Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extdg1id Structured version   Visualization version   GIF version

Theorem extdg1id 30657
Description: If the degree of the extension 𝐸/FldExt𝐹 is 1, then 𝐸 and 𝐹 are identical. (Contributed by Thierry Arnoux, 6-Aug-2023.)
Assertion
Ref Expression
extdg1id ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → 𝐸 = 𝐹)

Proof of Theorem extdg1id
Dummy variables 𝑎 𝑥 𝑏 𝑖 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldextress 30646 . . 3 (𝐸/FldExt𝐹𝐹 = (𝐸s (Base‘𝐹)))
21adantr 481 . 2 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → 𝐹 = (𝐸s (Base‘𝐹)))
3 fldextsralvec 30649 . . . . . . 7 (𝐸/FldExt𝐹 → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec)
43adantr 481 . . . . . 6 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec)
5 eqid 2795 . . . . . . 7 (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))
65lbsex 19627 . . . . . 6 (((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec → (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ≠ ∅)
74, 6syl 17 . . . . 5 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ≠ ∅)
8 n0 4230 . . . . 5 ((LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
97, 8sylib 219 . . . 4 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → ∃𝑏 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
10 simpr 485 . . . . . 6 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
115dimval 30605 . . . . . . . 8 ((((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (♯‘𝑏))
124, 11sylan 580 . . . . . . 7 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (♯‘𝑏))
13 extdgval 30648 . . . . . . . . . 10 (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
1413adantr 481 . . . . . . . . 9 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
15 simpr 485 . . . . . . . . 9 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → (𝐸[:]𝐹) = 1)
1614, 15eqtr3d 2833 . . . . . . . 8 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = 1)
1716adantr 481 . . . . . . 7 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = 1)
1812, 17eqtr3d 2833 . . . . . 6 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (♯‘𝑏) = 1)
19 hash1snb 13628 . . . . . . 7 (𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) → ((♯‘𝑏) = 1 ↔ ∃𝑥 𝑏 = {𝑥}))
2019biimpa 477 . . . . . 6 ((𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∧ (♯‘𝑏) = 1) → ∃𝑥 𝑏 = {𝑥})
2110, 18, 20syl2anc 584 . . . . 5 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → ∃𝑥 𝑏 = {𝑥})
22 simpr 485 . . . . . . . . . 10 ((((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ 𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))))) ∧ 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))
23 simplr 765 . . . . . . . . . . . . . . . 16 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → 𝑏 = {𝑥})
24 eqidd 2796 . . . . . . . . . . . . . . . . . . . 20 (𝐸/FldExt𝐹 → ((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹)))
25 eqid 2795 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝐹) = (Base‘𝐹)
2625fldextsubrg 30645 . . . . . . . . . . . . . . . . . . . . 21 (𝐸/FldExt𝐹 → (Base‘𝐹) ∈ (SubRing‘𝐸))
27 eqid 2795 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝐸) = (Base‘𝐸)
2827subrgss 19226 . . . . . . . . . . . . . . . . . . . . 21 ((Base‘𝐹) ∈ (SubRing‘𝐸) → (Base‘𝐹) ⊆ (Base‘𝐸))
2926, 28syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝐸/FldExt𝐹 → (Base‘𝐹) ⊆ (Base‘𝐸))
3024, 29sravsca 19644 . . . . . . . . . . . . . . . . . . 19 (𝐸/FldExt𝐹 → (.r𝐸) = ( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
3130eqcomd 2801 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹 → ( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (.r𝐸))
