Step | Hyp | Ref
| Expression |
1 | | fldextress 32719 |
. . 3
β’ (πΈ/FldExtπΉ β πΉ = (πΈ βΎs (BaseβπΉ))) |
2 | 1 | adantr 481 |
. 2
β’ ((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β πΉ = (πΈ βΎs (BaseβπΉ))) |
3 | | fldextsralvec 32722 |
. . . . . . 7
β’ (πΈ/FldExtπΉ β ((subringAlg
βπΈ)β(BaseβπΉ)) β LVec) |
4 | 3 | adantr 481 |
. . . . . 6
β’ ((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β ((subringAlg βπΈ)β(BaseβπΉ)) β LVec) |
5 | | eqid 2732 |
. . . . . . 7
β’
(LBasisβ((subringAlg βπΈ)β(BaseβπΉ))) = (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ))) |
6 | 5 | lbsex 20770 |
. . . . . 6
β’
(((subringAlg βπΈ)β(BaseβπΉ)) β LVec β
(LBasisβ((subringAlg βπΈ)β(BaseβπΉ))) β β
) |
7 | 4, 6 | syl 17 |
. . . . 5
β’ ((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ))) β β
) |
8 | | n0 4345 |
. . . . 5
β’
((LBasisβ((subringAlg βπΈ)β(BaseβπΉ))) β β
β βπ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) |
9 | 7, 8 | sylib 217 |
. . . 4
β’ ((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β βπ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) |
10 | | simpr 485 |
. . . . . 6
β’ (((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) |
11 | 5 | dimval 32674 |
. . . . . . . 8
β’
((((subringAlg βπΈ)β(BaseβπΉ)) β LVec β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β (dimβ((subringAlg
βπΈ)β(BaseβπΉ))) = (β―βπ)) |
12 | 4, 11 | sylan 580 |
. . . . . . 7
β’ (((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β (dimβ((subringAlg
βπΈ)β(BaseβπΉ))) = (β―βπ)) |
13 | | extdgval 32721 |
. . . . . . . . . 10
β’ (πΈ/FldExtπΉ β (πΈ[:]πΉ) = (dimβ((subringAlg βπΈ)β(BaseβπΉ)))) |
14 | 13 | adantr 481 |
. . . . . . . . 9
β’ ((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β (πΈ[:]πΉ) = (dimβ((subringAlg βπΈ)β(BaseβπΉ)))) |
15 | | simpr 485 |
. . . . . . . . 9
β’ ((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β (πΈ[:]πΉ) = 1) |
16 | 14, 15 | eqtr3d 2774 |
. . . . . . . 8
β’ ((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β (dimβ((subringAlg
βπΈ)β(BaseβπΉ))) = 1) |
17 | 16 | adantr 481 |
. . . . . . 7
β’ (((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β (dimβ((subringAlg
βπΈ)β(BaseβπΉ))) = 1) |
18 | 12, 17 | eqtr3d 2774 |
. . . . . 6
β’ (((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β (β―βπ) = 1) |
19 | | hash1snb 14375 |
. . . . . . 7
β’ (π β
(LBasisβ((subringAlg βπΈ)β(BaseβπΉ))) β ((β―βπ) = 1 β βπ₯ π = {π₯})) |
20 | 19 | biimpa 477 |
. . . . . 6
β’ ((π β
(LBasisβ((subringAlg βπΈ)β(BaseβπΉ))) β§ (β―βπ) = 1) β βπ₯ π = {π₯}) |
21 | 10, 18, 20 | syl2anc 584 |
. . . . 5
β’ (((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β βπ₯ π = {π₯}) |
22 | | simpr 485 |
. . . . . . . . . 10
β’
((((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π’ β (BaseβπΈ)) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ π£ finSupp
(0gβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ))))) β§ π’ = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g (π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β π’ = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g (π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) |
23 | | simplr 767 |
. . . . . . . . . . . . . . . 16
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β π = {π₯}) |
24 | | eqidd 2733 |
. . . . . . . . . . . . . . . . . . . 20
β’ (πΈ/FldExtπΉ β ((subringAlg
βπΈ)β(BaseβπΉ)) = ((subringAlg βπΈ)β(BaseβπΉ))) |
25 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(BaseβπΉ) =
(BaseβπΉ) |
26 | 25 | fldextsubrg 32718 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (πΈ/FldExtπΉ β (BaseβπΉ) β (SubRingβπΈ)) |
27 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(BaseβπΈ) =
(BaseβπΈ) |
28 | 27 | subrgss 20356 |
. . . . . . . . . . . . . . . . . . . . 21
β’
((BaseβπΉ)
β (SubRingβπΈ)
β (BaseβπΉ)
β (BaseβπΈ)) |
