Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extdg1id Structured version   Visualization version   GIF version

Theorem extdg1id 33712
Description: If the degree of the extension 𝐸/FldExt𝐹 is 1, then 𝐸 and 𝐹 are identical. (Contributed by Thierry Arnoux, 6-Aug-2023.)
Assertion
Ref Expression
extdg1id ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → 𝐸 = 𝐹)

Proof of Theorem extdg1id
Dummy variables 𝑎 𝑥 𝑏 𝑖 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldextress 33698 . . 3 (𝐸/FldExt𝐹𝐹 = (𝐸s (Base‘𝐹)))
21adantr 480 . 2 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → 𝐹 = (𝐸s (Base‘𝐹)))
3 fldextsralvec 33702 . . . . . . 7 (𝐸/FldExt𝐹 → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec)
43adantr 480 . . . . . 6 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec)
5 eqid 2736 . . . . . . 7 (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))
65lbsex 21131 . . . . . 6 (((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec → (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ≠ ∅)
74, 6syl 17 . . . . 5 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ≠ ∅)
8 n0 4333 . . . . 5 ((LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
97, 8sylib 218 . . . 4 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → ∃𝑏 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
10 simpr 484 . . . . . 6 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
115dimval 33645 . . . . . . . 8 ((((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (♯‘𝑏))
124, 11sylan 580 . . . . . . 7 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (♯‘𝑏))
13 extdgval 33700 . . . . . . . . . 10 (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
1413adantr 480 . . . . . . . . 9 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
15 simpr 484 . . . . . . . . 9 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → (𝐸[:]𝐹) = 1)
1614, 15eqtr3d 2773 . . . . . . . 8 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = 1)
1716adantr 480 . . . . . . 7 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = 1)
1812, 17eqtr3d 2773 . . . . . 6 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (♯‘𝑏) = 1)
19 hash1snb 14442 . . . . . . 7 (𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) → ((♯‘𝑏) = 1 ↔ ∃𝑥 𝑏 = {𝑥}))
2019biimpa 476 . . . . . 6 ((𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∧ (♯‘𝑏) = 1) → ∃𝑥 𝑏 = {𝑥})
2110, 18, 20syl2anc 584 . . . . 5 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → ∃𝑥 𝑏 = {𝑥})
22 simpr 484 . . . . . . . . . 10 ((((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ 𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))))) ∧ 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))
23 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → 𝑏 = {𝑥})
24 eqidd 2737 . . . . . . . . . . . . . . . . . . . 20 (𝐸/FldExt𝐹 → ((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹)))
25 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝐹) = (Base‘𝐹)
2625fldextsubrg 33696 . . . . . . . . . . . . . . . . . . . . 21 (𝐸/FldExt𝐹 → (Base‘𝐹) ∈ (SubRing‘𝐸))
27 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝐸) = (Base‘𝐸)
2827subrgss 20537 . . . . . . . . . . . . . . . . . . . . 21 ((Base‘𝐹) ∈ (SubRing‘𝐸) → (Base‘𝐹) ⊆ (Base‘𝐸))
2926, 28syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝐸/FldExt𝐹 → (Base‘𝐹) ⊆ (Base‘𝐸))
3024, 29sravsca 21144 . . . . . . . . . . . . . . . . . . 19 (𝐸/FldExt𝐹 → (.r𝐸) = ( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
3130eqcomd 2742 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹 → ( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (.r𝐸))
3231ad5antr 734 . . . . . . . . . . . . . . . . 17 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ 𝑖𝑏) → ( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (.r𝐸))
