Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extdg1id Structured version   Visualization version   GIF version

Theorem extdg1id 32730
Description: If the degree of the extension 𝐸/FldExt𝐹 is 1, then 𝐸 and 𝐹 are identical. (Contributed by Thierry Arnoux, 6-Aug-2023.)
Assertion
Ref Expression
extdg1id ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) β†’ 𝐸 = 𝐹)

Proof of Theorem extdg1id
Dummy variables π‘Ž π‘₯ 𝑏 𝑖 𝑣 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldextress 32719 . . 3 (𝐸/FldExt𝐹 β†’ 𝐹 = (𝐸 β†Ύs (Baseβ€˜πΉ)))
21adantr 481 . 2 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) β†’ 𝐹 = (𝐸 β†Ύs (Baseβ€˜πΉ)))
3 fldextsralvec 32722 . . . . . . 7 (𝐸/FldExt𝐹 β†’ ((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) ∈ LVec)
43adantr 481 . . . . . 6 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) β†’ ((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) ∈ LVec)
5 eqid 2732 . . . . . . 7 (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) = (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))
65lbsex 20770 . . . . . 6 (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) ∈ LVec β†’ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) β‰  βˆ…)
74, 6syl 17 . . . . 5 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) β†’ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) β‰  βˆ…)
8 n0 4345 . . . . 5 ((LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) β‰  βˆ… ↔ βˆƒπ‘ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))
97, 8sylib 217 . . . 4 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) β†’ βˆƒπ‘ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))
10 simpr 485 . . . . . 6 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) β†’ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))
115dimval 32674 . . . . . . . 8 ((((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) ∈ LVec ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) β†’ (dimβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) = (β™―β€˜π‘))
124, 11sylan 580 . . . . . . 7 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) β†’ (dimβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) = (β™―β€˜π‘))
13 extdgval 32721 . . . . . . . . . 10 (𝐸/FldExt𝐹 β†’ (𝐸[:]𝐹) = (dimβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))
1413adantr 481 . . . . . . . . 9 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) β†’ (𝐸[:]𝐹) = (dimβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))
15 simpr 485 . . . . . . . . 9 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) β†’ (𝐸[:]𝐹) = 1)
1614, 15eqtr3d 2774 . . . . . . . 8 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) β†’ (dimβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) = 1)
1716adantr 481 . . . . . . 7 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) β†’ (dimβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) = 1)
1812, 17eqtr3d 2774 . . . . . 6 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) β†’ (β™―β€˜π‘) = 1)
19 hash1snb 14375 . . . . . . 7 (𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) β†’ ((β™―β€˜π‘) = 1 ↔ βˆƒπ‘₯ 𝑏 = {π‘₯}))
2019biimpa 477 . . . . . 6 ((𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) ∧ (β™―β€˜π‘) = 1) β†’ βˆƒπ‘₯ 𝑏 = {π‘₯})
2110, 18, 20syl2anc 584 . . . . 5 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) β†’ βˆƒπ‘₯ 𝑏 = {π‘₯})
22 simpr 485 . . . . . . . . . 10 ((((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑒 ∈ (Baseβ€˜πΈ)) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ 𝑣 finSupp (0gβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))) ∧ 𝑒 = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ 𝑒 = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖))))
23 simplr 767 . . . . . . . . . . . . . . . 16 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ 𝑏 = {π‘₯})
24 eqidd 2733 . . . . . . . . . . . . . . . . . . . 20 (𝐸/FldExt𝐹 β†’ ((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) = ((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))