29 | 26, 28 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
β’ (πΈ/FldExtπΉ β (BaseβπΉ) β (BaseβπΈ)) |
30 | 24, 29 | sravsca 20792 |
. . . . . . . . . . . . . . . . . . 19
β’ (πΈ/FldExtπΉ β
(.rβπΈ) = (
Β·π β((subringAlg βπΈ)β(BaseβπΉ)))) |
31 | 30 | eqcomd 2738 |
. . . . . . . . . . . . . . . . . 18
β’ (πΈ/FldExtπΉ β (
Β·π β((subringAlg βπΈ)β(BaseβπΉ))) = (.rβπΈ)) |
32 | 31 | ad5antr 732 |
. . . . . . . . . . . . . . . . 17
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ π β π) β (
Β·π β((subringAlg βπΈ)β(BaseβπΉ))) = (.rβπΈ)) |
33 | 32 | oveqd 7422 |
. . . . . . . . . . . . . . . 16
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ π β π) β ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π) = ((π£βπ)(.rβπΈ)π)) |
34 | 23, 33 | mpteq12dva 5236 |
. . . . . . . . . . . . . . 15
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β (π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)) = (π β {π₯} β¦ ((π£βπ)(.rβπΈ)π))) |
35 | 34 | oveq2d 7421 |
. . . . . . . . . . . . . 14
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β (πΈ Ξ£g (π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π))) = (πΈ Ξ£g (π β {π₯} β¦ ((π£βπ)(.rβπΈ)π)))) |
36 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
β’
((subringAlg βπΈ)β(BaseβπΉ)) = ((subringAlg βπΈ)β(BaseβπΉ)) |
37 | | fldextfld1 32716 |
. . . . . . . . . . . . . . . . . . 19
β’ (πΈ/FldExtπΉ β πΈ β Field) |
38 | | isfld 20318 |
. . . . . . . . . . . . . . . . . . . 20
β’ (πΈ β Field β (πΈ β DivRing β§ πΈ β CRing)) |
39 | 38 | simplbi 498 |
. . . . . . . . . . . . . . . . . . 19
β’ (πΈ β Field β πΈ β
DivRing) |
40 | 37, 39 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’ (πΈ/FldExtπΉ β πΈ β DivRing) |
41 | 40 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’ ((πΈ/FldExtπΉ β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β πΈ β DivRing) |
42 | 26 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’ ((πΈ/FldExtπΉ β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β (BaseβπΉ) β (SubRingβπΈ)) |
43 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
β’ (πΈ βΎs
(BaseβπΉ)) = (πΈ βΎs
(BaseβπΉ)) |
44 | | fldextfld2 32717 |
. . . . . . . . . . . . . . . . . . . 20
β’ (πΈ/FldExtπΉ β πΉ β Field) |
45 | | isfld 20318 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (πΉ β Field β (πΉ β DivRing β§ πΉ β CRing)) |
46 | 45 | simplbi 498 |
. . . . . . . . . . . . . . . . . . . 20
β’ (πΉ β Field β πΉ β
DivRing) |
47 | 44, 46 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
β’ (πΈ/FldExtπΉ β πΉ β DivRing) |
48 | 1, 47 | eqeltrrd 2834 |
. . . . . . . . . . . . . . . . . 18
β’ (πΈ/FldExtπΉ β (πΈ βΎs (BaseβπΉ)) β
DivRing) |
49 | 48 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’ ((πΈ/FldExtπΉ β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β (πΈ βΎs (BaseβπΉ)) β
DivRing) |
50 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
β’ ((πΈ/FldExtπΉ β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) |
51 | 36, 41, 42, 43, 49, 50 | drgextgsum 32670 |
. . . . . . . . . . . . . . . 16
β’ ((πΈ/FldExtπΉ β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β (πΈ Ξ£g (π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π))) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g (π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) |
52 | 51 | adantlr 713 |
. . . . . . . . . . . . . . 15
β’ (((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β (πΈ Ξ£g (π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π))) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g (π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) |
53 | 52 | ad2antrr 724 |
. . . . . . . . . . . . . 14
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β (πΈ Ξ£g (π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π))) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g (π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) |