3332oveqd 7427 . . . . . . . . . . . . . . . 16 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ 𝑖𝑏) → ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖) = ((𝑣𝑖)(.r𝐸)𝑖))
3423, 33mpteq12dva 5211 . . . . . . . . . . . . . . 15 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)) = (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖)))
3534oveq2d 7426 . . . . . . . . . . . . . 14 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (𝐸 Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = (𝐸 Σg (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖))))
36 eqid 2736 . . . . . . . . . . . . . . . . 17 ((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹))
37 fldextfld1 33694 . . . . . . . . . . . . . . . . . . 19 (𝐸/FldExt𝐹𝐸 ∈ Field)
38 isfld 20705 . . . . . . . . . . . . . . . . . . . 20 (𝐸 ∈ Field ↔ (𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing))
3938simplbi 497 . . . . . . . . . . . . . . . . . . 19 (𝐸 ∈ Field → 𝐸 ∈ DivRing)
4037, 39syl 17 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹𝐸 ∈ DivRing)
4140adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐸/FldExt𝐹𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → 𝐸 ∈ DivRing)
4226adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐸/FldExt𝐹𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (Base‘𝐹) ∈ (SubRing‘𝐸))
43 eqid 2736 . . . . . . . . . . . . . . . . 17 (𝐸s (Base‘𝐹)) = (𝐸s (Base‘𝐹))
44 fldextfld2 33695 . . . . . . . . . . . . . . . . . . . 20 (𝐸/FldExt𝐹𝐹 ∈ Field)
45 isfld 20705 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing))
4645simplbi 497 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ Field → 𝐹 ∈ DivRing)
4744, 46syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐸/FldExt𝐹𝐹 ∈ DivRing)
481, 47eqeltrrd 2836 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹 → (𝐸s (Base‘𝐹)) ∈ DivRing)
4948adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐸/FldExt𝐹𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (𝐸s (Base‘𝐹)) ∈ DivRing)
50 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝐸/FldExt𝐹𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
5136, 41, 42, 43, 49, 50drgextgsum 33639 . . . . . . . . . . . . . . . 16 ((𝐸/FldExt𝐹𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (𝐸 Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))
5251adantlr 715 . . . . . . . . . . . . . . 15 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (𝐸 Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))
5352ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (𝐸 Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))
54 drngring 20701 . . . . . . . . . . . . . . . . . . 19 (𝐸 ∈ DivRing → 𝐸 ∈ Ring)
5537, 39, 543syl 18 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹𝐸 ∈ Ring)
56 ringmnd 20208 . . . . . . . . . . . . . . . . . 18 (𝐸 ∈ Ring → 𝐸 ∈ Mnd)
5755, 56syl 17 . . . . . . . . . . . . . . . . 17 (𝐸/FldExt𝐹𝐸 ∈ Mnd)
5857ad4antr 732 . . . . . . . . . . . . . . . 16 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → 𝐸 ∈ Mnd)
59 vex 3468 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
6059a1i 11 . . . . . . . . . . . . . . . 16 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → 𝑥 ∈ V)
6155ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → 𝐸 ∈ Ring)
6261adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → 𝐸 ∈ Ring)
6329ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (Base‘𝐹) ⊆ (Base‘𝐸))
6463adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (Base‘𝐹) ⊆ (Base‘𝐸))
65 elmapi 8868 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏) → 𝑣:𝑏⟶(Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))))
6665adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → 𝑣:𝑏⟶(Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))))
67 vsnid 4644 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ {𝑥}
