Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sstp Structured version   Visualization version   GIF version

Theorem sstp 4766
 Description: The subsets of a triple. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
sstp (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))))

Proof of Theorem sstp
StepHypRef Expression
1 df-tp 4569 . . 3 {𝐵, 𝐶, 𝐷} = ({𝐵, 𝐶} ∪ {𝐷})
21sseq2i 4000 . 2 (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ 𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷}))
3 0ss 4354 . . 3 ∅ ⊆ 𝐴
43biantrur 531 . 2 (𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷}) ↔ (∅ ⊆ 𝐴𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷})))
5 ssunsn2 4759 . . 3 ((∅ ⊆ 𝐴𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷})) ↔ ((∅ ⊆ 𝐴𝐴 ⊆ {𝐵, 𝐶}) ∨ ((∅ ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷}))))
63biantrur 531 . . . . 5 (𝐴 ⊆ {𝐵, 𝐶} ↔ (∅ ⊆ 𝐴𝐴 ⊆ {𝐵, 𝐶}))
7 sspr 4765 . . . . 5 (𝐴 ⊆ {𝐵, 𝐶} ↔ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})))
86, 7bitr3i 278 . . . 4 ((∅ ⊆ 𝐴𝐴 ⊆ {𝐵, 𝐶}) ↔ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})))
9 uncom 4133 . . . . . . . 8 (∅ ∪ {𝐷}) = ({𝐷} ∪ ∅)
10 un0 4348 . . . . . . . 8 ({𝐷} ∪ ∅) = {𝐷}
119, 10eqtri 2849 . . . . . . 7 (∅ ∪ {𝐷}) = {𝐷}
1211sseq1i 3999 . . . . . 6 ((∅ ∪ {𝐷}) ⊆ 𝐴 ↔ {𝐷} ⊆ 𝐴)
13 uncom 4133 . . . . . . 7 ({𝐵, 𝐶} ∪ {𝐷}) = ({𝐷} ∪ {𝐵, 𝐶})
1413sseq2i 4000 . . . . . 6 (𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷}) ↔ 𝐴 ⊆ ({𝐷} ∪ {𝐵, 𝐶}))
1512, 14anbi12i 626 . . . . 5 (((∅ ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷})) ↔ ({𝐷} ⊆ 𝐴𝐴 ⊆ ({𝐷} ∪ {𝐵, 𝐶})))
16 ssunpr 4764 . . . . 5 (({𝐷} ⊆ 𝐴𝐴 ⊆ ({𝐷} ∪ {𝐵, 𝐶})) ↔ ((𝐴 = {𝐷} ∨ 𝐴 = ({𝐷} ∪ {𝐵})) ∨ (𝐴 = ({𝐷} ∪ {𝐶}) ∨ 𝐴 = ({𝐷} ∪ {𝐵, 𝐶}))))
17 uncom 4133 . . . . . . . . 9 ({𝐷} ∪ {𝐵}) = ({𝐵} ∪ {𝐷})
18 df-pr 4567 . . . . . . . . 9 {𝐵, 𝐷} = ({𝐵} ∪ {𝐷})
1917, 18eqtr4i 2852 . . . . . . . 8 ({𝐷} ∪ {𝐵}) = {𝐵, 𝐷}
2019eqeq2i 2839 . . . . . . 7 (𝐴 = ({𝐷} ∪ {𝐵}) ↔ 𝐴 = {𝐵, 𝐷})
2120orbi2i 908 . . . . . 6 ((𝐴 = {𝐷} ∨ 𝐴 = ({𝐷} ∪ {𝐵})) ↔ (𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}))
22 uncom 4133 . . . . . . . . 9 ({𝐷} ∪ {𝐶}) = ({𝐶} ∪ {𝐷})
23 df-pr 4567 . . . . . . . . 9 {𝐶, 𝐷} = ({𝐶} ∪ {𝐷})
2422, 23eqtr4i 2852 . . . . . . . 8 ({𝐷} ∪ {𝐶}) = {𝐶, 𝐷}
2524eqeq2i 2839 . . . . . . 7 (𝐴 = ({𝐷} ∪ {𝐶}) ↔ 𝐴 = {𝐶, 𝐷})
261, 13eqtr2i 2850 . . . . . . . 8 ({𝐷} ∪ {𝐵, 𝐶}) = {𝐵, 𝐶, 𝐷}
2726eqeq2i 2839 . . . . . . 7 (𝐴 = ({𝐷} ∪ {𝐵, 𝐶}) ↔ 𝐴 = {𝐵, 𝐶, 𝐷})
2825, 27orbi12i 910 . . . . . 6 ((𝐴 = ({𝐷} ∪ {𝐶}) ∨ 𝐴 = ({𝐷} ∪ {𝐵, 𝐶})) ↔ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))
2921, 28orbi12i 910 . . . . 5 (((𝐴 = {𝐷} ∨ 𝐴 = ({𝐷} ∪ {𝐵})) ∨ (𝐴 = ({𝐷} ∪ {𝐶}) ∨ 𝐴 = ({𝐷} ∪ {𝐵, 𝐶}))) ↔ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷})))
3015, 16, 293bitri 298 . . . 4 (((∅ ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷})) ↔ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷})))
318, 30orbi12i 910 . . 3 (((∅ ⊆ 𝐴𝐴 ⊆ {𝐵, 𝐶}) ∨ ((∅ ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷}))) ↔ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))))
325, 31bitri 276 . 2 ((∅ ⊆ 𝐴𝐴 ⊆ ({𝐵, 𝐶} ∪ {𝐷})) ↔ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))))
332, 4, 323bitri 298 1 (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 207   ∧ wa 396   ∨ wo 843   = wceq 1530   ∪ cun 3938   ⊆ wss 3940  ∅c0 4295  {csn 4564  {cpr 4566  {ctp 4568 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-v 3502  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-sn 4565  df-pr 4567  df-tp 4569 This theorem is referenced by:  pwtp  4832
 Copyright terms: Public domain W3C validator