Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extdg1id Structured version   Visualization version   GIF version

Theorem extdg1id 33640
Description: If the degree of the extension 𝐸/FldExt𝐹 is 1, then 𝐸 and 𝐹 are identical. (Contributed by Thierry Arnoux, 6-Aug-2023.)
Assertion
Ref Expression
extdg1id ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → 𝐸 = 𝐹)

Proof of Theorem extdg1id
Dummy variables 𝑎 𝑥 𝑏 𝑖 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldextress 33626 . . 3 (𝐸/FldExt𝐹𝐹 = (𝐸s (Base‘𝐹)))
21adantr 480 . 2 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → 𝐹 = (𝐸s (Base‘𝐹)))
3 fldextsralvec 33630 . . . . . . 7 (𝐸/FldExt𝐹 → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec)
43adantr 480 . . . . . 6 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec)
5 eqid 2729 . . . . . . 7 (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))
65lbsex 21090 . . . . . 6 (((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec → (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ≠ ∅)
74, 6syl 17 . . . . 5 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ≠ ∅)
8 n0 4306 . . . . 5 ((LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
97, 8sylib 218 . . . 4 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → ∃𝑏 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
10 simpr 484 . . . . . 6 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
115dimval 33575 . . . . . . . 8 ((((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (♯‘𝑏))
124, 11sylan 580 . . . . . . 7 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (♯‘𝑏))
13 extdgval 33628 . . . . . . . . . 10 (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
1413adantr 480 . . . . . . . . 9 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
15 simpr 484 . . . . . . . . 9 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → (𝐸[:]𝐹) = 1)
1614, 15eqtr3d 2766 . . . . . . . 8 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = 1)
1716adantr 480 . . . . . . 7 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = 1)
1812, 17eqtr3d 2766 . . . . . 6 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (♯‘𝑏) = 1)
19 hash1snb 14344 . . . . . . 7 (𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) → ((♯‘𝑏) = 1 ↔ ∃𝑥 𝑏 = {𝑥}))
2019biimpa 476 . . . . . 6 ((𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∧ (♯‘𝑏) = 1) → ∃𝑥 𝑏 = {𝑥})
2110, 18, 20syl2anc 584 . . . . 5 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → ∃𝑥 𝑏 = {𝑥})
22 simpr 484 . . . . . . . . . 10 ((((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ 𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))))) ∧ 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))
23 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → 𝑏 = {𝑥})
24 eqidd 2730 . . . . . . . . . . . . . . . . . . . 20 (𝐸/FldExt𝐹 → ((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹)))
25 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝐹) = (Base‘𝐹)
2625fldextsubrg 33624 . . . . . . . . . . . . . . . . . . . . 21 (𝐸/FldExt𝐹 → (Base‘𝐹) ∈ (SubRing‘𝐸))
27 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝐸) = (Base‘𝐸)
2827subrgss 20475 . . . . . . . . . . . . . . . . . . . . 21 ((Base‘𝐹) ∈ (SubRing‘𝐸) → (Base‘𝐹) ⊆ (Base‘𝐸))
2926, 28syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝐸/FldExt𝐹 → (Base‘𝐹) ⊆ (Base‘𝐸))
3024, 29sravsca 21103 . . . . . . . . . . . . . . . . . . 19 (𝐸/FldExt𝐹 → (.r𝐸) = ( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
3130eqcomd 2735 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹 → ( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (.r𝐸))
3231ad5antr 734 . . . . . . . . . . . . . . . . 17 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ 𝑖𝑏) → ( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (.r𝐸))