25 eqid 2732 . . . . . . . . . . . . . . . . . . . . . 22 (Baseβ€˜πΉ) = (Baseβ€˜πΉ)
2625fldextsubrg 32718 . . . . . . . . . . . . . . . . . . . . 21 (𝐸/FldExt𝐹 β†’ (Baseβ€˜πΉ) ∈ (SubRingβ€˜πΈ))
27 eqid 2732 . . . . . . . . . . . . . . . . . . . . . 22 (Baseβ€˜πΈ) = (Baseβ€˜πΈ)
2827subrgss 20356 . . . . . . . . . . . . . . . . . . . . 21 ((Baseβ€˜πΉ) ∈ (SubRingβ€˜πΈ) β†’ (Baseβ€˜πΉ) βŠ† (Baseβ€˜πΈ))
2926, 28syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝐸/FldExt𝐹 β†’ (Baseβ€˜πΉ) βŠ† (Baseβ€˜πΈ))
3024, 29sravsca 20792 . . . . . . . . . . . . . . . . . . 19 (𝐸/FldExt𝐹 β†’ (.rβ€˜πΈ) = ( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))
3130eqcomd 2738 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹 β†’ ( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) = (.rβ€˜πΈ))
3231ad5antr 732 . . . . . . . . . . . . . . . . 17 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ 𝑖 ∈ 𝑏) β†’ ( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) = (.rβ€˜πΈ))
3332oveqd 7422 . . . . . . . . . . . . . . . 16 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ 𝑖 ∈ 𝑏) β†’ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖) = ((π‘£β€˜π‘–)(.rβ€˜πΈ)𝑖))
3423, 33mpteq12dva 5236 . . . . . . . . . . . . . . 15 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)) = (𝑖 ∈ {π‘₯} ↦ ((π‘£β€˜π‘–)(.rβ€˜πΈ)𝑖)))
3534oveq2d 7421 . . . . . . . . . . . . . 14 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ (𝐸 Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖))) = (𝐸 Ξ£g (𝑖 ∈ {π‘₯} ↦ ((π‘£β€˜π‘–)(.rβ€˜πΈ)𝑖))))
36 eqid 2732 . . . . . . . . . . . . . . . . 17 ((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) = ((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))
37 fldextfld1 32716 . . . . . . . . . . . . . . . . . . 19 (𝐸/FldExt𝐹 β†’ 𝐸 ∈ Field)
38 isfld 20318 . . . . . . . . . . . . . . . . . . . 20 (𝐸 ∈ Field ↔ (𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing))
3938simplbi 498 . . . . . . . . . . . . . . . . . . 19 (𝐸 ∈ Field β†’ 𝐸 ∈ DivRing)
4037, 39syl 17 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹 β†’ 𝐸 ∈ DivRing)
4140adantr 481 . . . . . . . . . . . . . . . . 17 ((𝐸/FldExt𝐹 ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) β†’ 𝐸 ∈ DivRing)
4226adantr 481 . . . . . . . . . . . . . . . . 17 ((𝐸/FldExt𝐹 ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) β†’ (Baseβ€˜πΉ) ∈ (SubRingβ€˜πΈ))
43 eqid 2732 . . . . . . . . . . . . . . . . 17 (𝐸 β†Ύs (Baseβ€˜πΉ)) = (𝐸 β†Ύs (Baseβ€˜πΉ))
44 fldextfld2 32717 . . . . . . . . . . . . . . . . . . . 20 (𝐸/FldExt𝐹 β†’ 𝐹 ∈ Field)
45 isfld 20318 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing))
4645simplbi 498 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ Field β†’ 𝐹 ∈ DivRing)
4744, 46syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐸/FldExt𝐹 β†’ 𝐹 ∈ DivRing)
481, 47eqeltrrd 2834 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹 β†’ (𝐸 β†Ύs (Baseβ€˜πΉ)) ∈ DivRing)
4948adantr 481 . . . . . . . . . . . . . . . . 17 ((𝐸/FldExt𝐹 ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) β†’ (𝐸 β†Ύs (Baseβ€˜πΉ)) ∈ DivRing)
50 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝐸/FldExt𝐹 ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) β†’ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))
5136, 41, 42, 43, 49, 50drgextgsum 32670 . . . . . . . . . . . . . . . 16 ((𝐸/FldExt𝐹 ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) β†’ (𝐸 Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖))) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖))))
5251adantlr 713 . . . . . . . . . . . . . . 15 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) β†’ (𝐸 Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖))) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖))))
5352ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ (𝐸 Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖))) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖))))
54 drngring 20314 . . . . . . . . . . . . . . . . . . 19 (𝐸 ∈ DivRing β†’ 𝐸 ∈ Ring)
5537, 39, 543syl 18 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹 β†’ 𝐸 ∈ Ring)
