Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swrdf1 Structured version   Visualization version   GIF version

Theorem swrdf1 31130
Description: Condition for a subword to be injective. (Contributed by Thierry Arnoux, 12-Dec-2023.)
Hypotheses
Ref Expression
swrdf1.w (𝜑𝑊 ∈ Word 𝐷)
swrdf1.m (𝜑𝑀 ∈ (0...𝑁))
swrdf1.n (𝜑𝑁 ∈ (0...(♯‘𝑊)))
swrdf1.1 (𝜑𝑊:dom 𝑊1-1𝐷)
Assertion
Ref Expression
swrdf1 (𝜑 → (𝑊 substr ⟨𝑀, 𝑁⟩):dom (𝑊 substr ⟨𝑀, 𝑁⟩)–1-1𝐷)

Proof of Theorem swrdf1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 swrdf1.w . . . 4 (𝜑𝑊 ∈ Word 𝐷)
2 swrdf1.m . . . 4 (𝜑𝑀 ∈ (0...𝑁))
3 swrdf1.n . . . 4 (𝜑𝑁 ∈ (0...(♯‘𝑊)))
4 swrdf 14291 . . . 4 ((𝑊 ∈ Word 𝐷𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨𝑀, 𝑁⟩):(0..^(𝑁𝑀))⟶𝐷)
51, 2, 3, 4syl3anc 1369 . . 3 (𝜑 → (𝑊 substr ⟨𝑀, 𝑁⟩):(0..^(𝑁𝑀))⟶𝐷)
65ffdmd 6615 . 2 (𝜑 → (𝑊 substr ⟨𝑀, 𝑁⟩):dom (𝑊 substr ⟨𝑀, 𝑁⟩)⟶𝐷)
7 fzossz 13335 . . . . . . . 8 (0..^(𝑁𝑀)) ⊆ ℤ
8 simpllr 772 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩))
95fdmd 6595 . . . . . . . . . 10 (𝜑 → dom (𝑊 substr ⟨𝑀, 𝑁⟩) = (0..^(𝑁𝑀)))
109ad3antrrr 726 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → dom (𝑊 substr ⟨𝑀, 𝑁⟩) = (0..^(𝑁𝑀)))
118, 10eleqtrd 2841 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑖 ∈ (0..^(𝑁𝑀)))
127, 11sselid 3915 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑖 ∈ ℤ)
1312zcnd 12356 . . . . . 6 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑖 ∈ ℂ)
14 simplr 765 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩))
1514, 10eleqtrd 2841 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑗 ∈ (0..^(𝑁𝑀)))
167, 15sselid 3915 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑗 ∈ ℤ)
1716zcnd 12356 . . . . . 6 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑗 ∈ ℂ)
182elfzelzd 13186 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
1918ad3antrrr 726 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑀 ∈ ℤ)
2019zcnd 12356 . . . . . 6 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑀 ∈ ℂ)
21 swrdf1.1 . . . . . . . 8 (𝜑𝑊:dom 𝑊1-1𝐷)
2221ad3antrrr 726 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑊:dom 𝑊1-1𝐷)
23 elfzuz 13181 . . . . . . . . . . . 12 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ (ℤ‘0))
24 fzoss1 13342 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘0) → (𝑀..^𝑁) ⊆ (0..^𝑁))
252, 23, 243syl 18 . . . . . . . . . . 11 (𝜑 → (𝑀..^𝑁) ⊆ (0..^𝑁))
26 elfzuz3 13182 . . . . . . . . . . . 12 (𝑁 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝑁))
27 fzoss2 13343 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝑊)))
283, 26, 273syl 18 . . . . . . . . . . 11 (𝜑 → (0..^𝑁) ⊆ (0..^(♯‘𝑊)))
2925, 28sstrd 3927 . . . . . . . . . 10 (𝜑 → (𝑀..^𝑁) ⊆ (0..^(♯‘𝑊)))
3029ad3antrrr 726 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑀..^𝑁) ⊆ (0..^(♯‘𝑊)))
313elfzelzd 13186 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
3231ad3antrrr 726 . . . . . . . . . 10 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑁 ∈ ℤ)
33 fzoaddel2 13371 . . . . . . . . . 10 ((𝑖 ∈ (0..^(𝑁𝑀)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑖 + 𝑀) ∈ (𝑀..^𝑁))
3411, 32, 19, 33syl3anc 1369 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑖 + 𝑀) ∈ (𝑀..^𝑁))
3530, 34sseldd 3918 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑖 + 𝑀) ∈ (0..^(♯‘𝑊)))
36 wrddm 14152 . . . . . . . . . 10 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
371, 36syl 17 . . . . . . . . 9 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