6867, 23eleqtrrid 2842 . . . . . . . . . . . . . . . . . . . 20 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → 𝑥𝑏)
6966, 68ffvelcdmd 7080 . . . . . . . . . . . . . . . . . . 19 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (𝑣𝑥) ∈ (Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))))
7024, 29srasca 21143 . . . . . . . . . . . . . . . . . . . . . 22 (𝐸/FldExt𝐹 → (𝐸s (Base‘𝐹)) = (Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
711, 70eqtrd 2771 . . . . . . . . . . . . . . . . . . . . 21 (𝐸/FldExt𝐹𝐹 = (Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
7271fveq2d 6885 . . . . . . . . . . . . . . . . . . . 20 (𝐸/FldExt𝐹 → (Base‘𝐹) = (Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))))
7372ad4antr 732 . . . . . . . . . . . . . . . . . . 19 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (Base‘𝐹) = (Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))))
7469, 73eleqtrrd 2838 . . . . . . . . . . . . . . . . . 18 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (𝑣𝑥) ∈ (Base‘𝐹))
7564, 74sseldd 3964 . . . . . . . . . . . . . . . . 17 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (𝑣𝑥) ∈ (Base‘𝐸))
76 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → 𝑏 = {𝑥})
77 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
78 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . 23 (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹)))
7978, 5lbsss 21040 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
8077, 79syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
8176, 80eqsstrrd 3999 . . . . . . . . . . . . . . . . . . . 20 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → {𝑥} ⊆ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
8259snss 4766 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ↔ {𝑥} ⊆ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
8381, 82sylibr 234 . . . . . . . . . . . . . . . . . . 19 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → 𝑥 ∈ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
84 eqidd 2737 . . . . . . . . . . . . . . . . . . . 20 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹)))
8584, 63srabase 21140 . . . . . . . . . . . . . . . . . . 19 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (Base‘𝐸) = (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
8683, 85eleqtrrd 2838 . . . . . . . . . . . . . . . . . 18 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → 𝑥 ∈ (Base‘𝐸))
8786adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → 𝑥 ∈ (Base‘𝐸))
88 eqid 2736 . . . . . . . . . . . . . . . . . 18 (.r𝐸) = (.r𝐸)
8927, 88ringcl 20215 . . . . . . . . . . . . . . . . 17 ((𝐸 ∈ Ring ∧ (𝑣𝑥) ∈ (Base‘𝐸) ∧ 𝑥 ∈ (Base‘𝐸)) → ((𝑣𝑥)(.r𝐸)𝑥) ∈ (Base‘𝐸))
9062, 75, 87, 89syl3anc 1373 . . . . . . . . . . . . . . . 16 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → ((𝑣𝑥)(.r𝐸)𝑥) ∈ (Base‘𝐸))
91 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ 𝑖 = 𝑥) → 𝑖 = 𝑥)
9291fveq2d 6885 . . . . . . . . . . . . . . . . 17 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ 𝑖 = 𝑥) → (𝑣𝑖) = (𝑣𝑥))
9392, 91oveq12d 7428 . . . . . . . . . . . . . . . 16 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ 𝑖 = 𝑥) → ((𝑣𝑖)(.r𝐸)𝑖) = ((𝑣𝑥)(.r𝐸)𝑥))
9427, 58, 60, 90, 93gsumsnd 19938 . . . . . . . . . . . . . . 15 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (𝐸 Σg (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖))) = ((𝑣𝑥)(.r𝐸)𝑥))
951fveq2d 6885 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹 → (.r𝐹) = (.r‘(𝐸s (Base‘𝐹))))
9643, 88ressmulr 17326 . . . . . . . . . . . . . . . . . . 19 ((Base‘𝐹) ∈ (SubRing‘𝐸) → (.r𝐸) = (.r‘(𝐸s (Base‘𝐹))))
9726, 96syl 17 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹 → (.r𝐸) = (.r‘(𝐸s (Base‘𝐹))))
9895, 97eqtr4d 2774 . . . . . . . . . . . . . . . . 17 (𝐸/FldExt𝐹 → (.r𝐹) = (.r𝐸))