56 ringmnd 20059 . . . . . . . . . . . . . . . . . 18 (𝐸 ∈ Ring β†’ 𝐸 ∈ Mnd)
5755, 56syl 17 . . . . . . . . . . . . . . . . 17 (𝐸/FldExt𝐹 β†’ 𝐸 ∈ Mnd)
5857ad4antr 730 . . . . . . . . . . . . . . . 16 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ 𝐸 ∈ Mnd)
59 vex 3478 . . . . . . . . . . . . . . . . 17 π‘₯ ∈ V
6059a1i 11 . . . . . . . . . . . . . . . 16 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ π‘₯ ∈ V)
6155ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) β†’ 𝐸 ∈ Ring)
6261adantr 481 . . . . . . . . . . . . . . . . 17 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ 𝐸 ∈ Ring)
6329ad3antrrr 728 . . . . . . . . . . . . . . . . . . 19 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) β†’ (Baseβ€˜πΉ) βŠ† (Baseβ€˜πΈ))
6463adantr 481 . . . . . . . . . . . . . . . . . 18 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ (Baseβ€˜πΉ) βŠ† (Baseβ€˜πΈ))
65 elmapi 8839 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏) β†’ 𝑣:π‘βŸΆ(Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))))
6665adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ 𝑣:π‘βŸΆ(Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))))
67 vsnid 4664 . . . . . . . . . . . . . . . . . . . . 21 π‘₯ ∈ {π‘₯}
6867, 23eleqtrrid 2840 . . . . . . . . . . . . . . . . . . . 20 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ π‘₯ ∈ 𝑏)
6966, 68ffvelcdmd 7084 . . . . . . . . . . . . . . . . . . 19 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ (π‘£β€˜π‘₯) ∈ (Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))))
7024, 29srasca 20790 . . . . . . . . . . . . . . . . . . . . . 22 (𝐸/FldExt𝐹 β†’ (𝐸 β†Ύs (Baseβ€˜πΉ)) = (Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))
711, 70eqtrd 2772 . . . . . . . . . . . . . . . . . . . . 21 (𝐸/FldExt𝐹 β†’ 𝐹 = (Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))
7271fveq2d 6892 . . . . . . . . . . . . . . . . . . . 20 (𝐸/FldExt𝐹 β†’ (Baseβ€˜πΉ) = (Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))))
7372ad4antr 730 . . . . . . . . . . . . . . . . . . 19 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ (Baseβ€˜πΉ) = (Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))))
7469, 73eleqtrrd 2836 . . . . . . . . . . . . . . . . . 18 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ (π‘£β€˜π‘₯) ∈ (Baseβ€˜πΉ))
7564, 74sseldd 3982 . . . . . . . . . . . . . . . . 17 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ (π‘£β€˜π‘₯) ∈ (Baseβ€˜πΈ))
76 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) β†’ 𝑏 = {π‘₯})
77 simplr 767 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) β†’ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))
78 eqid 2732 . . . . . . . . . . . . . . . . . . . . . . 23 (Baseβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) = (Baseβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))
7978, 5lbsss 20680 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) β†’ 𝑏 βŠ† (Baseβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))
8077, 79syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) β†’ 𝑏 βŠ† (Baseβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))
8176, 80eqsstrrd 4020 . . . . . . . . . . . . . . . . . . . 20 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) β†’ {π‘₯} βŠ† (Baseβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))
8259snss 4788 . . . . . . . . . . . . . . . . . . . 20 (π‘₯ ∈ (Baseβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) ↔ {π‘₯} βŠ† (Baseβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))
8381, 82sylibr 233 . . . . . . . . . . . . . . . . . . 19 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) β†’ π‘₯ ∈ (Baseβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))
84 eqidd 2733 . . . . . . . . . . . . . . . . . . . 20 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) β†’ ((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) = ((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))