3837ad3antrrr 726 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → dom 𝑊 = (0..^(♯‘𝑊)))
3935, 38eleqtrrd 2842 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑖 + 𝑀) ∈ dom 𝑊)
40 fzoaddel2 13371 . . . . . . . . . 10 ((𝑗 ∈ (0..^(𝑁𝑀)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑗 + 𝑀) ∈ (𝑀..^𝑁))
4115, 32, 19, 40syl3anc 1369 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑗 + 𝑀) ∈ (𝑀..^𝑁))
4230, 41sseldd 3918 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑗 + 𝑀) ∈ (0..^(♯‘𝑊)))
4342, 38eleqtrrd 2842 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑗 + 𝑀) ∈ dom 𝑊)
44 simpr 484 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗))
451ad3antrrr 726 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑊 ∈ Word 𝐷)
462ad3antrrr 726 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑀 ∈ (0...𝑁))
473ad3antrrr 726 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑁 ∈ (0...(♯‘𝑊)))
48 swrdfv 14289 . . . . . . . . 9 (((𝑊 ∈ Word 𝐷𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = (𝑊‘(𝑖 + 𝑀)))
4945, 46, 47, 11, 48syl31anc 1371 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = (𝑊‘(𝑖 + 𝑀)))
50 swrdfv 14289 . . . . . . . . 9 (((𝑊 ∈ Word 𝐷𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (0..^(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = (𝑊‘(𝑗 + 𝑀)))
5145, 46, 47, 15, 50syl31anc 1371 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = (𝑊‘(𝑗 + 𝑀)))
5244, 49, 513eqtr3d 2786 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑊‘(𝑖 + 𝑀)) = (𝑊‘(𝑗 + 𝑀)))
53 f1veqaeq 7111 . . . . . . . . 9 ((𝑊:dom 𝑊1-1𝐷 ∧ ((𝑖 + 𝑀) ∈ dom 𝑊 ∧ (𝑗 + 𝑀) ∈ dom 𝑊)) → ((𝑊‘(𝑖 + 𝑀)) = (𝑊‘(𝑗 + 𝑀)) → (𝑖 + 𝑀) = (𝑗 + 𝑀)))
5453anassrs 467 . . . . . . . 8 (((𝑊:dom 𝑊1-1𝐷 ∧ (𝑖 + 𝑀) ∈ dom 𝑊) ∧ (𝑗 + 𝑀) ∈ dom 𝑊) → ((𝑊‘(𝑖 + 𝑀)) = (𝑊‘(𝑗 + 𝑀)) → (𝑖 + 𝑀) = (𝑗 + 𝑀)))
5554imp 406 . . . . . . 7 ((((𝑊:dom 𝑊1-1𝐷 ∧ (𝑖 + 𝑀) ∈ dom 𝑊) ∧ (𝑗 + 𝑀) ∈ dom 𝑊) ∧ (𝑊‘(𝑖 + 𝑀)) = (𝑊‘(𝑗 + 𝑀))) → (𝑖 + 𝑀) = (𝑗 + 𝑀))
5622, 39, 43, 52, 55syl1111anc 836 . . . . . 6 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑖 + 𝑀) = (𝑗 + 𝑀))
5713, 17, 20, 56addcan2ad 11111 . . . . 5 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑖 = 𝑗)
5857ex 412 . . . 4 (((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) → (((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) → 𝑖 = 𝑗))
5958anasss 466 . . 3 ((𝜑 ∧ (𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩))) → (((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) → 𝑖 = 𝑗))
6059ralrimivva 3114 . 2 (𝜑 → ∀𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)∀𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)(((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) → 𝑖 = 𝑗))
61 dff13 7109 . 2 ((𝑊 substr ⟨𝑀, 𝑁⟩):dom (𝑊 substr ⟨𝑀, 𝑁⟩)–1-1𝐷 ↔ ((𝑊 substr ⟨𝑀, 𝑁⟩):dom (𝑊 substr ⟨𝑀, 𝑁⟩)⟶𝐷 ∧ ∀𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)∀𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)(((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) → 𝑖 = 𝑗)))
626, 60, 61sylanbrc 582 1 (𝜑 → (𝑊 substr ⟨𝑀, 𝑁⟩):dom (𝑊 substr ⟨𝑀, 𝑁⟩)–1-1𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883  cop 4564  dom cdm 5580  wf 6414  1-1wf1 6415  cfv 6418  (class class class)co 7255  0cc0 10802   + caddc 10805  cmin 11135  cz 12249  cuz 12511  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145   substr csubstr 14281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-substr 14282
This theorem is referenced by:  cycpmco2f1  31293
  Copyright terms: Public domain W3C validator