54 | | drngring 20314 |
. . . . . . . . . . . . . . . . . . 19
β’ (πΈ β DivRing β πΈ β Ring) |
55 | 37, 39, 54 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
β’ (πΈ/FldExtπΉ β πΈ β Ring) |
56 | | ringmnd 20059 |
. . . . . . . . . . . . . . . . . 18
β’ (πΈ β Ring β πΈ β Mnd) |
57 | 55, 56 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ (πΈ/FldExtπΉ β πΈ β Mnd) |
58 | 57 | ad4antr 730 |
. . . . . . . . . . . . . . . 16
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β πΈ β Mnd) |
59 | | vex 3478 |
. . . . . . . . . . . . . . . . 17
β’ π₯ β V |
60 | 59 | a1i 11 |
. . . . . . . . . . . . . . . 16
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β π₯ β V) |
61 | 55 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . 18
β’ ((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β πΈ β Ring) |
62 | 61 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β πΈ β Ring) |
63 | 29 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β (BaseβπΉ) β (BaseβπΈ)) |
64 | 63 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β (BaseβπΉ) β (BaseβπΈ)) |
65 | | elmapi 8839 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π) β π£:πβΆ(Baseβ(Scalarβ((subringAlg
βπΈ)β(BaseβπΉ))))) |
66 | 65 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β π£:πβΆ(Baseβ(Scalarβ((subringAlg
βπΈ)β(BaseβπΉ))))) |
67 | | vsnid 4664 |
. . . . . . . . . . . . . . . . . . . . 21
β’ π₯ β {π₯} |
68 | 67, 23 | eleqtrrid 2840 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β π₯ β π) |
69 | 66, 68 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β (π£βπ₯) β
(Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ))))) |
70 | 24, 29 | srasca 20790 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (πΈ/FldExtπΉ β (πΈ βΎs (BaseβπΉ)) = (Scalarβ((subringAlg
βπΈ)β(BaseβπΉ)))) |
71 | 1, 70 | eqtrd 2772 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (πΈ/FldExtπΉ β πΉ = (Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) |
72 | 71 | fveq2d 6892 |
. . . . . . . . . . . . . . . . . . . 20
β’ (πΈ/FldExtπΉ β (BaseβπΉ) =
(Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ))))) |
73 | 72 | ad4antr 730 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β (BaseβπΉ) = (Baseβ(Scalarβ((subringAlg
βπΈ)β(BaseβπΉ))))) |
74 | 69, 73 | eleqtrrd 2836 |
. . . . . . . . . . . . . . . . . 18
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β (π£βπ₯) β (BaseβπΉ)) |
75 | 64, 74 | sseldd 3982 |
. . . . . . . . . . . . . . . . 17
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β (π£βπ₯) β (BaseβπΈ)) |
76 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β π = {π₯}) |
77 | | simplr 767 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) |
78 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
(Baseβ((subringAlg βπΈ)β(BaseβπΉ))) = (Baseβ((subringAlg βπΈ)β(BaseβπΉ))) |
79 | 78, 5 | lbsss 20680 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β
(LBasisβ((subringAlg βπΈ)β(BaseβπΉ))) β π β (Baseβ((subringAlg
βπΈ)β(BaseβπΉ)))) |
80 | 77, 79 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β π β (Baseβ((subringAlg
βπΈ)β(BaseβπΉ)))) |
81 | 76, 80 | eqsstrrd 4020 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β {π₯} β (Baseβ((subringAlg
βπΈ)β(BaseβπΉ)))) |
82 | 59 | snss 4788 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π₯ β (Baseβ((subringAlg
βπΈ)β(BaseβπΉ))) β {π₯} β (Baseβ((subringAlg
βπΈ)β(BaseβπΉ)))) |
83 | 81, 82 | sylibr 233 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β π₯ β (Baseβ((subringAlg βπΈ)β(BaseβπΉ)))) |
84 | | eqidd 2733 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β ((subringAlg βπΈ)β(BaseβπΉ)) = ((subringAlg βπΈ)β(BaseβπΉ))) |
85 | 84, 63 | srabase 20784 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β (BaseβπΈ) = (Baseβ((subringAlg βπΈ)β(BaseβπΉ)))) |
