Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swrdf1 Structured version   Visualization version   GIF version

Theorem swrdf1 32878
Description: Condition for a subword to be injective. (Contributed by Thierry Arnoux, 12-Dec-2023.)
Hypotheses
Ref Expression
swrdf1.w (𝜑𝑊 ∈ Word 𝐷)
swrdf1.m (𝜑𝑀 ∈ (0...𝑁))
swrdf1.n (𝜑𝑁 ∈ (0...(♯‘𝑊)))
swrdf1.1 (𝜑𝑊:dom 𝑊1-1𝐷)
Assertion
Ref Expression
swrdf1 (𝜑 → (𝑊 substr ⟨𝑀, 𝑁⟩):dom (𝑊 substr ⟨𝑀, 𝑁⟩)–1-1𝐷)

Proof of Theorem swrdf1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 swrdf1.w . . . 4 (𝜑𝑊 ∈ Word 𝐷)
2 swrdf1.m . . . 4 (𝜑𝑀 ∈ (0...𝑁))
3 swrdf1.n . . . 4 (𝜑𝑁 ∈ (0...(♯‘𝑊)))
4 swrdf 14615 . . . 4 ((𝑊 ∈ Word 𝐷𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨𝑀, 𝑁⟩):(0..^(𝑁𝑀))⟶𝐷)
51, 2, 3, 4syl3anc 1373 . . 3 (𝜑 → (𝑊 substr ⟨𝑀, 𝑁⟩):(0..^(𝑁𝑀))⟶𝐷)
65ffdmd 6718 . 2 (𝜑 → (𝑊 substr ⟨𝑀, 𝑁⟩):dom (𝑊 substr ⟨𝑀, 𝑁⟩)⟶𝐷)
7 fzossz 13640 . . . . . . . 8 (0..^(𝑁𝑀)) ⊆ ℤ
8 simpllr 775 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩))
95fdmd 6698 . . . . . . . . . 10 (𝜑 → dom (𝑊 substr ⟨𝑀, 𝑁⟩) = (0..^(𝑁𝑀)))
109ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → dom (𝑊 substr ⟨𝑀, 𝑁⟩) = (0..^(𝑁𝑀)))
118, 10eleqtrd 2830 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑖 ∈ (0..^(𝑁𝑀)))
127, 11sselid 3944 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑖 ∈ ℤ)
1312zcnd 12639 . . . . . 6 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑖 ∈ ℂ)
14 simplr 768 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩))
1514, 10eleqtrd 2830 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑗 ∈ (0..^(𝑁𝑀)))
167, 15sselid 3944 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑗 ∈ ℤ)
1716zcnd 12639 . . . . . 6 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑗 ∈ ℂ)
182elfzelzd 13486 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
1918ad3antrrr 730 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑀 ∈ ℤ)
2019zcnd 12639 . . . . . 6 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑀 ∈ ℂ)
21 swrdf1.1 . . . . . . . 8 (𝜑𝑊:dom 𝑊1-1𝐷)
2221ad3antrrr 730 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑊:dom 𝑊1-1𝐷)
23 elfzuz 13481 . . . . . . . . . . . 12 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ (ℤ‘0))
24 fzoss1 13647 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘0) → (𝑀..^𝑁) ⊆ (0..^𝑁))
252, 23, 243syl 18 . . . . . . . . . . 11 (𝜑 → (𝑀..^𝑁) ⊆ (0..^𝑁))
26 elfzuz3 13482 . . . . . . . . . . . 12 (𝑁 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝑁))
27 fzoss2 13648 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝑊)))
283, 26, 273syl 18 . . . . . . . . . . 11 (𝜑 → (0..^𝑁) ⊆ (0..^(♯‘𝑊)))
2925, 28sstrd 3957 . . . . . . . . . 10 (𝜑 → (𝑀..^𝑁) ⊆ (0..^(♯‘𝑊)))
3029ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑀..^𝑁) ⊆ (0..^(♯‘𝑊)))
313elfzelzd 13486 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
3231ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑁 ∈ ℤ)
33 fzoaddel2 13681 . . . . . . . . . 10 ((𝑖 ∈ (0..^(𝑁𝑀)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑖 + 𝑀) ∈ (𝑀..^𝑁))
3411, 32, 19, 33syl3anc 1373 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑖 + 𝑀) ∈ (𝑀..^𝑁))
3530, 34sseldd 3947 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑖 + 𝑀) ∈ (0..^(♯‘𝑊)))
36 wrddm 14486 . . . . . . . . . 10 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
371, 36syl 17 . . . . . . . . 9 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