3332oveqd 7370 . . . . . . . . . . . . . . . 16 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ 𝑖𝑏) → ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖) = ((𝑣𝑖)(.r𝐸)𝑖))
3423, 33mpteq12dva 5181 . . . . . . . . . . . . . . 15 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)) = (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖)))
3534oveq2d 7369 . . . . . . . . . . . . . 14 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (𝐸 Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = (𝐸 Σg (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖))))
36 eqid 2729 . . . . . . . . . . . . . . . . 17 ((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹))
37 fldextfld1 33622 . . . . . . . . . . . . . . . . . . 19 (𝐸/FldExt𝐹𝐸 ∈ Field)
38 isfld 20643 . . . . . . . . . . . . . . . . . . . 20 (𝐸 ∈ Field ↔ (𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing))
3938simplbi 497 . . . . . . . . . . . . . . . . . . 19 (𝐸 ∈ Field → 𝐸 ∈ DivRing)
4037, 39syl 17 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹𝐸 ∈ DivRing)
4140adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐸/FldExt𝐹𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → 𝐸 ∈ DivRing)
4226adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐸/FldExt𝐹𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (Base‘𝐹) ∈ (SubRing‘𝐸))
43 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝐸s (Base‘𝐹)) = (𝐸s (Base‘𝐹))
44 fldextfld2 33623 . . . . . . . . . . . . . . . . . . . 20 (𝐸/FldExt𝐹𝐹 ∈ Field)
45 isfld 20643 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing))
4645simplbi 497 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ Field → 𝐹 ∈ DivRing)
4744, 46syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐸/FldExt𝐹𝐹 ∈ DivRing)
481, 47eqeltrrd 2829 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹 → (𝐸s (Base‘𝐹)) ∈ DivRing)
4948adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐸/FldExt𝐹𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (𝐸s (Base‘𝐹)) ∈ DivRing)
50 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝐸/FldExt𝐹𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
5136, 41, 42, 43, 49, 50drgextgsum 33569 . . . . . . . . . . . . . . . 16 ((𝐸/FldExt𝐹𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (𝐸 Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))
5251adantlr 715 . . . . . . . . . . . . . . 15 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (𝐸 Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))
5352ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (𝐸 Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))
54 drngring 20639 . . . . . . . . . . . . . . . . . . 19 (𝐸 ∈ DivRing → 𝐸 ∈ Ring)
5537, 39, 543syl 18 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹𝐸 ∈ Ring)
56 ringmnd 20146 . . . . . . . . . . . . . . . . . 18 (𝐸 ∈ Ring → 𝐸 ∈ Mnd)
5755, 56syl 17 . . . . . . . . . . . . . . . . 17 (𝐸/FldExt𝐹𝐸 ∈ Mnd)
5857ad4antr 732 . . . . . . . . . . . . . . . 16 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → 𝐸 ∈ Mnd)
59 vex 3442 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
6059a1i 11 . . . . . . . . . . . . . . . 16 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → 𝑥 ∈ V)
6155ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → 𝐸 ∈ Ring)
6261adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → 𝐸 ∈ Ring)
6329ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (Base‘𝐹) ⊆ (Base‘𝐸))
6463adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (Base‘𝐹) ⊆ (Base‘𝐸))
65 elmapi 8783 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏) → 𝑣:𝑏⟶(Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))))
6665adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → 𝑣:𝑏⟶(Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))))
67 vsnid 4617 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ {𝑥}