3231ad5antr 730 . . . . . . . . . . . . . . . . 17 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ 𝑖𝑏) → ( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (.r𝐸))
3332oveqd 7033 . . . . . . . . . . . . . . . 16 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ 𝑖𝑏) → ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖) = ((𝑣𝑖)(.r𝐸)𝑖))
3423, 33mpteq12dva 5044 . . . . . . . . . . . . . . 15 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)) = (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖)))
3534oveq2d 7032 . . . . . . . . . . . . . 14 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → (𝐸 Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = (𝐸 Σg (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖))))
36 eqid 2795 . . . . . . . . . . . . . . . . 17 ((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹))
37 fldextfld1 30643 . . . . . . . . . . . . . . . . . . 19 (𝐸/FldExt𝐹𝐸 ∈ Field)
38 isfld 19201 . . . . . . . . . . . . . . . . . . . 20 (𝐸 ∈ Field ↔ (𝐸 ∈ DivRing ∧ 𝐸 ∈ CRing))
3938simplbi 498 . . . . . . . . . . . . . . . . . . 19 (𝐸 ∈ Field → 𝐸 ∈ DivRing)
4037, 39syl 17 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹𝐸 ∈ DivRing)
4140adantr 481 . . . . . . . . . . . . . . . . 17 ((𝐸/FldExt𝐹𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → 𝐸 ∈ DivRing)
4226adantr 481 . . . . . . . . . . . . . . . . 17 ((𝐸/FldExt𝐹𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (Base‘𝐹) ∈ (SubRing‘𝐸))
43 eqid 2795 . . . . . . . . . . . . . . . . 17 (𝐸s (Base‘𝐹)) = (𝐸s (Base‘𝐹))
44 fldextfld2 30644 . . . . . . . . . . . . . . . . . . . 20 (𝐸/FldExt𝐹𝐹 ∈ Field)
45 isfld 19201 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing))
4645simplbi 498 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ Field → 𝐹 ∈ DivRing)
4744, 46syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐸/FldExt𝐹𝐹 ∈ DivRing)
481, 47eqeltrrd 2884 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹 → (𝐸s (Base‘𝐹)) ∈ DivRing)
4948adantr 481 . . . . . . . . . . . . . . . . 17 ((𝐸/FldExt𝐹𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (𝐸s (Base‘𝐹)) ∈ DivRing)
50 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝐸/FldExt𝐹𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
5136, 41, 42, 43, 49, 50drgextgsum 30601 . . . . . . . . . . . . . . . 16 ((𝐸/FldExt𝐹𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (𝐸 Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))
5251adantlr 711 . . . . . . . . . . . . . . 15 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (𝐸 Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))
5352ad2antrr 722 . . . . . . . . . . . . . 14 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → (𝐸 Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))
54 drngring 19199 . . . . . . . . . . . . . . . . . . 19 (𝐸 ∈ DivRing → 𝐸 ∈ Ring)
5537, 39, 543syl 18 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹𝐸 ∈ Ring)
56 ringmnd 18996 . . . . . . . . . . . . . . . . . 18 (𝐸 ∈ Ring → 𝐸 ∈ Mnd)
5755, 56syl 17 . . . . . . . . . . . . . . . . 17 (𝐸/FldExt𝐹𝐸 ∈ Mnd)
5857ad4antr 728 . . . . . . . . . . . . . . . 16 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → 𝐸 ∈ Mnd)
59 vex 3440 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
6059a1i 11 . . . . . . . . . . . . . . . 16 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → 𝑥 ∈ V)
6155ad3antrrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → 𝐸 ∈ Ring)
6261adantr 481 . . . . . . . . . . . . . . . . 17 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → 𝐸 ∈ Ring)
6329ad3antrrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (Base‘𝐹) ⊆ (Base‘𝐸))
6463adantr 481 . . . . . . . . . . . . . . . . . 18 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → (Base‘𝐹) ⊆ (Base‘𝐸))