86 | 83, 85 | eleqtrrd 2836 |
. . . . . . . . . . . . . . . . . 18
β’ ((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β π₯ β (BaseβπΈ)) |
87 | 86 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β π₯ β (BaseβπΈ)) |
88 | | eqid 2732 |
. . . . . . . . . . . . . . . . . 18
β’
(.rβπΈ) = (.rβπΈ) |
89 | 27, 88 | ringcl 20066 |
. . . . . . . . . . . . . . . . 17
β’ ((πΈ β Ring β§ (π£βπ₯) β (BaseβπΈ) β§ π₯ β (BaseβπΈ)) β ((π£βπ₯)(.rβπΈ)π₯) β (BaseβπΈ)) |
90 | 62, 75, 87, 89 | syl3anc 1371 |
. . . . . . . . . . . . . . . 16
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β ((π£βπ₯)(.rβπΈ)π₯) β (BaseβπΈ)) |
91 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ π = π₯) β π = π₯) |
92 | 91 | fveq2d 6892 |
. . . . . . . . . . . . . . . . 17
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ π = π₯) β (π£βπ) = (π£βπ₯)) |
93 | 92, 91 | oveq12d 7423 |
. . . . . . . . . . . . . . . 16
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ π = π₯) β ((π£βπ)(.rβπΈ)π) = ((π£βπ₯)(.rβπΈ)π₯)) |
94 | 27, 58, 60, 90, 93 | gsumsnd 19814 |
. . . . . . . . . . . . . . 15
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β (πΈ Ξ£g (π β {π₯} β¦ ((π£βπ)(.rβπΈ)π))) = ((π£βπ₯)(.rβπΈ)π₯)) |
95 | 1 | fveq2d 6892 |
. . . . . . . . . . . . . . . . . 18
β’ (πΈ/FldExtπΉ β
(.rβπΉ) =
(.rβ(πΈ
βΎs (BaseβπΉ)))) |
96 | 43, 88 | ressmulr 17248 |
. . . . . . . . . . . . . . . . . . 19
β’
((BaseβπΉ)
β (SubRingβπΈ)
β (.rβπΈ) = (.rβ(πΈ βΎs (BaseβπΉ)))) |
97 | 26, 96 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’ (πΈ/FldExtπΉ β
(.rβπΈ) =
(.rβ(πΈ
βΎs (BaseβπΉ)))) |
98 | 95, 97 | eqtr4d 2775 |
. . . . . . . . . . . . . . . . 17
β’ (πΈ/FldExtπΉ β
(.rβπΉ) =
(.rβπΈ)) |
99 | 98 | ad4antr 730 |
. . . . . . . . . . . . . . . 16
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β (.rβπΉ) = (.rβπΈ)) |
100 | 99 | oveqd 7422 |
. . . . . . . . . . . . . . 15
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β ((π£βπ₯)(.rβπΉ)π₯) = ((π£βπ₯)(.rβπΈ)π₯)) |
101 | 94, 100 | eqtr4d 2775 |
. . . . . . . . . . . . . 14
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β (πΈ Ξ£g (π β {π₯} β¦ ((π£βπ)(.rβπΈ)π))) = ((π£βπ₯)(.rβπΉ)π₯)) |
102 | 35, 53, 101 | 3eqtr3d 2780 |
. . . . . . . . . . . . 13
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π))) = ((π£βπ₯)(.rβπΉ)π₯)) |
103 | 102 | adantlr 713 |
. . . . . . . . . . . 12
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π’ β (BaseβπΈ)) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π))) = ((π£βπ₯)(.rβπΉ)π₯)) |
104 | | drngring 20314 |
. . . . . . . . . . . . . . 15
β’ (πΉ β DivRing β πΉ β Ring) |
105 | 44, 46, 104 | 3syl 18 |
. . . . . . . . . . . . . 14
β’ (πΈ/FldExtπΉ β πΉ β Ring) |
106 | 105 | ad5antr 732 |
. . . . . . . . . . . . 13
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π’ β (BaseβπΈ)) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β πΉ β Ring) |
107 | 74 | adantlr 713 |
. . . . . . . . . . . . 13
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π’ β (BaseβπΈ)) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β (π£βπ₯) β (BaseβπΉ)) |
108 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . 20
β’
(1rβπΈ) = (1rβπΈ) |
109 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . 20
β’
(UnitβπΈ) =
(UnitβπΈ) |
110 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . 20
β’
(invrβπΈ) = (invrβπΈ) |
111 | | simp-5l 783 |
. . . . . . . . . . . . . . . . . . . . 21
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β πΈ/FldExtπΉ) |
112 | 111, 55 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β πΈ β Ring) |
113 | 87 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β π₯ β (BaseβπΈ)) |
114 | 75 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β (π£βπ₯) β (BaseβπΈ)) |
115 | 38 | simprbi 497 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (πΈ β Field β πΈ β CRing) |