6867, 23eleqtrrid 2835 . . . . . . . . . . . . . . . . . . . 20 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → 𝑥𝑏)
6966, 68ffvelcdmd 7023 . . . . . . . . . . . . . . . . . . 19 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (𝑣𝑥) ∈ (Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))))
7024, 29srasca 21102 . . . . . . . . . . . . . . . . . . . . . 22 (𝐸/FldExt𝐹 → (𝐸s (Base‘𝐹)) = (Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
711, 70eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 (𝐸/FldExt𝐹𝐹 = (Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
7271fveq2d 6830 . . . . . . . . . . . . . . . . . . . 20 (𝐸/FldExt𝐹 → (Base‘𝐹) = (Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))))
7372ad4antr 732 . . . . . . . . . . . . . . . . . . 19 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (Base‘𝐹) = (Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))))
7469, 73eleqtrrd 2831 . . . . . . . . . . . . . . . . . 18 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (𝑣𝑥) ∈ (Base‘𝐹))
7564, 74sseldd 3938 . . . . . . . . . . . . . . . . 17 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (𝑣𝑥) ∈ (Base‘𝐸))
76 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → 𝑏 = {𝑥})
77 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
78 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . 23 (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹)))
7978, 5lbsss 20999 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
8077, 79syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
8176, 80eqsstrrd 3973 . . . . . . . . . . . . . . . . . . . 20 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → {𝑥} ⊆ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
8259snss 4739 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ↔ {𝑥} ⊆ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
8381, 82sylibr 234 . . . . . . . . . . . . . . . . . . 19 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → 𝑥 ∈ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
84 eqidd 2730 . . . . . . . . . . . . . . . . . . . 20 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹)))
8584, 63srabase 21099 . . . . . . . . . . . . . . . . . . 19 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (Base‘𝐸) = (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
8683, 85eleqtrrd 2831 . . . . . . . . . . . . . . . . . 18 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → 𝑥 ∈ (Base‘𝐸))
8786adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → 𝑥 ∈ (Base‘𝐸))
88 eqid 2729 . . . . . . . . . . . . . . . . . 18 (.r𝐸) = (.r𝐸)
8927, 88ringcl 20153 . . . . . . . . . . . . . . . . 17 ((𝐸 ∈ Ring ∧ (𝑣𝑥) ∈ (Base‘𝐸) ∧ 𝑥 ∈ (Base‘𝐸)) → ((𝑣𝑥)(.r𝐸)𝑥) ∈ (Base‘𝐸))
9062, 75, 87, 89syl3anc 1373 . . . . . . . . . . . . . . . 16 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → ((𝑣𝑥)(.r𝐸)𝑥) ∈ (Base‘𝐸))
91 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ 𝑖 = 𝑥) → 𝑖 = 𝑥)
9291fveq2d 6830 . . . . . . . . . . . . . . . . 17 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ 𝑖 = 𝑥) → (𝑣𝑖) = (𝑣𝑥))
9392, 91oveq12d 7371 . . . . . . . . . . . . . . . 16 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ 𝑖 = 𝑥) → ((𝑣𝑖)(.r𝐸)𝑖) = ((𝑣𝑥)(.r𝐸)𝑥))
9427, 58, 60, 90, 93gsumsnd 19849 . . . . . . . . . . . . . . 15 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (𝐸 Σg (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖))) = ((𝑣𝑥)(.r𝐸)𝑥))
951fveq2d 6830 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹 → (.r𝐹) = (.r‘(𝐸s (Base‘𝐹))))
9643, 88ressmulr 17229 . . . . . . . . . . . . . . . . . . 19 ((Base‘𝐹) ∈ (SubRing‘𝐸) → (.r𝐸) = (.r‘(𝐸s (Base‘𝐹))))
9726, 96syl 17 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹 → (.r𝐸) = (.r‘(𝐸s (Base‘𝐹))))
9895, 97eqtr4d 2767 . . . . . . . . . . . . . . . . 17 (𝐸/FldExt𝐹 → (.r𝐹) = (.r𝐸))