65 elmapi 8278 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏) → 𝑣:𝑏⟶(Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))))
6665adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → 𝑣:𝑏⟶(Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))))
67 vsnid 4507 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ {𝑥}
6867, 23syl5eleqr 2890 . . . . . . . . . . . . . . . . . . . 20 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → 𝑥𝑏)
6966, 68ffvelrnd 6717 . . . . . . . . . . . . . . . . . . 19 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → (𝑣𝑥) ∈ (Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))))
7024, 29srasca 19643 . . . . . . . . . . . . . . . . . . . . . 22 (𝐸/FldExt𝐹 → (𝐸s (Base‘𝐹)) = (Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
711, 70eqtrd 2831 . . . . . . . . . . . . . . . . . . . . 21 (𝐸/FldExt𝐹𝐹 = (Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
7271fveq2d 6542 . . . . . . . . . . . . . . . . . . . 20 (𝐸/FldExt𝐹 → (Base‘𝐹) = (Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))))
7372ad4antr 728 . . . . . . . . . . . . . . . . . . 19 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → (Base‘𝐹) = (Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))))
7469, 73eleqtrrd 2886 . . . . . . . . . . . . . . . . . 18 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → (𝑣𝑥) ∈ (Base‘𝐹))
7564, 74sseldd 3890 . . . . . . . . . . . . . . . . 17 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → (𝑣𝑥) ∈ (Base‘𝐸))
76 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → 𝑏 = {𝑥})
77 simplr 765 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
78 eqid 2795 . . . . . . . . . . . . . . . . . . . . . . 23 (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹)))
7978, 5lbsss 19539 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
8077, 79syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → 𝑏 ⊆ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
8176, 80eqsstrrd 3927 . . . . . . . . . . . . . . . . . . . 20 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → {𝑥} ⊆ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
8259snss 4625 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ↔ {𝑥} ⊆ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
8381, 82sylibr 235 . . . . . . . . . . . . . . . . . . 19 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → 𝑥 ∈ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
84 eqidd 2796 . . . . . . . . . . . . . . . . . . . 20 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) = ((subringAlg ‘𝐸)‘(Base‘𝐹)))
8584, 63srabase 19640 . . . . . . . . . . . . . . . . . . 19 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (Base‘𝐸) = (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
8683, 85eleqtrrd 2886 . . . . . . . . . . . . . . . . . 18 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → 𝑥 ∈ (Base‘𝐸))
8786adantr 481 . . . . . . . . . . . . . . . . 17 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → 𝑥 ∈ (Base‘𝐸))
88 eqid 2795 . . . . . . . . . . . . . . . . . 18 (.r𝐸) = (.r𝐸)
8927, 88ringcl 19001 . . . . . . . . . . . . . . . . 17 ((𝐸 ∈ Ring ∧ (𝑣𝑥) ∈ (Base‘𝐸) ∧ 𝑥 ∈ (Base‘𝐸)) → ((𝑣𝑥)(.r𝐸)𝑥) ∈ (Base‘𝐸))
9062, 75, 87, 89syl3anc 1364 . . . . . . . . . . . . . . . 16 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → ((𝑣𝑥)(.r𝐸)𝑥) ∈ (Base‘𝐸))
91 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ 𝑖 = 𝑥) → 𝑖 = 𝑥)
9291fveq2d 6542 . . . . . . . . . . . . . . . . 17 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ 𝑖 = 𝑥) → (𝑣𝑖) = (𝑣𝑥))
9392, 91oveq12d 7034 . . . . . . . . . . . . . . . 16 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ 𝑖 = 𝑥) → ((𝑣𝑖)(.r𝐸)𝑖) = ((𝑣𝑥)(.r𝐸)𝑥))