3837ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → dom 𝑊 = (0..^(♯‘𝑊)))
3935, 38eleqtrrd 2831 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑖 + 𝑀) ∈ dom 𝑊)
40 fzoaddel2 13681 . . . . . . . . . 10 ((𝑗 ∈ (0..^(𝑁𝑀)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑗 + 𝑀) ∈ (𝑀..^𝑁))
4115, 32, 19, 40syl3anc 1373 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑗 + 𝑀) ∈ (𝑀..^𝑁))
4230, 41sseldd 3947 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑗 + 𝑀) ∈ (0..^(♯‘𝑊)))
4342, 38eleqtrrd 2831 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑗 + 𝑀) ∈ dom 𝑊)
44 simpr 484 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗))
451ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑊 ∈ Word 𝐷)
462ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑀 ∈ (0...𝑁))
473ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑁 ∈ (0...(♯‘𝑊)))
48 swrdfv 14613 . . . . . . . . 9 (((𝑊 ∈ Word 𝐷𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = (𝑊‘(𝑖 + 𝑀)))
4945, 46, 47, 11, 48syl31anc 1375 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = (𝑊‘(𝑖 + 𝑀)))
50 swrdfv 14613 . . . . . . . . 9 (((𝑊 ∈ Word 𝐷𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (0..^(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = (𝑊‘(𝑗 + 𝑀)))
5145, 46, 47, 15, 50syl31anc 1375 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = (𝑊‘(𝑗 + 𝑀)))
5244, 49, 513eqtr3d 2772 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑊‘(𝑖 + 𝑀)) = (𝑊‘(𝑗 + 𝑀)))
53 f1veqaeq 7231 . . . . . . . . 9 ((𝑊:dom 𝑊1-1𝐷 ∧ ((𝑖 + 𝑀) ∈ dom 𝑊 ∧ (𝑗 + 𝑀) ∈ dom 𝑊)) → ((𝑊‘(𝑖 + 𝑀)) = (𝑊‘(𝑗 + 𝑀)) → (𝑖 + 𝑀) = (𝑗 + 𝑀)))
5453anassrs 467 . . . . . . . 8 (((𝑊:dom 𝑊1-1𝐷 ∧ (𝑖 + 𝑀) ∈ dom 𝑊) ∧ (𝑗 + 𝑀) ∈ dom 𝑊) → ((𝑊‘(𝑖 + 𝑀)) = (𝑊‘(𝑗 + 𝑀)) → (𝑖 + 𝑀) = (𝑗 + 𝑀)))
5554imp 406 . . . . . . 7 ((((𝑊:dom 𝑊1-1𝐷 ∧ (𝑖 + 𝑀) ∈ dom 𝑊) ∧ (𝑗 + 𝑀) ∈ dom 𝑊) ∧ (𝑊‘(𝑖 + 𝑀)) = (𝑊‘(𝑗 + 𝑀))) → (𝑖 + 𝑀) = (𝑗 + 𝑀))
5622, 39, 43, 52, 55syl1111anc 840 . . . . . 6 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑖 + 𝑀) = (𝑗 + 𝑀))
5713, 17, 20, 56addcan2ad 11380 . . . . 5 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑖 = 𝑗)
5857ex 412 . . . 4 (((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) → (((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) → 𝑖 = 𝑗))
5958anasss 466 . . 3 ((𝜑 ∧ (𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩))) → (((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) → 𝑖 = 𝑗))
6059ralrimivva 3180 . 2 (𝜑 → ∀𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)∀𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)(((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) → 𝑖 = 𝑗))
61 dff13 7229 . 2 ((𝑊 substr ⟨𝑀, 𝑁⟩):dom (𝑊 substr ⟨𝑀, 𝑁⟩)–1-1𝐷 ↔ ((𝑊 substr ⟨𝑀, 𝑁⟩):dom (𝑊 substr ⟨𝑀, 𝑁⟩)⟶𝐷 ∧ ∀𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)∀𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)(((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) → 𝑖 = 𝑗)))
626, 60, 61sylanbrc 583 1 (𝜑 → (𝑊 substr ⟨𝑀, 𝑁⟩):dom (𝑊 substr ⟨𝑀, 𝑁⟩)–1-1𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3914  cop 4595  dom cdm 5638  wf 6507  1-1wf1 6508  cfv 6511  (class class class)co 7387  0cc0 11068   + caddc 11071  cmin 11405  cz 12529  cuz 12793  ...cfz 13468  ..^cfzo 13615  chash 14295  Word cword 14478   substr csubstr 14605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-substr 14606
This theorem is referenced by:  cycpmco2f1  33081
  Copyright terms: Public domain W3C validator