116 | 111, 37, 115 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β πΈ β CRing) |
117 | 27, 88 | crngcom 20067 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((πΈ β CRing β§ π₯ β (BaseβπΈ) β§ (π£βπ₯) β (BaseβπΈ)) β (π₯(.rβπΈ)(π£βπ₯)) = ((π£βπ₯)(.rβπΈ)π₯)) |
118 | 116, 113,
114, 117 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . . . 21
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β (π₯(.rβπΈ)(π£βπ₯)) = ((π£βπ₯)(.rβπΈ)π₯)) |
119 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) |
120 | 52 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β (πΈ Ξ£g (π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π))) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g (π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) |
121 | 34 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β (π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)) = (π β {π₯} β¦ ((π£βπ)(.rβπΈ)π))) |
122 | 121 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β (πΈ Ξ£g (π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π))) = (πΈ Ξ£g (π β {π₯} β¦ ((π£βπ)(.rβπΈ)π)))) |
123 | 119, 120,
122 | 3eqtr2d 2778 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β (1rβπΈ) = (πΈ Ξ£g (π β {π₯} β¦ ((π£βπ)(.rβπΈ)π)))) |
124 | 94 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β (πΈ Ξ£g (π β {π₯} β¦ ((π£βπ)(.rβπΈ)π))) = ((π£βπ₯)(.rβπΈ)π₯)) |
125 | 123, 124 | eqtrd 2772 |
. . . . . . . . . . . . . . . . . . . . 21
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β (1rβπΈ) = ((π£βπ₯)(.rβπΈ)π₯)) |
126 | 118, 125 | eqtr4d 2775 |
. . . . . . . . . . . . . . . . . . . 20
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β (π₯(.rβπΈ)(π£βπ₯)) = (1rβπΈ)) |
127 | 125 | eqcomd 2738 |
. . . . . . . . . . . . . . . . . . . 20
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β ((π£βπ₯)(.rβπΈ)π₯) = (1rβπΈ)) |
128 | 27, 88, 108, 109, 110, 112, 113, 114, 126, 127 | invrvald 22169 |
. . . . . . . . . . . . . . . . . . 19
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β (π₯ β (UnitβπΈ) β§ ((invrβπΈ)βπ₯) = (π£βπ₯))) |
129 | 128 | simpld 495 |
. . . . . . . . . . . . . . . . . 18
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β π₯ β (UnitβπΈ)) |
130 | 109, 110 | unitinvinv 20197 |
. . . . . . . . . . . . . . . . . 18
β’ ((πΈ β Ring β§ π₯ β (UnitβπΈ)) β
((invrβπΈ)β((invrβπΈ)βπ₯)) = π₯) |
131 | 62, 129, 130 | syl2an2r 683 |
. . . . . . . . . . . . . . . . 17
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β ((invrβπΈ)β((invrβπΈ)βπ₯)) = π₯) |
132 | 111, 37, 39 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β πΈ β DivRing) |
133 | 111, 26 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β (BaseβπΉ) β (SubRingβπΈ)) |
134 | 111, 1 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β πΉ = (πΈ βΎs (BaseβπΉ))) |
135 | 111, 44, 46 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β πΉ β DivRing) |
136 | 134, 135 | eqeltrrd 2834 |
. . . . . . . . . . . . . . . . . 18
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β (πΈ βΎs (BaseβπΉ)) β
DivRing) |
137 | 128 | simprd 496 |
. . . . . . . . . . . . . . . . . . . 20
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β ((invrβπΈ)βπ₯) = (π£βπ₯)) |
138 | 74 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β (π£βπ₯) β (BaseβπΉ)) |
139 | 137, 138 | eqeltrd 2833 |
. . . . . . . . . . . . . . . . . . 19
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β ((invrβπΈ)βπ₯) β (BaseβπΉ)) |
140 | | eqidd 2733 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (πΈ/FldExtπΉ β
(0gβπΈ) =
(0gβπΈ)) |
141 | 24, 140, 29 | sralmod0 20802 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (πΈ/FldExtπΉ β
(0gβπΈ) =
(0gβ((subringAlg βπΈ)β(BaseβπΉ)))) |
142 | 141 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β (0gβπΈ) =