9427, 58, 60, 90, 93gsumsnd 18792 . . . . . . . . . . . . . . 15 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → (𝐸 Σg (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖))) = ((𝑣𝑥)(.r𝐸)𝑥))
951fveq2d 6542 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹 → (.r𝐹) = (.r‘(𝐸s (Base‘𝐹))))
9643, 88ressmulr 16454 . . . . . . . . . . . . . . . . . . 19 ((Base‘𝐹) ∈ (SubRing‘𝐸) → (.r𝐸) = (.r‘(𝐸s (Base‘𝐹))))
9726, 96syl 17 . . . . . . . . . . . . . . . . . 18 (𝐸/FldExt𝐹 → (.r𝐸) = (.r‘(𝐸s (Base‘𝐹))))
9895, 97eqtr4d 2834 . . . . . . . . . . . . . . . . 17 (𝐸/FldExt𝐹 → (.r𝐹) = (.r𝐸))
9998ad4antr 728 . . . . . . . . . . . . . . . 16 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → (.r𝐹) = (.r𝐸))
10099oveqd 7033 . . . . . . . . . . . . . . 15 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → ((𝑣𝑥)(.r𝐹)𝑥) = ((𝑣𝑥)(.r𝐸)𝑥))
10194, 100eqtr4d 2834 . . . . . . . . . . . . . 14 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → (𝐸 Σg (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖))) = ((𝑣𝑥)(.r𝐹)𝑥))
10235, 53, 1013eqtr3d 2839 . . . . . . . . . . . . 13 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = ((𝑣𝑥)(.r𝐹)𝑥))
103102adantlr 711 . . . . . . . . . . . 12 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = ((𝑣𝑥)(.r𝐹)𝑥))
104 drngring 19199 . . . . . . . . . . . . . . 15 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
10544, 46, 1043syl 18 . . . . . . . . . . . . . 14 (𝐸/FldExt𝐹𝐹 ∈ Ring)
106105ad5antr 730 . . . . . . . . . . . . 13 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → 𝐹 ∈ Ring)
10774adantlr 711 . . . . . . . . . . . . 13 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → (𝑣𝑥) ∈ (Base‘𝐹))
108 eqid 2795 . . . . . . . . . . . . . . . . . . . 20 (1r𝐸) = (1r𝐸)
109 eqid 2795 . . . . . . . . . . . . . . . . . . . 20 (Unit‘𝐸) = (Unit‘𝐸)
110 eqid 2795 . . . . . . . . . . . . . . . . . . . 20 (invr𝐸) = (invr𝐸)
111 simp-5l 781 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝐸/FldExt𝐹)
112111, 55syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝐸 ∈ Ring)
11387adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝑥 ∈ (Base‘𝐸))
11475adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝑣𝑥) ∈ (Base‘𝐸))
11538simprbi 497 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐸 ∈ Field → 𝐸 ∈ CRing)
116111, 37, 1153syl 18 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝐸 ∈ CRing)
11727, 88crngcom 19002 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐸 ∈ CRing ∧ 𝑥 ∈ (Base‘𝐸) ∧ (𝑣𝑥) ∈ (Base‘𝐸)) → (𝑥(.r𝐸)(𝑣𝑥)) = ((𝑣𝑥)(.r𝐸)𝑥))
118116, 113, 114, 117syl3anc 1364 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝑥(.r𝐸)(𝑣𝑥)) = ((𝑣𝑥)(.r𝐸)𝑥))
119 simpr 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))
12052ad3antrrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝐸 Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))
12134adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)) = (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖)))
122121oveq2d 7032 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝐸 Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) = (𝐸 Σg (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖))))
123119, 120, 1223eqtr2d 2837 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (1r𝐸) = (𝐸 Σg (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖))))
12494adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝐸 Σg (𝑖 ∈ {𝑥} ↦ ((𝑣𝑖)(.r𝐸)𝑖))) = ((𝑣𝑥)(.r𝐸)𝑥))
125123, 124eqtrd 2831 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (1r𝐸) = ((𝑣𝑥)(.r𝐸)𝑥))
126118, 125eqtr4d 2834 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝑥(.r𝐸)(𝑣𝑥)) = (1r𝐸))
127125eqcomd 2801 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ((𝑣𝑥)(.r𝐸)𝑥) = (1r𝐸))