9998ad4antr 732 . . . . . . . . . . . . . . . 16 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (.r𝐹) = (.r𝐸))
10099oveqd 7427 . . . . . . . . . . . . . . 15 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → ((𝑣𝑥)(.r𝐹)𝑥) = ((𝑣𝑥)(.r𝐸)𝑥))
10194, 100eqtr4d 2774 . . . . . . . . . . . . . 14 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (𝐸 Σg (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖))) = ((𝑣𝑥)(.r𝐹)𝑥))
10235, 53, 1013eqtr3d 2779 . . . . . . . . . . . . 13 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = ((𝑣𝑥)(.r𝐹)𝑥))
103102adantlr 715 . . . . . . . . . . . 12 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = ((𝑣𝑥)(.r𝐹)𝑥))
104 drngring 20701 . . . . . . . . . . . . . . 15 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
10544, 46, 1043syl 18 . . . . . . . . . . . . . 14 (𝐸/FldExt𝐹𝐹 ∈ Ring)
106105ad5antr 734 . . . . . . . . . . . . 13 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → 𝐹 ∈ Ring)
10774adantlr 715 . . . . . . . . . . . . 13 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (𝑣𝑥) ∈ (Base‘𝐹))
108 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (1r𝐸) = (1r𝐸)
109 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (Unit‘𝐸) = (Unit‘𝐸)
110 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (invr𝐸) = (invr𝐸)
111 simp-5l 784 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝐸/FldExt𝐹)
112111, 55syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝐸 ∈ Ring)
11387adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝑥 ∈ (Base‘𝐸))
11475adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝑣𝑥) ∈ (Base‘𝐸))
11538simprbi 496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐸 ∈ Field → 𝐸 ∈ CRing)
116111, 37, 1153syl 18 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝐸 ∈ CRing)
11727, 88crngcom 20216 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐸 ∈ CRing ∧ 𝑥 ∈ (Base‘𝐸) ∧ (𝑣𝑥) ∈ (Base‘𝐸)) → (𝑥(.r𝐸)(𝑣𝑥)) = ((𝑣𝑥)(.r𝐸)𝑥))
118116, 113, 114, 117syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝑥(.r𝐸)(𝑣𝑥)) = ((𝑣𝑥)(.r𝐸)𝑥))
119 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))
12052ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝐸 Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))
12134adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)) = (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖)))
122121oveq2d 7426 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝐸 Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = (𝐸 Σg (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖))))
123119, 120, 1223eqtr2d 2777 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (1r𝐸) = (𝐸 Σg (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖))))
12494adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝐸 Σg (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖))) = ((𝑣𝑥)(.r𝐸)𝑥))
125123, 124eqtrd 2771 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (1r𝐸) = ((𝑣𝑥)(.r𝐸)𝑥))
126118, 125eqtr4d 2774 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝑥(.r𝐸)(𝑣𝑥)) = (1r𝐸))
127125eqcomd 2742 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ((𝑣𝑥)(.r𝐸)𝑥) = (1r𝐸))
12827, 88, 108, 109, 110, 112, 113, 114, 126, 127invrvald 22619 . . . . . . . . . . . . . . . . . . 19 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝑥 ∈ (Unit‘𝐸) ∧ ((invr𝐸)‘𝑥) = (𝑣𝑥)))
129128simpld 494 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝑥 ∈ (Unit‘𝐸))
130109, 110unitinvinv 20356 . . . . . . . . . . . . . . . . . 18 ((𝐸 ∈ Ring ∧ 𝑥 ∈ (Unit‘𝐸)) → ((invr𝐸)‘((invr𝐸)‘𝑥)) = 𝑥)
13162, 129, 130syl2an2r 685 . . . . . . . . . . . . . . . . 17 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ((invr𝐸)‘((invr𝐸)‘𝑥)) = 𝑥)
132111, 37, 393syl 18 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝐸 ∈ DivRing)
