Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swrdf1 Structured version   Visualization version   GIF version

Theorem swrdf1 32115
Description: Condition for a subword to be injective. (Contributed by Thierry Arnoux, 12-Dec-2023.)
Hypotheses
Ref Expression
swrdf1.w (𝜑𝑊 ∈ Word 𝐷)
swrdf1.m (𝜑𝑀 ∈ (0...𝑁))
swrdf1.n (𝜑𝑁 ∈ (0...(♯‘𝑊)))
swrdf1.1 (𝜑𝑊:dom 𝑊1-1𝐷)
Assertion
Ref Expression
swrdf1 (𝜑 → (𝑊 substr ⟨𝑀, 𝑁⟩):dom (𝑊 substr ⟨𝑀, 𝑁⟩)–1-1𝐷)

Proof of Theorem swrdf1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 swrdf1.w . . . 4 (𝜑𝑊 ∈ Word 𝐷)
2 swrdf1.m . . . 4 (𝜑𝑀 ∈ (0...𝑁))
3 swrdf1.n . . . 4 (𝜑𝑁 ∈ (0...(♯‘𝑊)))
4 swrdf 14599 . . . 4 ((𝑊 ∈ Word 𝐷𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨𝑀, 𝑁⟩):(0..^(𝑁𝑀))⟶𝐷)
51, 2, 3, 4syl3anc 1371 . . 3 (𝜑 → (𝑊 substr ⟨𝑀, 𝑁⟩):(0..^(𝑁𝑀))⟶𝐷)
65ffdmd 6748 . 2 (𝜑 → (𝑊 substr ⟨𝑀, 𝑁⟩):dom (𝑊 substr ⟨𝑀, 𝑁⟩)⟶𝐷)
7 fzossz 13651 . . . . . . . 8 (0..^(𝑁𝑀)) ⊆ ℤ
8 simpllr 774 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩))
95fdmd 6728 . . . . . . . . . 10 (𝜑 → dom (𝑊 substr ⟨𝑀, 𝑁⟩) = (0..^(𝑁𝑀)))
109ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → dom (𝑊 substr ⟨𝑀, 𝑁⟩) = (0..^(𝑁𝑀)))
118, 10eleqtrd 2835 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑖 ∈ (0..^(𝑁𝑀)))
127, 11sselid 3980 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑖 ∈ ℤ)
1312zcnd 12666 . . . . . 6 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑖 ∈ ℂ)
14 simplr 767 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩))
1514, 10eleqtrd 2835 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑗 ∈ (0..^(𝑁𝑀)))
167, 15sselid 3980 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑗 ∈ ℤ)
1716zcnd 12666 . . . . . 6 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑗 ∈ ℂ)
182elfzelzd 13501 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
1918ad3antrrr 728 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑀 ∈ ℤ)
2019zcnd 12666 . . . . . 6 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑀 ∈ ℂ)
21 swrdf1.1 . . . . . . . 8 (𝜑𝑊:dom 𝑊1-1𝐷)
2221ad3antrrr 728 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑊:dom 𝑊1-1𝐷)
23 elfzuz 13496 . . . . . . . . . . . 12 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ (ℤ‘0))
24 fzoss1 13658 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘0) → (𝑀..^𝑁) ⊆ (0..^𝑁))
252, 23, 243syl 18 . . . . . . . . . . 11 (𝜑 → (𝑀..^𝑁) ⊆ (0..^𝑁))
26 elfzuz3 13497 . . . . . . . . . . . 12 (𝑁 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝑁))
27 fzoss2 13659 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝑊)))
283, 26, 273syl 18 . . . . . . . . . . 11 (𝜑 → (0..^𝑁) ⊆ (0..^(♯‘𝑊)))
2925, 28sstrd 3992 . . . . . . . . . 10 (𝜑 → (𝑀..^𝑁) ⊆ (0..^(♯‘𝑊)))
3029ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑀..^𝑁) ⊆ (0..^(♯‘𝑊)))
313elfzelzd 13501 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
3231ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑁 ∈ ℤ)
33 fzoaddel2 13687 . . . . . . . . . 10 ((𝑖 ∈ (0..^(𝑁𝑀)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑖 + 𝑀) ∈ (𝑀..^𝑁))
3411, 32, 19, 33syl3anc 1371 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑖 + 𝑀) ∈ (𝑀..^𝑁))
3530, 34sseldd 3983 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑖 + 𝑀) ∈ (0..^(♯‘𝑊)))
36 wrddm 14470 . . . . . . . . . 10 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
371, 36syl 17 . . . . . . . . 9 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
3837ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → dom 𝑊 = (0..^(♯‘𝑊)))