12827, 88, 108, 109, 110, 112, 113, 114, 126, 127invrvald 20969 . . . . . . . . . . . . . . . . . . 19 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝑥 ∈ (Unit‘𝐸) ∧ ((invr𝐸)‘𝑥) = (𝑣𝑥)))
129128simpld 495 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝑥 ∈ (Unit‘𝐸))
130109, 110unitinvinv 19115 . . . . . . . . . . . . . . . . . 18 ((𝐸 ∈ Ring ∧ 𝑥 ∈ (Unit‘𝐸)) → ((invr𝐸)‘((invr𝐸)‘𝑥)) = 𝑥)
13162, 129, 130syl2an2r 681 . . . . . . . . . . . . . . . . 17 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ((invr𝐸)‘((invr𝐸)‘𝑥)) = 𝑥)
132111, 37, 393syl 18 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝐸 ∈ DivRing)
133111, 26syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (Base‘𝐹) ∈ (SubRing‘𝐸))
134111, 1syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝐹 = (𝐸s (Base‘𝐹)))
135111, 44, 463syl 18 . . . . . . . . . . . . . . . . . . 19 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝐹 ∈ DivRing)
136134, 135eqeltrrd 2884 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝐸s (Base‘𝐹)) ∈ DivRing)
137128simprd 496 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ((invr𝐸)‘𝑥) = (𝑣𝑥))
13874adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (𝑣𝑥) ∈ (Base‘𝐹))
139137, 138eqeltrd 2883 . . . . . . . . . . . . . . . . . . 19 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ((invr𝐸)‘𝑥) ∈ (Base‘𝐹))
140 eqidd 2796 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐸/FldExt𝐹 → (0g𝐸) = (0g𝐸))
14124, 140, 29sralmod0 19650 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐸/FldExt𝐹 → (0g𝐸) = (0g‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
142141ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (0g𝐸) = (0g‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
1435lbslinds 20659 . . . . . . . . . . . . . . . . . . . . . . . . 25 (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ⊆ (LIndS‘((subringAlg ‘𝐸)‘(Base‘𝐹)))
144143, 10sseldi 3887 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → 𝑏 ∈ (LIndS‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
145 eqid 2795 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0g‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (0g‘((subringAlg ‘𝐸)‘(Base‘𝐹)))
1461450nellinds 30583 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec ∧ 𝑏 ∈ (LIndS‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → ¬ (0g‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∈ 𝑏)
1474, 144, 146syl2an2r 681 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → ¬ (0g‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∈ 𝑏)
148142, 147eqneltrd 2902 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → ¬ (0g𝐸) ∈ 𝑏)
149148ad3antrrr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ¬ (0g𝐸) ∈ 𝑏)
150 nelne2 3083 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝑏 ∧ ¬ (0g𝐸) ∈ 𝑏) → 𝑥 ≠ (0g𝐸))
15168, 149, 150syl2an2r 681 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝑥 ≠ (0g𝐸))
152 eqid 2795 . . . . . . . . . . . . . . . . . . . . 21 (0g𝐸) = (0g𝐸)
15327, 152, 110drnginvrn0 19210 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 ∈ DivRing ∧ 𝑥 ∈ (Base‘𝐸) ∧ 𝑥 ≠ (0g𝐸)) → ((invr𝐸)‘𝑥) ≠ (0g𝐸))
154132, 113, 151, 153syl3anc 1364 . . . . . . . . . . . . . . . . . . 19 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ((invr𝐸)‘𝑥) ≠ (0g𝐸))
155 eldifsn 4626 . . . . . . . . . . . . . . . . . . 19 (((invr𝐸)‘𝑥) ∈ ((Base‘𝐹) ∖ {(0g𝐸)}) ↔ (((invr𝐸)‘𝑥) ∈ (Base‘𝐹) ∧ ((invr𝐸)‘𝑥) ≠ (0g𝐸)))
156139, 154, 155sylanbrc 583 . . . . . . . . . . . . . . . . . 18 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ((invr𝐸)‘𝑥) ∈ ((Base‘𝐹) ∖ {(0g𝐸)}))
157 fveq2 6538 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = ((invr𝐸)‘𝑥) → ((invr𝐸)‘𝑎) = ((invr𝐸)‘((invr𝐸)‘𝑥)))