9998ad4antr 732 . . . . . . . . . . . . . . . 16 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (.r𝐹) = (.r𝐸))
10099oveqd 7370 . . . . . . . . . . . . . . 15 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → ((𝑣𝑥)(.r𝐹)𝑥) = ((𝑣𝑥)(.r𝐸)𝑥))
10194, 100eqtr4d 2767 . . . . . . . . . . . . . 14 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (𝐸 Σg (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖))) = ((𝑣𝑥)(.r𝐹)𝑥))
10235, 53, 1013eqtr3d 2772 . . . . . . . . . . . . 13 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = ((𝑣𝑥)(.r𝐹)𝑥))
103102adantlr 715 . . . . . . . . . . . 12 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = ((𝑣𝑥)(.r𝐹)𝑥))
104 drngring 20639 . . . . . . . . . . . . . . 15 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
10544, 46, 1043syl 18 . . . . . . . . . . . . . 14 (𝐸/FldExt𝐹𝐹 ∈ Ring)
106105ad5antr 734 . . . . . . . . . . . . 13 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → 𝐹 ∈ Ring)
10774adantlr 715 . . . . . . . . . . . . 13 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (𝑣𝑥) ∈ (Base‘𝐹))
108 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (1r𝐸) = (1r𝐸)
109 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (Unit‘𝐸) = (Unit‘𝐸)
110 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (invr𝐸) = (invr𝐸)
111 simp-5l 784 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝐸/FldExt𝐹)
112111, 55syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝐸 ∈ Ring)
11387adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝑥 ∈ (Base‘𝐸))
11475adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝑣𝑥) ∈ (Base‘𝐸))
11538simprbi 496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐸 ∈ Field → 𝐸 ∈ CRing)
116111, 37, 1153syl 18 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝐸 ∈ CRing)
11727, 88crngcom 20154 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐸 ∈ CRing ∧ 𝑥 ∈ (Base‘𝐸) ∧ (𝑣𝑥) ∈ (Base‘𝐸)) → (𝑥(.r𝐸)(𝑣𝑥)) = ((𝑣𝑥)(.r𝐸)𝑥))
118116, 113, 114, 117syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝑥(.r𝐸)(𝑣𝑥)) = ((𝑣𝑥)(.r𝐸)𝑥))
119 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))
12052ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝐸 Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))
12134adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)) = (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖)))
122121oveq2d 7369 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝐸 Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = (𝐸 Σg (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖))))
123119, 120, 1223eqtr2d 2770 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (1r𝐸) = (𝐸 Σg (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖))))
12494adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝐸 Σg (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖))) = ((𝑣𝑥)(.r𝐸)𝑥))
125123, 124eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (1r𝐸) = ((𝑣𝑥)(.r𝐸)𝑥))
126118, 125eqtr4d 2767 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝑥(.r𝐸)(𝑣𝑥)) = (1r𝐸))
127125eqcomd 2735 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ((𝑣𝑥)(.r𝐸)𝑥) = (1r𝐸))
12827, 88, 108, 109, 110, 112, 113, 114, 126, 127invrvald 22579 . . . . . . . . . . . . . . . . . . 19 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝑥 ∈ (Unit‘𝐸) ∧ ((invr𝐸)‘𝑥) = (𝑣𝑥)))
129128simpld 494 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝑥 ∈ (Unit‘𝐸))
130109, 110unitinvinv 20294 . . . . . . . . . . . . . . . . . 18 ((𝐸 ∈ Ring ∧ 𝑥 ∈ (Unit‘𝐸)) → ((invr𝐸)‘((invr𝐸)‘𝑥)) = 𝑥)
13162, 129, 130syl2an2r 685 . . . . . . . . . . . . . . . . 17 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ((invr𝐸)‘((invr𝐸)‘𝑥)) = 𝑥)
132111, 37, 393syl 18 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝐸 ∈ DivRing)