133111, 26syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (Base‘𝐹) ∈ (SubRing‘𝐸))
134111, 1syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝐹 = (𝐸s (Base‘𝐹)))
135111, 44, 463syl 18 . . . . . . . . . . . . . . . . . . 19 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝐹 ∈ DivRing)
136134, 135eqeltrrd 2836 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝐸s (Base‘𝐹)) ∈ DivRing)
137128simprd 495 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ((invr𝐸)‘𝑥) = (𝑣𝑥))
13874adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝑣𝑥) ∈ (Base‘𝐹))
139137, 138eqeltrd 2835 . . . . . . . . . . . . . . . . . . 19 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ((invr𝐸)‘𝑥) ∈ (Base‘𝐹))
140 eqidd 2737 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐸/FldExt𝐹 → (0g𝐸) = (0g𝐸))
14124, 140, 29sralmod0 21151 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐸/FldExt𝐹 → (0g𝐸) = (0g‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
142141ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (0g𝐸) = (0g‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
1435lbslinds 21798 . . . . . . . . . . . . . . . . . . . . . . . . 25 (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ⊆ (LIndS‘((subringAlg ‘𝐸)‘(Base‘𝐹)))
144143, 10sselid 3961 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → 𝑏 ∈ (LIndS‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
145 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0g‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (0g‘((subringAlg ‘𝐸)‘(Base‘𝐹)))
1461450nellinds 33390 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec ∧ 𝑏 ∈ (LIndS‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → ¬ (0g‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∈ 𝑏)
1474, 144, 146syl2an2r 685 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → ¬ (0g‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∈ 𝑏)
148142, 147eqneltrd 2855 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → ¬ (0g𝐸) ∈ 𝑏)
149148ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ¬ (0g𝐸) ∈ 𝑏)
150 nelne2 3031 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝑏 ∧ ¬ (0g𝐸) ∈ 𝑏) → 𝑥 ≠ (0g𝐸))
15168, 149, 150syl2an2r 685 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝑥 ≠ (0g𝐸))
152 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 (0g𝐸) = (0g𝐸)
15327, 152, 110drnginvrn0 20719 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 ∈ DivRing ∧ 𝑥 ∈ (Base‘𝐸) ∧ 𝑥 ≠ (0g𝐸)) → ((invr𝐸)‘𝑥) ≠ (0g𝐸))
154132, 113, 151, 153syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ((invr𝐸)‘𝑥) ≠ (0g𝐸))
155 eldifsn 4767 . . . . . . . . . . . . . . . . . . 19 (((invr𝐸)‘𝑥) ∈ ((Base‘𝐹) ∖ {(0g𝐸)}) ↔ (((invr𝐸)‘𝑥) ∈ (Base‘𝐹) ∧ ((invr𝐸)‘𝑥) ≠ (0g𝐸)))
156139, 154, 155sylanbrc 583 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ((invr𝐸)‘𝑥) ∈ ((Base‘𝐹) ∖ {(0g𝐸)}))
157 fveq2 6881 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = ((invr𝐸)‘𝑥) → ((invr𝐸)‘𝑎) = ((invr𝐸)‘((invr𝐸)‘𝑥)))
158157eleq1d 2820 . . . . . . . . . . . . . . . . . . 19 (𝑎 = ((invr𝐸)‘𝑥) → (((invr𝐸)‘𝑎) ∈ (Base‘𝐹) ↔ ((invr𝐸)‘((invr𝐸)‘𝑥)) ∈ (Base‘𝐹)))
15943, 152, 110issubdrg 20745 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸 ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)) → ((𝐸s (Base‘𝐹)) ∈ DivRing ↔ ∀𝑎 ∈ ((Base‘𝐹) ∖ {(0g𝐸)})((invr𝐸)‘𝑎) ∈ (Base‘𝐹)))
160159biimpa 476 . . . . . . . . . . . . . . . . . . . 20 (((𝐸 ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)) ∧ (𝐸s (Base‘𝐹)) ∈ DivRing) → ∀𝑎 ∈ ((Base‘𝐹) ∖ {(0g𝐸)})((invr𝐸)‘𝑎) ∈ (Base‘𝐹))
161160adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝐸 ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)) ∧ (𝐸s (Base‘𝐹)) ∈ DivRing) ∧ ((invr𝐸)‘𝑥) ∈ ((Base‘𝐹) ∖ {(0g𝐸)})) → ∀𝑎 ∈ ((Base‘𝐹) ∖ {(0g𝐸)})((invr𝐸)‘𝑎) ∈ (Base‘𝐹))