(0gβ((subringAlg βπΈ)β(BaseβπΉ)))) |
143 | 5 | lbslinds 21379 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’
(LBasisβ((subringAlg βπΈ)β(BaseβπΉ))) β (LIndSβ((subringAlg
βπΈ)β(BaseβπΉ))) |
144 | 143, 10 | sselid 3979 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β π β (LIndSβ((subringAlg
βπΈ)β(BaseβπΉ)))) |
145 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’
(0gβ((subringAlg βπΈ)β(BaseβπΉ))) = (0gβ((subringAlg
βπΈ)β(BaseβπΉ))) |
146 | 145 | 0nellinds 32471 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’
((((subringAlg βπΈ)β(BaseβπΉ)) β LVec β§ π β (LIndSβ((subringAlg
βπΈ)β(BaseβπΉ)))) β Β¬
(0gβ((subringAlg βπΈ)β(BaseβπΉ))) β π) |
147 | 4, 144, 146 | syl2an2r 683 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β Β¬
(0gβ((subringAlg βπΈ)β(BaseβπΉ))) β π) |
148 | 142, 147 | eqneltrd 2853 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β Β¬ (0gβπΈ) β π) |
149 | 148 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . . 21
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β Β¬ (0gβπΈ) β π) |
150 | | nelne2 3040 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π₯ β π β§ Β¬ (0gβπΈ) β π) β π₯ β (0gβπΈ)) |
151 | 68, 149, 150 | syl2an2r 683 |
. . . . . . . . . . . . . . . . . . . 20
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β π₯ β (0gβπΈ)) |
152 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(0gβπΈ) = (0gβπΈ) |
153 | 27, 152, 110 | drnginvrn0 20330 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((πΈ β DivRing β§ π₯ β (BaseβπΈ) β§ π₯ β (0gβπΈ)) β ((invrβπΈ)βπ₯) β (0gβπΈ)) |
154 | 132, 113,
151, 153 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . 19
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β ((invrβπΈ)βπ₯) β (0gβπΈ)) |
155 | | eldifsn 4789 |
. . . . . . . . . . . . . . . . . . 19
β’
(((invrβπΈ)βπ₯) β ((BaseβπΉ) β {(0gβπΈ)}) β
(((invrβπΈ)βπ₯) β (BaseβπΉ) β§ ((invrβπΈ)βπ₯) β (0gβπΈ))) |
156 | 139, 154,
155 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . 18
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β ((invrβπΈ)βπ₯) β ((BaseβπΉ) β {(0gβπΈ)})) |
157 | | fveq2 6888 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π = ((invrβπΈ)βπ₯) β ((invrβπΈ)βπ) = ((invrβπΈ)β((invrβπΈ)βπ₯))) |
158 | 157 | eleq1d 2818 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = ((invrβπΈ)βπ₯) β (((invrβπΈ)βπ) β (BaseβπΉ) β ((invrβπΈ)β((invrβπΈ)βπ₯)) β (BaseβπΉ))) |
159 | 43, 152, 110 | issubdrg 20381 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((πΈ β DivRing β§
(BaseβπΉ) β
(SubRingβπΈ)) β
((πΈ βΎs
(BaseβπΉ)) β
DivRing β βπ
β ((BaseβπΉ)
β {(0gβπΈ)})((invrβπΈ)βπ) β (BaseβπΉ))) |
160 | 159 | biimpa 477 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((πΈ β DivRing β§
(BaseβπΉ) β
(SubRingβπΈ)) β§
(πΈ βΎs
(BaseβπΉ)) β
DivRing) β βπ
β ((BaseβπΉ)
β {(0gβπΈ)})((invrβπΈ)βπ) β (BaseβπΉ)) |
161 | 160 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((πΈ β DivRing β§
(BaseβπΉ) β
(SubRingβπΈ)) β§
(πΈ βΎs
(BaseβπΉ)) β
DivRing) β§ ((invrβπΈ)βπ₯) β ((BaseβπΉ) β {(0gβπΈ)})) β βπ β ((BaseβπΉ) β
{(0gβπΈ)})((invrβπΈ)βπ) β (BaseβπΉ)) |
162 | | simpr 485 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((πΈ β DivRing β§
(BaseβπΉ) β
(SubRingβπΈ)) β§
(πΈ βΎs
(BaseβπΉ)) β
DivRing) β§ ((invrβπΈ)βπ₯) β ((BaseβπΉ) β {(0gβπΈ)})) β
((invrβπΈ)βπ₯) β ((BaseβπΉ) β {(0gβπΈ)})) |
163 | 158, 161,
162 | rspcdva 3613 |
. . . . . . . . . . . . . . . . . 18
β’ ((((πΈ β DivRing β§
(BaseβπΉ) β
(SubRingβπΈ)) β§
(πΈ βΎs
(BaseβπΉ)) β
DivRing) β§ ((invrβπΈ)βπ₯) β ((BaseβπΉ) β {(0gβπΈ)})) β
((invrβπΈ)β((invrβπΈ)βπ₯)) β (BaseβπΉ)) |
164 | 132, 133,
136, 156, 163 | syl1111anc 838 |
. . . . . . . . . . . . . . . . 17
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β ((invrβπΈ)β((invrβπΈ)βπ₯)) β (BaseβπΉ)) |
165 | 131, 164 | eqeltrrd 2834 |
. . . . . . . . . . . . . . . 16