133111, 26syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (Base‘𝐹) ∈ (SubRing‘𝐸))
134111, 1syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝐹 = (𝐸s (Base‘𝐹)))
135111, 44, 463syl 18 . . . . . . . . . . . . . . . . . . 19 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝐹 ∈ DivRing)
136134, 135eqeltrrd 2829 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝐸s (Base‘𝐹)) ∈ DivRing)
137128simprd 495 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ((invr𝐸)‘𝑥) = (𝑣𝑥))
13874adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝑣𝑥) ∈ (Base‘𝐹))
139137, 138eqeltrd 2828 . . . . . . . . . . . . . . . . . . 19 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ((invr𝐸)‘𝑥) ∈ (Base‘𝐹))
140 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐸/FldExt𝐹 → (0g𝐸) = (0g𝐸))
14124, 140, 29sralmod0 21110 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐸/FldExt𝐹 → (0g𝐸) = (0g‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
142141ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (0g𝐸) = (0g‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
1435lbslinds 21758 . . . . . . . . . . . . . . . . . . . . . . . . 25 (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ⊆ (LIndS‘((subringAlg ‘𝐸)‘(Base‘𝐹)))
144143, 10sselid 3935 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → 𝑏 ∈ (LIndS‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
145 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0g‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (0g‘((subringAlg ‘𝐸)‘(Base‘𝐹)))
1461450nellinds 33320 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec ∧ 𝑏 ∈ (LIndS‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → ¬ (0g‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∈ 𝑏)
1474, 144, 146syl2an2r 685 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → ¬ (0g‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∈ 𝑏)
148142, 147eqneltrd 2848 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → ¬ (0g𝐸) ∈ 𝑏)
149148ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ¬ (0g𝐸) ∈ 𝑏)
150 nelne2 3023 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝑏 ∧ ¬ (0g𝐸) ∈ 𝑏) → 𝑥 ≠ (0g𝐸))
15168, 149, 150syl2an2r 685 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝑥 ≠ (0g𝐸))
152 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (0g𝐸) = (0g𝐸)
15327, 152, 110drnginvrn0 20657 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 ∈ DivRing ∧ 𝑥 ∈ (Base‘𝐸) ∧ 𝑥 ≠ (0g𝐸)) → ((invr𝐸)‘𝑥) ≠ (0g𝐸))
154132, 113, 151, 153syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ((invr𝐸)‘𝑥) ≠ (0g𝐸))
155 eldifsn 4740 . . . . . . . . . . . . . . . . . . 19 (((invr𝐸)‘𝑥) ∈ ((Base‘𝐹) ∖ {(0g𝐸)}) ↔ (((invr𝐸)‘𝑥) ∈ (Base‘𝐹) ∧ ((invr𝐸)‘𝑥) ≠ (0g𝐸)))
156139, 154, 155sylanbrc 583 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ((invr𝐸)‘𝑥) ∈ ((Base‘𝐹) ∖ {(0g𝐸)}))
157 fveq2 6826 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = ((invr𝐸)‘𝑥) → ((invr𝐸)‘𝑎) = ((invr𝐸)‘((invr𝐸)‘𝑥)))
158157eleq1d 2813 . . . . . . . . . . . . . . . . . . 19 (𝑎 = ((invr𝐸)‘𝑥) → (((invr𝐸)‘𝑎) ∈ (Base‘𝐹) ↔ ((invr𝐸)‘((invr𝐸)‘𝑥)) ∈ (Base‘𝐹)))
15943, 152, 110issubdrg 20683 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸 ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)) → ((𝐸s (Base‘𝐹)) ∈ DivRing ↔ ∀𝑎 ∈ ((Base‘𝐹) ∖ {(0g𝐸)})((invr𝐸)‘𝑎) ∈ (Base‘𝐹)))
160159biimpa 476 . . . . . . . . . . . . . . . . . . . 20 (((𝐸 ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)) ∧ (𝐸s (Base‘𝐹)) ∈ DivRing) → ∀𝑎 ∈ ((Base‘𝐹) ∖ {(0g𝐸)})((invr𝐸)‘𝑎) ∈ (Base‘𝐹))
161160adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝐸 ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)) ∧ (𝐸s (Base‘𝐹)) ∈ DivRing) ∧ ((invr𝐸)‘𝑥) ∈ ((Base‘𝐹) ∖ {(0g𝐸)})) → ∀𝑎 ∈ ((Base‘𝐹) ∖ {(0g𝐸)})((invr𝐸)‘𝑎) ∈ (Base‘𝐹))