162 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝐸 ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)) ∧ (𝐸s (Base‘𝐹)) ∈ DivRing) ∧ ((invr𝐸)‘𝑥) ∈ ((Base‘𝐹) ∖ {(0g𝐸)})) → ((invr𝐸)‘𝑥) ∈ ((Base‘𝐹) ∖ {(0g𝐸)}))
163158, 161, 162rspcdva 3607 . . . . . . . . . . . . . . . . . 18 ((((𝐸 ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)) ∧ (𝐸s (Base‘𝐹)) ∈ DivRing) ∧ ((invr𝐸)‘𝑥) ∈ ((Base‘𝐹) ∖ {(0g𝐸)})) → ((invr𝐸)‘((invr𝐸)‘𝑥)) ∈ (Base‘𝐹))
164132, 133, 136, 156, 163syl1111anc 840 . . . . . . . . . . . . . . . . 17 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ((invr𝐸)‘((invr𝐸)‘𝑥)) ∈ (Base‘𝐹))
165131, 164eqeltrrd 2836 . . . . . . . . . . . . . . . 16 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝑥 ∈ (Base‘𝐹))
166165adantrl 716 . . . . . . . . . . . . . . 15 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))) → 𝑥 ∈ (Base‘𝐹))
16727, 108ringidcl 20230 . . . . . . . . . . . . . . . . . 18 (𝐸 ∈ Ring → (1r𝐸) ∈ (Base‘𝐸))
16861, 167syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (1r𝐸) ∈ (Base‘𝐸))
169168, 85eleqtrd 2837 . . . . . . . . . . . . . . . 16 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (1r𝐸) ∈ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
170 eqid 2736 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) = (Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
171 eqid 2736 . . . . . . . . . . . . . . . . 17 (Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))
172 eqid 2736 . . . . . . . . . . . . . . . . 17 (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) = (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
173 eqid 2736 . . . . . . . . . . . . . . . . 17 ( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = ( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))
1744ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec)
175 lveclmod 21069 . . . . . . . . . . . . . . . . . 18 (((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LMod)
176174, 175syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LMod)
17778, 170, 171, 172, 173, 176, 77lbslsp 33397 . . . . . . . . . . . . . . . 16 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → ((1r𝐸) ∈ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ↔ ∃𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)(𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))))
178169, 177mpbid 232 . . . . . . . . . . . . . . 15 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → ∃𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)(𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))))
179166, 178r19.29a 3149 . . . . . . . . . . . . . 14 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → 𝑥 ∈ (Base‘𝐹))
180179ad2antrr 726 . . . . . . . . . . . . 13 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → 𝑥 ∈ (Base‘𝐹))
181 eqid 2736 . . . . . . . . . . . . . 14 (.r𝐹) = (.r𝐹)
18225, 181ringcl 20215 . . . . . . . . . . . . 13 ((𝐹 ∈ Ring ∧ (𝑣𝑥) ∈ (Base‘𝐹) ∧ 𝑥 ∈ (Base‘𝐹)) → ((𝑣𝑥)(.r𝐹)𝑥) ∈ (Base‘𝐹))
183106, 107, 180, 182syl3anc 1373 . . . . . . . . . . . 12 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → ((𝑣𝑥)(.r𝐹)𝑥) ∈ (Base‘𝐹))
184103, 183eqeltrd 2835 . . . . . . . . . . 11 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) ∈ (Base‘𝐹))
185184ad2antrr 726 . . . . . . . . . 10 ((((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ 𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))))) ∧ 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) ∈ (Base‘𝐹))
18622, 185eqeltrd 2835 . . . . . . . . 9 ((((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ 𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))))) ∧ 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝑢 ∈ (Base‘𝐹))
187186anasss 466 . . . . . . . 8 (((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))) → 𝑢 ∈ (Base‘𝐹))
