Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swrdf1 Structured version   Visualization version   GIF version

Theorem swrdf1 32932
Description: Condition for a subword to be injective. (Contributed by Thierry Arnoux, 12-Dec-2023.)
Hypotheses
Ref Expression
swrdf1.w (𝜑𝑊 ∈ Word 𝐷)
swrdf1.m (𝜑𝑀 ∈ (0...𝑁))
swrdf1.n (𝜑𝑁 ∈ (0...(♯‘𝑊)))
swrdf1.1 (𝜑𝑊:dom 𝑊1-1𝐷)
Assertion
Ref Expression
swrdf1 (𝜑 → (𝑊 substr ⟨𝑀, 𝑁⟩):dom (𝑊 substr ⟨𝑀, 𝑁⟩)–1-1𝐷)

Proof of Theorem swrdf1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 swrdf1.w . . . 4 (𝜑𝑊 ∈ Word 𝐷)
2 swrdf1.m . . . 4 (𝜑𝑀 ∈ (0...𝑁))
3 swrdf1.n . . . 4 (𝜑𝑁 ∈ (0...(♯‘𝑊)))
4 swrdf 14668 . . . 4 ((𝑊 ∈ Word 𝐷𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨𝑀, 𝑁⟩):(0..^(𝑁𝑀))⟶𝐷)
51, 2, 3, 4syl3anc 1373 . . 3 (𝜑 → (𝑊 substr ⟨𝑀, 𝑁⟩):(0..^(𝑁𝑀))⟶𝐷)
65ffdmd 6736 . 2 (𝜑 → (𝑊 substr ⟨𝑀, 𝑁⟩):dom (𝑊 substr ⟨𝑀, 𝑁⟩)⟶𝐷)
7 fzossz 13696 . . . . . . . 8 (0..^(𝑁𝑀)) ⊆ ℤ
8 simpllr 775 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩))
95fdmd 6716 . . . . . . . . . 10 (𝜑 → dom (𝑊 substr ⟨𝑀, 𝑁⟩) = (0..^(𝑁𝑀)))
109ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → dom (𝑊 substr ⟨𝑀, 𝑁⟩) = (0..^(𝑁𝑀)))
118, 10eleqtrd 2836 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑖 ∈ (0..^(𝑁𝑀)))
127, 11sselid 3956 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑖 ∈ ℤ)
1312zcnd 12698 . . . . . 6 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑖 ∈ ℂ)
14 simplr 768 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩))
1514, 10eleqtrd 2836 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑗 ∈ (0..^(𝑁𝑀)))
167, 15sselid 3956 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑗 ∈ ℤ)
1716zcnd 12698 . . . . . 6 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑗 ∈ ℂ)
182elfzelzd 13542 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
1918ad3antrrr 730 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑀 ∈ ℤ)
2019zcnd 12698 . . . . . 6 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑀 ∈ ℂ)
21 swrdf1.1 . . . . . . . 8 (𝜑𝑊:dom 𝑊1-1𝐷)
2221ad3antrrr 730 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑊:dom 𝑊1-1𝐷)
23 elfzuz 13537 . . . . . . . . . . . 12 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ (ℤ‘0))
24 fzoss1 13703 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘0) → (𝑀..^𝑁) ⊆ (0..^𝑁))
252, 23, 243syl 18 . . . . . . . . . . 11 (𝜑 → (𝑀..^𝑁) ⊆ (0..^𝑁))
26 elfzuz3 13538 . . . . . . . . . . . 12 (𝑁 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝑁))
27 fzoss2 13704 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝑊)))
283, 26, 273syl 18 . . . . . . . . . . 11 (𝜑 → (0..^𝑁) ⊆ (0..^(♯‘𝑊)))
2925, 28sstrd 3969 . . . . . . . . . 10 (𝜑 → (𝑀..^𝑁) ⊆ (0..^(♯‘𝑊)))
3029ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑀..^𝑁) ⊆ (0..^(♯‘𝑊)))
313elfzelzd 13542 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
3231ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑁 ∈ ℤ)
33 fzoaddel2 13736 . . . . . . . . . 10 ((𝑖 ∈ (0..^(𝑁𝑀)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑖 + 𝑀) ∈ (𝑀..^𝑁))
3411, 32, 19, 33syl3anc 1373 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑖 + 𝑀) ∈ (𝑀..^𝑁))
3530, 34sseldd 3959 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑖 + 𝑀) ∈ (0..^(♯‘𝑊)))
36 wrddm 14539 . . . . . . . . . 10 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
371, 36syl 17 . . . . . . . . 9 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