162 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝐸 ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)) ∧ (𝐸s (Base‘𝐹)) ∈ DivRing) ∧ ((invr𝐸)‘𝑥) ∈ ((Base‘𝐹) ∖ {(0g𝐸)})) → ((invr𝐸)‘𝑥) ∈ ((Base‘𝐹) ∖ {(0g𝐸)}))
163158, 161, 162rspcdva 3580 . . . . . . . . . . . . . . . . . 18 ((((𝐸 ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)) ∧ (𝐸s (Base‘𝐹)) ∈ DivRing) ∧ ((invr𝐸)‘𝑥) ∈ ((Base‘𝐹) ∖ {(0g𝐸)})) → ((invr𝐸)‘((invr𝐸)‘𝑥)) ∈ (Base‘𝐹))
164132, 133, 136, 156, 163syl1111anc 840 . . . . . . . . . . . . . . . . 17 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ((invr𝐸)‘((invr𝐸)‘𝑥)) ∈ (Base‘𝐹))
165131, 164eqeltrrd 2829 . . . . . . . . . . . . . . . 16 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝑥 ∈ (Base‘𝐹))
166165adantrl 716 . . . . . . . . . . . . . . 15 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))) → 𝑥 ∈ (Base‘𝐹))
16727, 108ringidcl 20168 . . . . . . . . . . . . . . . . . 18 (𝐸 ∈ Ring → (1r𝐸) ∈ (Base‘𝐸))
16861, 167syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (1r𝐸) ∈ (Base‘𝐸))
169168, 85eleqtrd 2830 . . . . . . . . . . . . . . . 16 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (1r𝐸) ∈ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
170 eqid 2729 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) = (Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
171 eqid 2729 . . . . . . . . . . . . . . . . 17 (Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))
172 eqid 2729 . . . . . . . . . . . . . . . . 17 (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) = (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
173 eqid 2729 . . . . . . . . . . . . . . . . 17 ( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = ( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))
1744ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec)
175 lveclmod 21028 . . . . . . . . . . . . . . . . . 18 (((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LMod)
176174, 175syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LMod)
17778, 170, 171, 172, 173, 176, 77lbslsp 33327 . . . . . . . . . . . . . . . 16 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → ((1r𝐸) ∈ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ↔ ∃𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)(𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))))
178169, 177mpbid 232 . . . . . . . . . . . . . . 15 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → ∃𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)(𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))))
179166, 178r19.29a 3137 . . . . . . . . . . . . . 14 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → 𝑥 ∈ (Base‘𝐹))
180179ad2antrr 726 . . . . . . . . . . . . 13 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → 𝑥 ∈ (Base‘𝐹))
181 eqid 2729 . . . . . . . . . . . . . 14 (.r𝐹) = (.r𝐹)
18225, 181ringcl 20153 . . . . . . . . . . . . 13 ((𝐹 ∈ Ring ∧ (𝑣𝑥) ∈ (Base‘𝐹) ∧ 𝑥 ∈ (Base‘𝐹)) → ((𝑣𝑥)(.r𝐹)𝑥) ∈ (Base‘𝐹))
183106, 107, 180, 182syl3anc 1373 . . . . . . . . . . . 12 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → ((𝑣𝑥)(.r𝐹)𝑥) ∈ (Base‘𝐹))
184103, 183eqeltrd 2828 . . . . . . . . . . 11 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) → (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) ∈ (Base‘𝐹))
185184ad2antrr 726 . . . . . . . . . 10 ((((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ 𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))))) ∧ 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) ∈ (Base‘𝐹))
18622, 185eqeltrd 2828 . . . . . . . . 9 ((((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ 𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))))) ∧ 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝑢 ∈ (Base‘𝐹))
187186anasss 466 . . . . . . . 8 (((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)) ∧ (𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))) → 𝑢 ∈ (Base‘𝐹))