18885eleq2d 2821 . . . . . . . . . 10 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (𝑢 ∈ (Base‘𝐸) ↔ 𝑢 ∈ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹)))))
18978, 170, 171, 172, 173, 176, 77lbslsp 33397 . . . . . . . . . 10 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (𝑢 ∈ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ↔ ∃𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)(𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))))
190188, 189bitrd 279 . . . . . . . . 9 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (𝑢 ∈ (Base‘𝐸) ↔ ∃𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)(𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))))
191190biimpa 476 . . . . . . . 8 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) → ∃𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)(𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))))
192187, 191r19.29a 3149 . . . . . . 7 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) → 𝑢 ∈ (Base‘𝐹))
193192ex 412 . . . . . 6 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (𝑢 ∈ (Base‘𝐸) → 𝑢 ∈ (Base‘𝐹)))
194193ssrdv 3969 . . . . 5 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (Base‘𝐸) ⊆ (Base‘𝐹))
19521, 194exlimddv 1935 . . . 4 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (Base‘𝐸) ⊆ (Base‘𝐹))
1969, 195exlimddv 1935 . . 3 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → (Base‘𝐸) ⊆ (Base‘𝐹))
197 simpr 484 . . . 4 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ (Base‘𝐸) ⊆ (Base‘𝐹)) → (Base‘𝐸) ⊆ (Base‘𝐹))
19837ad2antrr 726 . . . 4 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ (Base‘𝐸) ⊆ (Base‘𝐹)) → 𝐸 ∈ Field)
199 fvexd 6896 . . . 4 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ (Base‘𝐸) ⊆ (Base‘𝐹)) → (Base‘𝐹) ∈ V)
20043, 27ressid2 17260 . . . 4 (((Base‘𝐸) ⊆ (Base‘𝐹) ∧ 𝐸 ∈ Field ∧ (Base‘𝐹) ∈ V) → (𝐸s (Base‘𝐹)) = 𝐸)
201197, 198, 199, 200syl3anc 1373 . . 3 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ (Base‘𝐸) ⊆ (Base‘𝐹)) → (𝐸s (Base‘𝐹)) = 𝐸)
202196, 201mpdan 687 . 2 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → (𝐸s (Base‘𝐹)) = 𝐸)
2032, 202eqtr2d 2772 1 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → 𝐸 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2933  wral 3052  wrex 3061  Vcvv 3464  cdif 3928  wss 3931  c0 4313  {csn 4606   class class class wbr 5124  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845   finSupp cfsupp 9378  1c1 11135  chash 14353  Basecbs 17233  s cress 17256  .rcmulr 17277  Scalarcsca 17279   ·𝑠 cvsca 17280  0gc0g 17458   Σg cgsu 17459  Mndcmnd 18717  1rcur 20146  Ringcrg 20198  CRingccrg 20199  Unitcui 20320  invrcinvr 20352  SubRingcsubrg 20534  DivRingcdr 20694  Fieldcfield 20695  LModclmod 20822  LBasisclbs 21037  LVecclvec 21065  subringAlg csra 21134  LIndSclinds 21770  dimcldim 33643  /FldExtcfldext 33683  [:]cextdg 33686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-reg 9611  ax-inf2 9660  ax-ac2 10482  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-rpss 7722  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-r1 9783  df-rank 9784  df-dju 9920  df-card 9958  df-acn 9961  df-ac 10135  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ocomp 17297  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-mri 17605  df-acs 17606  df-proset 18311  df-drs 18312  df-poset 18330  df-ipo 18543  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-nzr 20478  df-subrg 20535  df-drng 20696  df-field 20697  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lmhm 20985  df-lbs 21038  df-lvec 21066  df-sra 21136  df-rgmod 21137  df-dsmm 21697  df-frlm 21712  df-uvc 21748  df-lindf 21771  df-linds 21772  df-dim 33644  df-fldext 33687  df-extdg 33688
This theorem is referenced by:  extdg1b  33713  rtelextdg2  33766
  Copyright terms: Public domain W3C validator