . . 5
⊢ (𝐴 ⊆ {𝐵, 𝐶} ↔ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶}))) | 
| 8 | 6, 7 | bitr3i 277 | . . . 4
⊢ ((∅
⊆ 𝐴 ∧ 𝐴 ⊆ {𝐵, 𝐶}) ↔ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶}))) | 
| 9 |  | uncom 4158 | . . . . . . . 8
⊢ (∅
∪ {𝐷}) = ({𝐷} ∪
∅) | 
| 10 |  | un0 4394 | . . . . . . . 8
⊢ ({𝐷} ∪ ∅) = {𝐷} | 
| 11 | 9, 10 | eqtri 2765 | . . . . . . 7
⊢ (∅
∪ {𝐷}) = {𝐷} | 
| 12 | 11 | sseq1i 4012 | . . . . . 6
⊢ ((∅
∪ {𝐷}) ⊆ 𝐴 ↔ {𝐷} ⊆ 𝐴) | 
| 13 |  | uncom 4158 | . . . . . . 7
⊢ ({𝐵, 𝐶} ∪ {𝐷}) = ({𝐷} ∪ {𝐵, 𝐶}) | 
| 14 | 13 | sseq2i 4013 | . . . . . 6
⊢ (𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷}) ↔ 𝐴 ⊆ ({𝐷} ∪ {𝐵, 𝐶})) | 
| 15 | 12, 14 | anbi12i 628 | . . . . 5
⊢
(((∅ ∪ {𝐷}) ⊆ 𝐴 ∧ 𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷})) ↔ ({𝐷} ⊆ 𝐴 ∧ 𝐴 ⊆ ({𝐷} ∪ {𝐵, 𝐶}))) | 
| 16 |  | ssunpr 4834 | . . . . 5
⊢ (({𝐷} ⊆ 𝐴 ∧ 𝐴 ⊆ ({𝐷} ∪ {𝐵, 𝐶})) ↔ ((𝐴 = {𝐷} ∨ 𝐴 = ({𝐷} ∪ {𝐵})) ∨ (𝐴 = ({𝐷} ∪ {𝐶}) ∨ 𝐴 = ({𝐷} ∪ {𝐵, 𝐶})))) | 
| 17 |  | uncom 4158 | . . . . . . . . 9
⊢ ({𝐷} ∪ {𝐵}) = ({𝐵} ∪ {𝐷}) | 
| 18 |  | df-pr 4629 | . . . . . . . . 9
⊢ {𝐵, 𝐷} = ({𝐵} ∪ {𝐷}) | 
| 19 | 17, 18 | eqtr4i 2768 | . . . . . . . 8
⊢ ({𝐷} ∪ {𝐵}) = {𝐵, 𝐷} | 
| 20 | 19 | eqeq2i 2750 | . . . . . . 7
⊢ (𝐴 = ({𝐷} ∪ {𝐵}) ↔ 𝐴 = {𝐵, 𝐷}) | 
| 21 | 20 | orbi2i 913 | . . . . . 6
⊢ ((𝐴 = {𝐷} ∨ 𝐴 = ({𝐷} ∪ {𝐵})) ↔ (𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷})) | 
| 22 |  | uncom 4158 | . . . . . . . . 9
⊢ ({𝐷} ∪ {𝐶}) = ({𝐶} ∪ {𝐷}) | 
| 23 |  | df-pr 4629 | . . . . . . . . 9
⊢ {𝐶, 𝐷} = ({𝐶} ∪ {𝐷}) | 
| 24 | 22, 23 | eqtr4i 2768 | . . . . . . . 8
⊢ ({𝐷} ∪ {𝐶}) = {𝐶, 𝐷} | 
| 25 | 24 | eqeq2i 2750 | . . . . . . 7
⊢ (𝐴 = ({𝐷} ∪ {𝐶}) ↔ 𝐴 = {𝐶, 𝐷}) | 
| 26 | 1, 13 | eqtr2i 2766 | . . . . . . . 8
⊢ ({𝐷} ∪ {𝐵, 𝐶}) = {𝐵, 𝐶, 𝐷} | 
| 27 | 26 | eqeq2i 2750 | . . . . . . 7
⊢ (𝐴 = ({𝐷} ∪ {𝐵, 𝐶}) ↔ 𝐴 = {𝐵, 𝐶, 𝐷}) | 
| 28 | 25, 27 | orbi12i 915 | . . . . . 6
⊢ ((𝐴 = ({𝐷} ∪ {𝐶}) ∨ 𝐴 = ({𝐷} ∪ {𝐵, 𝐶})) ↔ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷})) | 
| 29 | 21, 28 | orbi12i 915 | . . . . 5
⊢ (((𝐴 = {𝐷} ∨ 𝐴 = ({𝐷} ∪ {𝐵})) ∨ (𝐴 = ({𝐷} ∪ {𝐶}) ∨ 𝐴 = ({𝐷} ∪ {𝐵, 𝐶}))) ↔ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))) | 
| 30 | 15, 16, 29 | 3bitri 297 | . . . 4
⊢
(((∅ ∪ {𝐷}) ⊆ 𝐴 ∧ 𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷})) ↔ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))) | 
| 31 | 8, 30 | orbi12i 915 | . . 3
⊢
(((∅ ⊆ 𝐴
∧ 𝐴 ⊆ {𝐵, 𝐶}) ∨ ((∅ ∪ {𝐷}) ⊆ 𝐴 ∧ 𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷}))) ↔ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷})))) | 
| 32 | 5, 31 | bitri 275 | . 2
⊢ ((∅
⊆ 𝐴 ∧ 𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷})) ↔ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷})))) | 
| 33 | 2, 4, 32 | 3bitri 297 | 1
⊢ (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷})))) |