8584, 63srabase 20784 . . . . . . . . . . . . . . . . . . 19 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) β†’ (Baseβ€˜πΈ) = (Baseβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))
8683, 85eleqtrrd 2836 . . . . . . . . . . . . . . . . . 18 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) β†’ π‘₯ ∈ (Baseβ€˜πΈ))
8786adantr 481 . . . . . . . . . . . . . . . . 17 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ π‘₯ ∈ (Baseβ€˜πΈ))
88 eqid 2732 . . . . . . . . . . . . . . . . . 18 (.rβ€˜πΈ) = (.rβ€˜πΈ)
8927, 88ringcl 20066 . . . . . . . . . . . . . . . . 17 ((𝐸 ∈ Ring ∧ (π‘£β€˜π‘₯) ∈ (Baseβ€˜πΈ) ∧ π‘₯ ∈ (Baseβ€˜πΈ)) β†’ ((π‘£β€˜π‘₯)(.rβ€˜πΈ)π‘₯) ∈ (Baseβ€˜πΈ))
9062, 75, 87, 89syl3anc 1371 . . . . . . . . . . . . . . . 16 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ ((π‘£β€˜π‘₯)(.rβ€˜πΈ)π‘₯) ∈ (Baseβ€˜πΈ))
91 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ 𝑖 = π‘₯) β†’ 𝑖 = π‘₯)
9291fveq2d 6892 . . . . . . . . . . . . . . . . 17 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ 𝑖 = π‘₯) β†’ (π‘£β€˜π‘–) = (π‘£β€˜π‘₯))
9392, 91oveq12d 7423 . . . . . . . . . . . . . . . 16 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ 𝑖 = π‘₯) β†’ ((π‘£β€˜π‘–)(.rβ€˜πΈ)𝑖) = ((π‘£β€˜π‘₯)(.rβ€˜πΈ)π‘₯))
9427, 58, 60, 90, 93gsumsnd 19814 . . . . . . . . . . . . . . 15 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ (𝐸 Ξ£g (𝑖 ∈ {π‘₯} ↦ ((π‘£β€˜π‘–)(.rβ€˜πΈ)𝑖))) = ((π‘£β€˜π‘₯)(.rβ€˜πΈ)π‘₯))
951fveq2d 6892 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹 β†’ (.rβ€˜πΉ) = (.rβ€˜(𝐸 β†Ύs (Baseβ€˜πΉ))))
9643, 88ressmulr 17248 . . . . . . . . . . . . . . . . . . 19 ((Baseβ€˜πΉ) ∈ (SubRingβ€˜πΈ) β†’ (.rβ€˜πΈ) = (.rβ€˜(𝐸 β†Ύs (Baseβ€˜πΉ))))
9726, 96syl 17 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹 β†’ (.rβ€˜πΈ) = (.rβ€˜(𝐸 β†Ύs (Baseβ€˜πΉ))))
9895, 97eqtr4d 2775 . . . . . . . . . . . . . . . . 17 (𝐸/FldExt𝐹 β†’ (.rβ€˜πΉ) = (.rβ€˜πΈ))
9998ad4antr 730 . . . . . . . . . . . . . . . 16 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ (.rβ€˜πΉ) = (.rβ€˜πΈ))
10099oveqd 7422 . . . . . . . . . . . . . . 15 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ ((π‘£β€˜π‘₯)(.rβ€˜πΉ)π‘₯) = ((π‘£β€˜π‘₯)(.rβ€˜πΈ)π‘₯))
10194, 100eqtr4d 2775 . . . . . . . . . . . . . 14 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ (𝐸 Ξ£g (𝑖 ∈ {π‘₯} ↦ ((π‘£β€˜π‘–)(.rβ€˜πΈ)𝑖))) = ((π‘£β€˜π‘₯)(.rβ€˜πΉ)π‘₯))
10235, 53, 1013eqtr3d 2780 . . . . . . . . . . . . 13 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖))) = ((π‘£β€˜π‘₯)(.rβ€˜πΉ)π‘₯))
103102adantlr 713 . . . . . . . . . . . 12 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑒 ∈ (Baseβ€˜πΈ)) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖))) = ((π‘£β€˜π‘₯)(.rβ€˜πΉ)π‘₯))
104 drngring 20314 . . . . . . . . . . . . . . 15 (𝐹 ∈ DivRing β†’ 𝐹 ∈ Ring)
10544, 46, 1043syl 18 . . . . . . . . . . . . . 14 (𝐸/FldExt𝐹 β†’ 𝐹 ∈ Ring)
106105ad5antr 732 . . . . . . . . . . . . 13 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑒 ∈ (Baseβ€˜πΈ)) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ 𝐹 ∈ Ring)
10774adantlr 713 . . . . . . . . . . . . 13 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑒 ∈ (Baseβ€˜πΈ)) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ (π‘£β€˜π‘₯) ∈ (Baseβ€˜πΉ))
108 eqid 2732 . . . . . . . . . . . . . . . . . . . 20 (1rβ€˜πΈ) = (1rβ€˜πΈ)
109 eqid 2732 . . . . . . . . . . . . . . . . . . . 20 (Unitβ€˜πΈ) = (Unitβ€˜πΈ)
110 eqid 2732 . . . . . . . . . . . . . . . . . . . 20 (invrβ€˜πΈ) = (invrβ€˜πΈ)
111 simp-5l 783 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ 𝐸/FldExt𝐹)
112111, 55syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ 𝐸 ∈ Ring)
11387adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ π‘₯ ∈ (Baseβ€˜πΈ))
11475adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ (π‘£β€˜π‘₯) ∈ (Baseβ€˜πΈ))
11538simprbi 497 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐸 ∈ Field β†’ 𝐸 ∈ CRing)
116111, 37, 1153syl 18 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ 𝐸 ∈ CRing)
11727, 88crngcom 20067 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐸 ∈ CRing ∧ π‘₯ ∈ (Baseβ€˜πΈ) ∧ (π‘£β€˜π‘₯) ∈ (Baseβ€˜πΈ)) β†’ (π‘₯(.rβ€˜πΈ)(π‘£β€˜π‘₯)) = ((π‘£β€˜π‘₯)(.rβ€˜πΈ)π‘₯))