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β π₯ β (BaseβπΉ)) |
166 | 165 | adantrl 714 |
. . . . . . . . . . . . . . 15
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (π£ finSupp
(0gβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π))))) β π₯ β (BaseβπΉ)) |
167 | 27, 108 | ringidcl 20076 |
. . . . . . . . . . . . . . . . . 18
β’ (πΈ β Ring β
(1rβπΈ)
β (BaseβπΈ)) |
168 | 61, 167 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ ((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β (1rβπΈ) β (BaseβπΈ)) |
169 | 168, 85 | eleqtrd 2835 |
. . . . . . . . . . . . . . . 16
β’ ((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β (1rβπΈ) β
(Baseβ((subringAlg βπΈ)β(BaseβπΉ)))) |
170 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
β’
(Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) =
(Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) |
171 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
β’
(Scalarβ((subringAlg βπΈ)β(BaseβπΉ))) = (Scalarβ((subringAlg
βπΈ)β(BaseβπΉ))) |
172 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
β’
(0gβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) =
(0gβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) |
173 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
β’ (
Β·π β((subringAlg βπΈ)β(BaseβπΉ))) = (
Β·π β((subringAlg βπΈ)β(BaseβπΉ))) |
174 | 4 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . 18
β’ ((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β ((subringAlg βπΈ)β(BaseβπΉ)) β LVec) |
175 | | lveclmod 20709 |
. . . . . . . . . . . . . . . . . 18
β’
(((subringAlg βπΈ)β(BaseβπΉ)) β LVec β ((subringAlg
βπΈ)β(BaseβπΉ)) β LMod) |
176 | 174, 175 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ ((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β ((subringAlg βπΈ)β(BaseβπΉ)) β LMod) |
177 | 78, 170, 171, 172, 173, 176, 77 | lbslsp 32481 |
. . . . . . . . . . . . . . . 16
β’ ((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β ((1rβπΈ) β
(Baseβ((subringAlg βπΈ)β(BaseβπΉ))) β βπ£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)(π£ finSupp
(0gβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))))) |
178 | 169, 177 | mpbid 231 |
. . . . . . . . . . . . . . 15
β’ ((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β βπ£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)(π£ finSupp
(0gβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) β§ (1rβπΈ) = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π))))) |
179 | 166, 178 | r19.29a 3162 |
. . . . . . . . . . . . . 14
β’ ((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β π₯ β (BaseβπΉ)) |
180 | 179 | ad2antrr 724 |
. . . . . . . . . . . . 13
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π’ β (BaseβπΈ)) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β π₯ β (BaseβπΉ)) |
181 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(.rβπΉ) = (.rβπΉ) |
182 | 25, 181 | ringcl 20066 |
. . . . . . . . . . . . 13
β’ ((πΉ β Ring β§ (π£βπ₯) β (BaseβπΉ) β§ π₯ β (BaseβπΉ)) β ((π£βπ₯)(.rβπΉ)π₯) β (BaseβπΉ)) |
183 | 106, 107,
180, 182 | syl3anc 1371 |
. . . . . . . . . . . 12
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π’ β (BaseβπΈ)) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β ((π£βπ₯)(.rβπΉ)π₯) β (BaseβπΉ)) |
184 | 103, 183 | eqeltrd 2833 |
. . . . . . . . . . 11
β’
((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π’ β (BaseβπΈ)) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π))) β (BaseβπΉ)) |
185 | 184 | ad2antrr 724 |
. . . . . . . . . 10
β’
((((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π’ β (BaseβπΈ)) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ π£ finSupp
(0gβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ))))) β§ π’ = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g (π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g