3837ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → dom 𝑊 = (0..^(♯‘𝑊)))
3935, 38eleqtrrd 2837 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑖 + 𝑀) ∈ dom 𝑊)
40 fzoaddel2 13736 . . . . . . . . . 10 ((𝑗 ∈ (0..^(𝑁𝑀)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑗 + 𝑀) ∈ (𝑀..^𝑁))
4115, 32, 19, 40syl3anc 1373 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑗 + 𝑀) ∈ (𝑀..^𝑁))
4230, 41sseldd 3959 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑗 + 𝑀) ∈ (0..^(♯‘𝑊)))
4342, 38eleqtrrd 2837 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑗 + 𝑀) ∈ dom 𝑊)
44 simpr 484 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗))
451ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑊 ∈ Word 𝐷)
462ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑀 ∈ (0...𝑁))
473ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑁 ∈ (0...(♯‘𝑊)))
48 swrdfv 14666 . . . . . . . . 9 (((𝑊 ∈ Word 𝐷𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = (𝑊‘(𝑖 + 𝑀)))
4945, 46, 47, 11, 48syl31anc 1375 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = (𝑊‘(𝑖 + 𝑀)))
50 swrdfv 14666 . . . . . . . . 9 (((𝑊 ∈ Word 𝐷𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (0..^(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = (𝑊‘(𝑗 + 𝑀)))
5145, 46, 47, 15, 50syl31anc 1375 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = (𝑊‘(𝑗 + 𝑀)))
5244, 49, 513eqtr3d 2778 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑊‘(𝑖 + 𝑀)) = (𝑊‘(𝑗 + 𝑀)))
53 f1veqaeq 7249 . . . . . . . . 9 ((𝑊:dom 𝑊1-1𝐷 ∧ ((𝑖 + 𝑀) ∈ dom 𝑊 ∧ (𝑗 + 𝑀) ∈ dom 𝑊)) → ((𝑊‘(𝑖 + 𝑀)) = (𝑊‘(𝑗 + 𝑀)) → (𝑖 + 𝑀) = (𝑗 + 𝑀)))
5453anassrs 467 . . . . . . . 8 (((𝑊:dom 𝑊1-1𝐷 ∧ (𝑖 + 𝑀) ∈ dom 𝑊) ∧ (𝑗 + 𝑀) ∈ dom 𝑊) → ((𝑊‘(𝑖 + 𝑀)) = (𝑊‘(𝑗 + 𝑀)) → (𝑖 + 𝑀) = (𝑗 + 𝑀)))
5554imp 406 . . . . . . 7 ((((𝑊:dom 𝑊1-1𝐷 ∧ (𝑖 + 𝑀) ∈ dom 𝑊) ∧ (𝑗 + 𝑀) ∈ dom 𝑊) ∧ (𝑊‘(𝑖 + 𝑀)) = (𝑊‘(𝑗 + 𝑀))) → (𝑖 + 𝑀) = (𝑗 + 𝑀))
5622, 39, 43, 52, 55syl1111anc 840 . . . . . 6 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑖 + 𝑀) = (𝑗 + 𝑀))
5713, 17, 20, 56addcan2ad 11441 . . . . 5 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑖 = 𝑗)
5857ex 412 . . . 4 (((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) → (((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) → 𝑖 = 𝑗))
5958anasss 466 . . 3 ((𝜑 ∧ (𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩))) → (((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) → 𝑖 = 𝑗))
6059ralrimivva 3187 . 2 (𝜑 → ∀𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)∀𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)(((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) → 𝑖 = 𝑗))
61 dff13 7247 . 2 ((𝑊 substr ⟨𝑀, 𝑁⟩):dom (𝑊 substr ⟨𝑀, 𝑁⟩)–1-1𝐷 ↔ ((𝑊 substr ⟨𝑀, 𝑁⟩):dom (𝑊 substr ⟨𝑀, 𝑁⟩)⟶𝐷 ∧ ∀𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)∀𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)(((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) → 𝑖 = 𝑗)))
626, 60, 61sylanbrc 583 1 (𝜑 → (𝑊 substr ⟨𝑀, 𝑁⟩):dom (𝑊 substr ⟨𝑀, 𝑁⟩)–1-1𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  wss 3926  cop 4607  dom cdm 5654  wf 6527  1-1wf1 6528  cfv 6531  (class class class)co 7405  0cc0 11129   + caddc 11132  cmin 11466  cz 12588  cuz 12852  ...cfz 13524  ..^cfzo 13671  chash 14348  Word cword 14531   substr csubstr 14658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-substr 14659
This theorem is referenced by:  cycpmco2f1  33135
  Copyright terms: Public domain W3C validator