3935, 38eleqtrrd 2836 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑖 + 𝑀) ∈ dom 𝑊)
40 fzoaddel2 13687 . . . . . . . . . 10 ((𝑗 ∈ (0..^(𝑁𝑀)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑗 + 𝑀) ∈ (𝑀..^𝑁))
4115, 32, 19, 40syl3anc 1371 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑗 + 𝑀) ∈ (𝑀..^𝑁))
4230, 41sseldd 3983 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑗 + 𝑀) ∈ (0..^(♯‘𝑊)))
4342, 38eleqtrrd 2836 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑗 + 𝑀) ∈ dom 𝑊)
44 simpr 485 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗))
451ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑊 ∈ Word 𝐷)
462ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑀 ∈ (0...𝑁))
473ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑁 ∈ (0...(♯‘𝑊)))
48 swrdfv 14597 . . . . . . . . 9 (((𝑊 ∈ Word 𝐷𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = (𝑊‘(𝑖 + 𝑀)))
4945, 46, 47, 11, 48syl31anc 1373 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = (𝑊‘(𝑖 + 𝑀)))
50 swrdfv 14597 . . . . . . . . 9 (((𝑊 ∈ Word 𝐷𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑗 ∈ (0..^(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = (𝑊‘(𝑗 + 𝑀)))
5145, 46, 47, 15, 50syl31anc 1373 . . . . . . . 8 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) = (𝑊‘(𝑗 + 𝑀)))
5244, 49, 513eqtr3d 2780 . . . . . . 7 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑊‘(𝑖 + 𝑀)) = (𝑊‘(𝑗 + 𝑀)))
53 f1veqaeq 7255 . . . . . . . . 9 ((𝑊:dom 𝑊1-1𝐷 ∧ ((𝑖 + 𝑀) ∈ dom 𝑊 ∧ (𝑗 + 𝑀) ∈ dom 𝑊)) → ((𝑊‘(𝑖 + 𝑀)) = (𝑊‘(𝑗 + 𝑀)) → (𝑖 + 𝑀) = (𝑗 + 𝑀)))
5453anassrs 468 . . . . . . . 8 (((𝑊:dom 𝑊1-1𝐷 ∧ (𝑖 + 𝑀) ∈ dom 𝑊) ∧ (𝑗 + 𝑀) ∈ dom 𝑊) → ((𝑊‘(𝑖 + 𝑀)) = (𝑊‘(𝑗 + 𝑀)) → (𝑖 + 𝑀) = (𝑗 + 𝑀)))
5554imp 407 . . . . . . 7 ((((𝑊:dom 𝑊1-1𝐷 ∧ (𝑖 + 𝑀) ∈ dom 𝑊) ∧ (𝑗 + 𝑀) ∈ dom 𝑊) ∧ (𝑊‘(𝑖 + 𝑀)) = (𝑊‘(𝑗 + 𝑀))) → (𝑖 + 𝑀) = (𝑗 + 𝑀))
5622, 39, 43, 52, 55syl1111anc 838 . . . . . 6 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → (𝑖 + 𝑀) = (𝑗 + 𝑀))
5713, 17, 20, 56addcan2ad 11419 . . . . 5 ((((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗)) → 𝑖 = 𝑗)
5857ex 413 . . . 4 (((𝜑𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)) → (((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) → 𝑖 = 𝑗))
5958anasss 467 . . 3 ((𝜑 ∧ (𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩) ∧ 𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩))) → (((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) → 𝑖 = 𝑗))
6059ralrimivva 3200 . 2 (𝜑 → ∀𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)∀𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)(((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) → 𝑖 = 𝑗))
61 dff13 7253 . 2 ((𝑊 substr ⟨𝑀, 𝑁⟩):dom (𝑊 substr ⟨𝑀, 𝑁⟩)–1-1𝐷 ↔ ((𝑊 substr ⟨𝑀, 𝑁⟩):dom (𝑊 substr ⟨𝑀, 𝑁⟩)⟶𝐷 ∧ ∀𝑖 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)∀𝑗 ∈ dom (𝑊 substr ⟨𝑀, 𝑁⟩)(((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑗) → 𝑖 = 𝑗)))
626, 60, 61sylanbrc 583 1 (𝜑 → (𝑊 substr ⟨𝑀, 𝑁⟩):dom (𝑊 substr ⟨𝑀, 𝑁⟩)–1-1𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061  wss 3948  cop 4634  dom cdm 5676  wf 6539  1-1wf1 6540  cfv 6543  (class class class)co 7408  0cc0 11109   + caddc 11112  cmin 11443  cz 12557  cuz 12821  ...cfz 13483  ..^cfzo 13626  chash 14289  Word cword 14463   substr csubstr 14589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627  df-hash 14290  df-word 14464  df-substr 14590
This theorem is referenced by:  cycpmco2f1  32278
  Copyright terms: Public domain W3C validator