158157eleq1d 2867 . . . . . . . . . . . . . . . . . . 19 (𝑎 = ((invr𝐸)‘𝑥) → (((invr𝐸)‘𝑎) ∈ (Base‘𝐹) ↔ ((invr𝐸)‘((invr𝐸)‘𝑥)) ∈ (Base‘𝐹)))
15943, 152, 110issubdrg 19250 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸 ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)) → ((𝐸s (Base‘𝐹)) ∈ DivRing ↔ ∀𝑎 ∈ ((Base‘𝐹) ∖ {(0g𝐸)})((invr𝐸)‘𝑎) ∈ (Base‘𝐹)))
160159biimpa 477 . . . . . . . . . . . . . . . . . . . 20 (((𝐸 ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)) ∧ (𝐸s (Base‘𝐹)) ∈ DivRing) → ∀𝑎 ∈ ((Base‘𝐹) ∖ {(0g𝐸)})((invr𝐸)‘𝑎) ∈ (Base‘𝐹))
161160adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝐸 ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)) ∧ (𝐸s (Base‘𝐹)) ∈ DivRing) ∧ ((invr𝐸)‘𝑥) ∈ ((Base‘𝐹) ∖ {(0g𝐸)})) → ∀𝑎 ∈ ((Base‘𝐹) ∖ {(0g𝐸)})((invr𝐸)‘𝑎) ∈ (Base‘𝐹))
162 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((((𝐸 ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)) ∧ (𝐸s (Base‘𝐹)) ∈ DivRing) ∧ ((invr𝐸)‘𝑥) ∈ ((Base‘𝐹) ∖ {(0g𝐸)})) → ((invr𝐸)‘𝑥) ∈ ((Base‘𝐹) ∖ {(0g𝐸)}))
163158, 161, 162rspcdva 3565 . . . . . . . . . . . . . . . . . 18 ((((𝐸 ∈ DivRing ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)) ∧ (𝐸s (Base‘𝐹)) ∈ DivRing) ∧ ((invr𝐸)‘𝑥) ∈ ((Base‘𝐹) ∖ {(0g𝐸)})) → ((invr𝐸)‘((invr𝐸)‘𝑥)) ∈ (Base‘𝐹))
164132, 133, 136, 156, 163syl1111anc 836 . . . . . . . . . . . . . . . . 17 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → ((invr𝐸)‘((invr𝐸)‘𝑥)) ∈ (Base‘𝐹))
165131, 164eqeltrrd 2884 . . . . . . . . . . . . . . . 16 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝑥 ∈ (Base‘𝐹))
166165adantrl 712 . . . . . . . . . . . . . . 15 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))) → 𝑥 ∈ (Base‘𝐹))
16727, 108ringidcl 19008 . . . . . . . . . . . . . . . . . 18 (𝐸 ∈ Ring → (1r𝐸) ∈ (Base‘𝐸))
16861, 167syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (1r𝐸) ∈ (Base‘𝐸))
169168, 85eleqtrd 2885 . . . . . . . . . . . . . . . 16 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (1r𝐸) ∈ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
170 eqid 2795 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) = (Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
171 eqid 2795 . . . . . . . . . . . . . . . . 17 (Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = (Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))
172 eqid 2795 . . . . . . . . . . . . . . . . 17 (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) = (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
173 eqid 2795 . . . . . . . . . . . . . . . . 17 ( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹))) = ( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))
1744ad2antrr 722 . . . . . . . . . . . . . . . . . 18 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec)
175 lveclmod 19568 . . . . . . . . . . . . . . . . . 18 (((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LMod)
176174, 175syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LMod)
17778, 170, 171, 172, 173, 176, 77lbslsp 30584 . . . . . . . . . . . . . . . 16 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → ((1r𝐸) ∈ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ↔ ∃𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)(𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))))
178169, 177mpbid 233 . . . . . . . . . . . . . . 15 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → ∃𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)(𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ (1r𝐸) = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))))
179166, 178r19.29a 3252 . . . . . . . . . . . . . 14 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → 𝑥 ∈ (Base‘𝐹))
180179ad2antrr 722 . . . . . . . . . . . . 13 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → 𝑥 ∈ (Base‘𝐹))