118116, 113, 114, 117syl3anc 1371 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ (π‘₯(.rβ€˜πΈ)(π‘£β€˜π‘₯)) = ((π‘£β€˜π‘₯)(.rβ€˜πΈ)π‘₯))
119 simpr 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖))))
12052ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ (𝐸 Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖))) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖))))
12134adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)) = (𝑖 ∈ {π‘₯} ↦ ((π‘£β€˜π‘–)(.rβ€˜πΈ)𝑖)))
122121oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ (𝐸 Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖))) = (𝐸 Ξ£g (𝑖 ∈ {π‘₯} ↦ ((π‘£β€˜π‘–)(.rβ€˜πΈ)𝑖))))
123119, 120, 1223eqtr2d 2778 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ (1rβ€˜πΈ) = (𝐸 Ξ£g (𝑖 ∈ {π‘₯} ↦ ((π‘£β€˜π‘–)(.rβ€˜πΈ)𝑖))))
12494adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ (𝐸 Ξ£g (𝑖 ∈ {π‘₯} ↦ ((π‘£β€˜π‘–)(.rβ€˜πΈ)𝑖))) = ((π‘£β€˜π‘₯)(.rβ€˜πΈ)π‘₯))
125123, 124eqtrd 2772 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ (1rβ€˜πΈ) = ((π‘£β€˜π‘₯)(.rβ€˜πΈ)π‘₯))
126118, 125eqtr4d 2775 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ (π‘₯(.rβ€˜πΈ)(π‘£β€˜π‘₯)) = (1rβ€˜πΈ))
127125eqcomd 2738 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ ((π‘£β€˜π‘₯)(.rβ€˜πΈ)π‘₯) = (1rβ€˜πΈ))
12827, 88, 108, 109, 110, 112, 113, 114, 126, 127invrvald 22169 . . . . . . . . . . . . . . . . . . 19 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ (π‘₯ ∈ (Unitβ€˜πΈ) ∧ ((invrβ€˜πΈ)β€˜π‘₯) = (π‘£β€˜π‘₯)))
129128simpld 495 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ π‘₯ ∈ (Unitβ€˜πΈ))
130109, 110unitinvinv 20197 . . . . . . . . . . . . . . . . . 18 ((𝐸 ∈ Ring ∧ π‘₯ ∈ (Unitβ€˜πΈ)) β†’ ((invrβ€˜πΈ)β€˜((invrβ€˜πΈ)β€˜π‘₯)) = π‘₯)
13162, 129, 130syl2an2r 683 . . . . . . . . . . . . . . . . 17 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ ((invrβ€˜πΈ)β€˜((invrβ€˜πΈ)β€˜π‘₯)) = π‘₯)
132111, 37, 393syl 18 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ 𝐸 ∈ DivRing)
133111, 26syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ (Baseβ€˜πΉ) ∈ (SubRingβ€˜πΈ))
134111, 1syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ 𝐹 = (𝐸 β†Ύs (Baseβ€˜πΉ)))
135111, 44, 463syl 18 . . . . . . . . . . . . . . . . . . 19 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ 𝐹 ∈ DivRing)
136134, 135eqeltrrd 2834 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ (𝐸 β†Ύs (Baseβ€˜πΉ)) ∈ DivRing)
137128simprd 496 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ ((invrβ€˜πΈ)β€˜π‘₯) = (π‘£β€˜π‘₯))
13874adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ (π‘£β€˜π‘₯) ∈ (Baseβ€˜πΉ))
139137, 138eqeltrd 2833 . . . . . . . . . . . . . . . . . . 19 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ ((invrβ€˜πΈ)β€˜π‘₯) ∈ (Baseβ€˜πΉ))
140 eqidd 2733 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐸/FldExt𝐹 β†’ (0gβ€˜πΈ) = (0gβ€˜πΈ))
14124, 140, 29sralmod0 20802 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐸/FldExt𝐹 β†’ (0gβ€˜πΈ) = (0gβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))
142141ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) β†’ (0gβ€˜πΈ) = (0gβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))
1435lbslinds 21379 . . . . . . . . . . . . . . . . . . . . . . . . 25 (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) βŠ† (LIndSβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))
144143, 10sselid 3979 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) β†’ 𝑏 ∈ (LIndSβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))
145 eqid 2732 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0gβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) = (0gβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))
1461450nellinds 32471 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) ∈ LVec ∧ 𝑏 ∈ (LIndSβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) β†’ Β¬ (0gβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) ∈ 𝑏)