18885eleq2d 2814 . . . . . . . . . 10 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (𝑢 ∈ (Base‘𝐸) ↔ 𝑢 ∈ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹)))))
18978, 170, 171, 172, 173, 176, 77lbslsp 33327 . . . . . . . . . 10 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (𝑢 ∈ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ↔ ∃𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)(𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))))
190188, 189bitrd 279 . . . . . . . . 9 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (𝑢 ∈ (Base‘𝐸) ↔ ∃𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)(𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))))
191190biimpa 476 . . . . . . . 8 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) → ∃𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑m 𝑏)(𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))))
192187, 191r19.29a 3137 . . . . . . 7 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) → 𝑢 ∈ (Base‘𝐹))
193192ex 412 . . . . . 6 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (𝑢 ∈ (Base‘𝐸) → 𝑢 ∈ (Base‘𝐹)))
194193ssrdv 3943 . . . . 5 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (Base‘𝐸) ⊆ (Base‘𝐹))
19521, 194exlimddv 1935 . . . 4 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (Base‘𝐸) ⊆ (Base‘𝐹))
1969, 195exlimddv 1935 . . 3 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → (Base‘𝐸) ⊆ (Base‘𝐹))
197 simpr 484 . . . 4 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ (Base‘𝐸) ⊆ (Base‘𝐹)) → (Base‘𝐸) ⊆ (Base‘𝐹))
19837ad2antrr 726 . . . 4 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ (Base‘𝐸) ⊆ (Base‘𝐹)) → 𝐸 ∈ Field)
199 fvexd 6841 . . . 4 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ (Base‘𝐸) ⊆ (Base‘𝐹)) → (Base‘𝐹) ∈ V)
20043, 27ressid2 17163 . . . 4 (((Base‘𝐸) ⊆ (Base‘𝐹) ∧ 𝐸 ∈ Field ∧ (Base‘𝐹) ∈ V) → (𝐸s (Base‘𝐹)) = 𝐸)
201197, 198, 199, 200syl3anc 1373 . . 3 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ (Base‘𝐸) ⊆ (Base‘𝐹)) → (𝐸s (Base‘𝐹)) = 𝐸)
202196, 201mpdan 687 . 2 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → (𝐸s (Base‘𝐹)) = 𝐸)
2032, 202eqtr2d 2765 1 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → 𝐸 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3438  cdif 3902  wss 3905  c0 4286  {csn 4579   class class class wbr 5095  cmpt 5176  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760   finSupp cfsupp 9270  1c1 11029  chash 14255  Basecbs 17138  s cress 17159  .rcmulr 17180  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17361   Σg cgsu 17362  Mndcmnd 18626  1rcur 20084  Ringcrg 20136  CRingccrg 20137  Unitcui 20258  invrcinvr 20290  SubRingcsubrg 20472  DivRingcdr 20632  Fieldcfield 20633  LModclmod 20781  LBasisclbs 20996  LVecclvec 21024  subringAlg csra 21093  LIndSclinds 21730  dimcldim 33573  /FldExtcfldext 33613  [:]cextdg 33615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-reg 9503  ax-inf2 9556  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-rpss 7663  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-r1 9679  df-rank 9680  df-dju 9816  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ocomp 17200  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-mri 17508  df-acs 17509  df-proset 18218  df-drs 18219  df-poset 18237  df-ipo 18452  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-nzr 20416  df-subrg 20473  df-drng 20634  df-field 20635  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lmhm 20944  df-lbs 20997  df-lvec 21025  df-sra 21095  df-rgmod 21096  df-dsmm 21657  df-frlm 21672  df-uvc 21708  df-lindf 21731  df-linds 21732  df-dim 33574  df-fldext 33616  df-extdg 33617
This theorem is referenced by:  extdg1b  33641  rtelextdg2  33696
  Copyright terms: Public domain W3C validator