(π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π))) β (BaseβπΉ)) |
186 | 22, 185 | eqeltrd 2833 |
. . . . . . . . 9
β’
((((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π’ β (BaseβπΈ)) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ π£ finSupp
(0gβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ))))) β§ π’ = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g (π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))) β π’ β (BaseβπΉ)) |
187 | 186 | anasss 467 |
. . . . . . . 8
β’
(((((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π’ β (BaseβπΈ)) β§ π£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)) β§ (π£ finSupp
(0gβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) β§ π’ = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g (π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π))))) β π’ β (BaseβπΉ)) |
188 | 85 | eleq2d 2819 |
. . . . . . . . . 10
β’ ((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β (π’ β (BaseβπΈ) β π’ β (Baseβ((subringAlg βπΈ)β(BaseβπΉ))))) |
189 | 78, 170, 171, 172, 173, 176, 77 | lbslsp 32481 |
. . . . . . . . . 10
β’ ((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β (π’ β (Baseβ((subringAlg βπΈ)β(BaseβπΉ))) β βπ£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)(π£ finSupp
(0gβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) β§ π’ = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g (π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))))) |
190 | 188, 189 | bitrd 278 |
. . . . . . . . 9
β’ ((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β (π’ β (BaseβπΈ) β βπ£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)(π£ finSupp
(0gβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) β§ π’ = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g (π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π)))))) |
191 | 190 | biimpa 477 |
. . . . . . . 8
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π’ β (BaseβπΈ)) β βπ£ β
((Baseβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) βm π)(π£ finSupp
(0gβ(Scalarβ((subringAlg βπΈ)β(BaseβπΉ)))) β§ π’ = (((subringAlg βπΈ)β(BaseβπΉ)) Ξ£g (π β π β¦ ((π£βπ)( Β·π
β((subringAlg βπΈ)β(BaseβπΉ)))π))))) |
192 | 187, 191 | r19.29a 3162 |
. . . . . . 7
β’
(((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β§ π’ β (BaseβπΈ)) β π’ β (BaseβπΉ)) |
193 | 192 | ex 413 |
. . . . . 6
β’ ((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β (π’ β (BaseβπΈ) β π’ β (BaseβπΉ))) |
194 | 193 | ssrdv 3987 |
. . . . 5
β’ ((((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β§ π = {π₯}) β (BaseβπΈ) β (BaseβπΉ)) |
195 | 21, 194 | exlimddv 1938 |
. . . 4
β’ (((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ π β (LBasisβ((subringAlg
βπΈ)β(BaseβπΉ)))) β (BaseβπΈ) β (BaseβπΉ)) |
196 | 9, 195 | exlimddv 1938 |
. . 3
β’ ((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β (BaseβπΈ) β (BaseβπΉ)) |
197 | | simpr 485 |
. . . 4
β’ (((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ (BaseβπΈ) β (BaseβπΉ)) β (BaseβπΈ) β (BaseβπΉ)) |
198 | 37 | ad2antrr 724 |
. . . 4
β’ (((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ (BaseβπΈ) β (BaseβπΉ)) β πΈ β Field) |
199 | | fvexd 6903 |
. . . 4
β’ (((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ (BaseβπΈ) β (BaseβπΉ)) β (BaseβπΉ) β V) |
200 | 43, 27 | ressid2 17173 |
. . . 4
β’
(((BaseβπΈ)
β (BaseβπΉ)
β§ πΈ β Field β§
(BaseβπΉ) β V)
β (πΈ
βΎs (BaseβπΉ)) = πΈ) |
201 | 197, 198,
199, 200 | syl3anc 1371 |
. . 3
β’ (((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β§ (BaseβπΈ) β (BaseβπΉ)) β (πΈ βΎs (BaseβπΉ)) = πΈ) |
202 | 196, 201 | mpdan 685 |
. 2
β’ ((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β (πΈ βΎs (BaseβπΉ)) = πΈ) |
203 | 2, 202 | eqtr2d 2773 |
1
β’ ((πΈ/FldExtπΉ β§ (πΈ[:]πΉ) = 1) β πΈ = πΉ) |