1474, 144, 146syl2an2r 683 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) β†’ Β¬ (0gβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) ∈ 𝑏)
148142, 147eqneltrd 2853 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) β†’ Β¬ (0gβ€˜πΈ) ∈ 𝑏)
149148ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ Β¬ (0gβ€˜πΈ) ∈ 𝑏)
150 nelne2 3040 . . . . . . . . . . . . . . . . . . . . 21 ((π‘₯ ∈ 𝑏 ∧ Β¬ (0gβ€˜πΈ) ∈ 𝑏) β†’ π‘₯ β‰  (0gβ€˜πΈ))
15168, 149, 150syl2an2r 683 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ π‘₯ β‰  (0gβ€˜πΈ))
152 eqid 2732 . . . . . . . . . . . . . . . . . . . . 21 (0gβ€˜πΈ) = (0gβ€˜πΈ)
15327, 152, 110drnginvrn0 20330 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 ∈ DivRing ∧ π‘₯ ∈ (Baseβ€˜πΈ) ∧ π‘₯ β‰  (0gβ€˜πΈ)) β†’ ((invrβ€˜πΈ)β€˜π‘₯) β‰  (0gβ€˜πΈ))
154132, 113, 151, 153syl3anc 1371 . . . . . . . . . . . . . . . . . . 19 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ ((invrβ€˜πΈ)β€˜π‘₯) β‰  (0gβ€˜πΈ))
155 eldifsn 4789 . . . . . . . . . . . . . . . . . . 19 (((invrβ€˜πΈ)β€˜π‘₯) ∈ ((Baseβ€˜πΉ) βˆ– {(0gβ€˜πΈ)}) ↔ (((invrβ€˜πΈ)β€˜π‘₯) ∈ (Baseβ€˜πΉ) ∧ ((invrβ€˜πΈ)β€˜π‘₯) β‰  (0gβ€˜πΈ)))
156139, 154, 155sylanbrc 583 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ ((invrβ€˜πΈ)β€˜π‘₯) ∈ ((Baseβ€˜πΉ) βˆ– {(0gβ€˜πΈ)}))
157 fveq2 6888 . . . . . . . . . . . . . . . . . . . 20 (π‘Ž = ((invrβ€˜πΈ)β€˜π‘₯) β†’ ((invrβ€˜πΈ)β€˜π‘Ž) = ((invrβ€˜πΈ)β€˜((invrβ€˜πΈ)β€˜π‘₯)))
158157eleq1d 2818 . . . . . . . . . . . . . . . . . . 19 (π‘Ž = ((invrβ€˜πΈ)β€˜π‘₯) β†’ (((invrβ€˜πΈ)β€˜π‘Ž) ∈ (Baseβ€˜πΉ) ↔ ((invrβ€˜πΈ)β€˜((invrβ€˜πΈ)β€˜π‘₯)) ∈ (Baseβ€˜πΉ)))
15943, 152, 110issubdrg 20381 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸 ∈ DivRing ∧ (Baseβ€˜πΉ) ∈ (SubRingβ€˜πΈ)) β†’ ((𝐸 β†Ύs (Baseβ€˜πΉ)) ∈ DivRing ↔ βˆ€π‘Ž ∈ ((Baseβ€˜πΉ) βˆ– {(0gβ€˜πΈ)})((invrβ€˜πΈ)β€˜π‘Ž) ∈ (Baseβ€˜πΉ)))
160159biimpa 477 . . . . . . . . . . . . . . . . . . . 20 (((𝐸 ∈ DivRing ∧ (Baseβ€˜πΉ) ∈ (SubRingβ€˜πΈ)) ∧ (𝐸 β†Ύs (Baseβ€˜πΉ)) ∈ DivRing) β†’ βˆ€π‘Ž ∈ ((Baseβ€˜πΉ) βˆ– {(0gβ€˜πΈ)})((invrβ€˜πΈ)β€˜π‘Ž) ∈ (Baseβ€˜πΉ))
161160adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝐸 ∈ DivRing ∧ (Baseβ€˜πΉ) ∈ (SubRingβ€˜πΈ)) ∧ (𝐸 β†Ύs (Baseβ€˜πΉ)) ∈ DivRing) ∧ ((invrβ€˜πΈ)β€˜π‘₯) ∈ ((Baseβ€˜πΉ) βˆ– {(0gβ€˜πΈ)})) β†’ βˆ€π‘Ž ∈ ((Baseβ€˜πΉ) βˆ– {(0gβ€˜πΈ)})((invrβ€˜πΈ)β€˜π‘Ž) ∈ (Baseβ€˜πΉ))
162 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((((𝐸 ∈ DivRing ∧ (Baseβ€˜πΉ) ∈ (SubRingβ€˜πΈ)) ∧ (𝐸 β†Ύs (Baseβ€˜πΉ)) ∈ DivRing) ∧ ((invrβ€˜πΈ)β€˜π‘₯) ∈ ((Baseβ€˜πΉ) βˆ– {(0gβ€˜πΈ)})) β†’ ((invrβ€˜πΈ)β€˜π‘₯) ∈ ((Baseβ€˜πΉ) βˆ– {(0gβ€˜πΈ)}))
163158, 161, 162rspcdva 3613 . . . . . . . . . . . . . . . . . 18 ((((𝐸 ∈ DivRing ∧ (Baseβ€˜πΉ) ∈ (SubRingβ€˜πΈ)) ∧ (𝐸 β†Ύs (Baseβ€˜πΉ)) ∈ DivRing) ∧ ((invrβ€˜πΈ)β€˜π‘₯) ∈ ((Baseβ€˜πΉ) βˆ– {(0gβ€˜πΈ)})) β†’ ((invrβ€˜πΈ)β€˜((invrβ€˜πΈ)β€˜π‘₯)) ∈ (Baseβ€˜πΉ))
164132, 133, 136, 156, 163syl1111anc 838 . . . . . . . . . . . . . . . . 17 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ ((invrβ€˜πΈ)β€˜((invrβ€˜πΈ)β€˜π‘₯)) ∈ (Baseβ€˜πΉ))
165131, 164eqeltrrd 2834 . . . . . . . . . . . . . . . 16 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ π‘₯ ∈ (Baseβ€˜πΉ))
166165adantrl 714 . . . . . . . . . . . . . . 15 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (𝑣 finSupp (0gβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖))))) β†’ π‘₯ ∈ (Baseβ€˜πΉ))
16727, 108ringidcl 20076 . . . . . . . . . . . . . . . . . 18 (𝐸 ∈ Ring β†’ (1rβ€˜πΈ) ∈ (Baseβ€˜πΈ))
16861, 167syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) β†’ (1rβ€˜πΈ) ∈ (Baseβ€˜πΈ))
169168, 85eleqtrd 2835 . . . . . . . . . . . . . . . 16 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) β†’ (1rβ€˜πΈ) ∈ (Baseβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))
170 eqid 2732 . . . . . . . . . . . . . . . . 17 (Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) = (Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))
171 eqid 2732 . . . . . . . . . . . . . . . . 17 (Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) = (Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))
172 eqid 2732 . . . . . . . . . . . . . . . . 17 (0gβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) = (0gβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))
173 eqid 2732 . . . . . . . . . . . . . . . . 17 ( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) = ( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))
1744ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) β†’ ((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) ∈ LVec)
175 lveclmod 20709 . . . . . . . . . . . . . . . . . 18 (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) ∈ LVec β†’ ((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) ∈ LMod)
176174, 175syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) β†’ ((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) ∈ LMod)
17778, 170, 171, 172, 173, 176, 77lbslsp 32481 . . . . . . . . . . . . . . . 16 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) β†’ ((1rβ€˜πΈ) ∈ (Baseβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) ↔ βˆƒπ‘£ ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)(𝑣 finSupp (0gβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖))))))
178169, 177mpbid 231 . . . . . . . . . . . . . . 15 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) β†’ βˆƒπ‘£ ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)(𝑣 finSupp (0gβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ (1rβ€˜πΈ) = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))))
179166, 178r19.29a 3162 . . . . . . . . . . . . . 14 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) β†’ π‘₯ ∈ (Baseβ€˜πΉ))
180179ad2antrr 724 . . . . . . . . . . . . 13 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑒 ∈ (Baseβ€˜πΈ)) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ π‘₯ ∈ (Baseβ€˜πΉ))
181 eqid 2732 . . . . . . . . . . . . . 14 (.rβ€˜πΉ) = (.rβ€˜πΉ)
18225, 181ringcl 20066 . . . . . . . . . . . . 13 ((𝐹 ∈ Ring ∧ (π‘£β€˜π‘₯) ∈ (Baseβ€˜πΉ) ∧ π‘₯ ∈ (Baseβ€˜πΉ)) β†’ ((π‘£β€˜π‘₯)(.rβ€˜πΉ)π‘₯) ∈ (Baseβ€˜πΉ))
183106, 107, 180, 182syl3anc 1371 . . . . . . . . . . . 12 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑒 ∈ (Baseβ€˜πΈ)) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ ((π‘£β€˜π‘₯)(.rβ€˜πΉ)π‘₯) ∈ (Baseβ€˜πΉ))
184103, 183eqeltrd 2833 . . . . . . . . . . 11 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑒 ∈ (Baseβ€˜πΈ)) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) β†’ (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖))) ∈ (Baseβ€˜πΉ))
185184ad2antrr 724 . . . . . . . . . 10 ((((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑒 ∈ (Baseβ€˜πΈ)) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ 𝑣 finSupp (0gβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))) ∧ 𝑒 = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖))) ∈ (Baseβ€˜πΉ))
18622, 185eqeltrd 2833 . . . . . . . . 9 ((((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑒 ∈ (Baseβ€˜πΈ)) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ 𝑣 finSupp (0gβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))))) ∧ 𝑒 = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))) β†’ 𝑒 ∈ (Baseβ€˜πΉ))
187186anasss 467 . . . . . . . 8 (((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑒 ∈ (Baseβ€˜πΈ)) ∧ 𝑣 ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)) ∧ (𝑣 finSupp (0gβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑒 = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖))))) β†’ 𝑒 ∈ (Baseβ€˜πΉ))
18885eleq2d 2819 . . . . . . . . . 10 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) β†’ (𝑒 ∈ (Baseβ€˜πΈ) ↔ 𝑒 ∈ (Baseβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))))
18978, 170, 171, 172, 173, 176, 77lbslsp 32481 . . . . . . . . . 10 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) β†’ (𝑒 ∈ (Baseβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ))) ↔ βˆƒπ‘£ ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)(𝑣 finSupp (0gβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑒 = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖))))))
190188, 189bitrd 278 . . . . . . . . 9 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) β†’ (𝑒 ∈ (Baseβ€˜πΈ) ↔ βˆƒπ‘£ ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)(𝑣 finSupp (0gβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑒 = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖))))))
191190biimpa 477 . . . . . . . 8 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑒 ∈ (Baseβ€˜πΈ)) β†’ βˆƒπ‘£ ∈ ((Baseβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ↑m 𝑏)(𝑣 finSupp (0gβ€˜(Scalarβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑒 = (((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)) Ξ£g (𝑖 ∈ 𝑏 ↦ ((π‘£β€˜π‘–)( ·𝑠 β€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))𝑖)))))
192187, 191r19.29a 3162 . . . . . . 7 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) ∧ 𝑒 ∈ (Baseβ€˜πΈ)) β†’ 𝑒 ∈ (Baseβ€˜πΉ))
193192ex 413 . . . . . 6 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) β†’ (𝑒 ∈ (Baseβ€˜πΈ) β†’ 𝑒 ∈ (Baseβ€˜πΉ)))
194193ssrdv 3987 . . . . 5 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) ∧ 𝑏 = {π‘₯}) β†’ (Baseβ€˜πΈ) βŠ† (Baseβ€˜πΉ))
19521, 194exlimddv 1938 . . . 4 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasisβ€˜((subringAlg β€˜πΈ)β€˜(Baseβ€˜πΉ)))) β†’ (Baseβ€˜πΈ) βŠ† (Baseβ€˜πΉ))
1969, 195exlimddv 1938 . . 3 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) β†’ (Baseβ€˜πΈ) βŠ† (Baseβ€˜πΉ))
197 simpr 485 . . . 4 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ (Baseβ€˜πΈ) βŠ† (Baseβ€˜πΉ)) β†’ (Baseβ€˜πΈ) βŠ† (Baseβ€˜πΉ))
19837ad2antrr 724 . . . 4 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ (Baseβ€˜πΈ) βŠ† (Baseβ€˜πΉ)) β†’ 𝐸 ∈ Field)
199 fvexd 6903 . . . 4 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ (Baseβ€˜πΈ) βŠ† (Baseβ€˜πΉ)) β†’ (Baseβ€˜πΉ) ∈ V)
20043, 27ressid2 17173 . . . 4 (((Baseβ€˜πΈ) βŠ† (Baseβ€˜πΉ) ∧ 𝐸 ∈ Field ∧ (Baseβ€˜πΉ) ∈ V) β†’ (𝐸 β†Ύs (Baseβ€˜πΉ)) = 𝐸)
201197, 198, 199, 200syl3anc 1371 . . 3 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ (Baseβ€˜πΈ) βŠ† (Baseβ€˜πΉ)) β†’ (𝐸 β†Ύs (Baseβ€˜πΉ)) = 𝐸)
202196, 201mpdan 685 . 2 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) β†’ (𝐸 β†Ύs (Baseβ€˜πΉ)) = 𝐸)
2032, 202eqtr2d 2773 1 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) β†’ 𝐸 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474   βˆ– cdif 3944   βŠ† wss 3947  βˆ…c0 4321  {csn 4627   class class class wbr 5147   ↦ cmpt 5230  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ↑m cmap 8816   finSupp cfsupp 9357  1c1 11107  β™―chash 14286  Basecbs 17140   β†Ύs cress 17169  .rcmulr 17194  Scalarcsca 17196   ·𝑠 cvsca 17197  0gc0g 17381   Ξ£g cgsu 17382  Mndcmnd 18621  1rcur 19998  Ringcrg 20049  CRingccrg 20050  Unitcui 20161  invrcinvr 20193  DivRingcdr 20307  Fieldcfield 20308  SubRingcsubrg 20351  LModclmod 20463  LBasisclbs 20677  LVecclvec 20705  subringAlg csra 20773  LIndSclinds 21351  dimcldim 32672  /FldExtcfldext 32705  [:]cextdg 32708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-reg 9583  ax-inf2 9632  ax-ac2 10454  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-rpss 7709  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-oi 9501  df-r1 9755  df-rank 9756  df-dju 9892  df-card 9930  df-acn 9933  df-ac 10107  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ocomp 17214  df-ds 17215  df-hom 17217  df-cco 17218  df-0g 17383  df-gsum 17384  df-prds 17389  df-pws 17391  df-mre 17526  df-mrc 17527  df-mri 17528  df-acs 17529  df-proset 18244  df-drs 18245  df-poset 18262  df-ipo 18477  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-ghm 19084  df-cntz 19175  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-cring 20052  df-oppr 20142  df-dvdsr 20163  df-unit 20164  df-invr 20194  df-nzr 20284  df-drng 20309  df-field 20310  df-subrg 20353  df-lmod 20465  df-lss 20535  df-lsp 20575  df-lmhm 20625  df-lbs 20678  df-lvec 20706  df-sra 20777  df-rgmod 20778  df-dsmm 21278  df-frlm 21293  df-uvc 21329  df-lindf 21352  df-linds 21353  df-dim 32673  df-fldext 32709  df-extdg 32710
This theorem is referenced by:  extdg1b  32731
  Copyright terms: Public domain W3C validator