181 eqid 2795 . . . . . . . . . . . . . 14 (.r𝐹) = (.r𝐹)
18225, 181ringcl 19001 . . . . . . . . . . . . 13 ((𝐹 ∈ Ring ∧ (𝑣𝑥) ∈ (Base‘𝐹) ∧ 𝑥 ∈ (Base‘𝐹)) → ((𝑣𝑥)(.r𝐹)𝑥) ∈ (Base‘𝐹))
183106, 107, 180, 182syl3anc 1364 . . . . . . . . . . . 12 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → ((𝑣𝑥)(.r𝐹)𝑥) ∈ (Base‘𝐹))
184103, 183eqeltrd 2883 . . . . . . . . . . 11 ((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) → (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) ∈ (Base‘𝐹))
185184ad2antrr 722 . . . . . . . . . 10 ((((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ 𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))))) ∧ 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))) ∈ (Base‘𝐹))
18622, 185eqeltrd 2883 . . . . . . . . 9 ((((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ 𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹))))) ∧ 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))) → 𝑢 ∈ (Base‘𝐹))
187186anasss 467 . . . . . . . 8 (((((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) ∧ 𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)) ∧ (𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))) → 𝑢 ∈ (Base‘𝐹))
18885eleq2d 2868 . . . . . . . . . 10 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (𝑢 ∈ (Base‘𝐸) ↔ 𝑢 ∈ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹)))))
18978, 170, 171, 172, 173, 176, 77lbslsp 30584 . . . . . . . . . 10 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (𝑢 ∈ (Base‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ↔ ∃𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)(𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))))
190188, 189bitrd 280 . . . . . . . . 9 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (𝑢 ∈ (Base‘𝐸) ↔ ∃𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)(𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖))))))
191190biimpa 477 . . . . . . . 8 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) → ∃𝑣 ∈ ((Base‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ↑𝑚 𝑏)(𝑣 finSupp (0g‘(Scalar‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑢 = (((subringAlg ‘𝐸)‘(Base‘𝐹)) Σg (𝑖𝑏 ↦ ((𝑣𝑖)( ·𝑠 ‘((subringAlg ‘𝐸)‘(Base‘𝐹)))𝑖)))))
192187, 191r19.29a 3252 . . . . . . 7 (((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) ∧ 𝑢 ∈ (Base‘𝐸)) → 𝑢 ∈ (Base‘𝐹))
193192ex 413 . . . . . 6 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (𝑢 ∈ (Base‘𝐸) → 𝑢 ∈ (Base‘𝐹)))
194193ssrdv 3895 . . . . 5 ((((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) ∧ 𝑏 = {𝑥}) → (Base‘𝐸) ⊆ (Base‘𝐹))
19521, 194exlimddv 1913 . . . 4 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ 𝑏 ∈ (LBasis‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) → (Base‘𝐸) ⊆ (Base‘𝐹))
1969, 195exlimddv 1913 . . 3 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → (Base‘𝐸) ⊆ (Base‘𝐹))
197 simpr 485 . . . 4 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ (Base‘𝐸) ⊆ (Base‘𝐹)) → (Base‘𝐸) ⊆ (Base‘𝐹))
19837ad2antrr 722 . . . 4 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ (Base‘𝐸) ⊆ (Base‘𝐹)) → 𝐸 ∈ Field)
199 fvexd 6553 . . . 4 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ (Base‘𝐸) ⊆ (Base‘𝐹)) → (Base‘𝐹) ∈ V)
20043, 27ressid2 16381 . . . 4 (((Base‘𝐸) ⊆ (Base‘𝐹) ∧ 𝐸 ∈ Field ∧ (Base‘𝐹) ∈ V) → (𝐸s (Base‘𝐹)) = 𝐸)
201197, 198, 199, 200syl3anc 1364 . . 3 (((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) ∧ (Base‘𝐸) ⊆ (Base‘𝐹)) → (𝐸s (Base‘𝐹)) = 𝐸)
202196, 201mpdan 683 . 2 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → (𝐸s (Base‘𝐹)) = 𝐸)
2032, 202eqtr2d 2832 1 ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → 𝐸 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1522  wex 1761  wcel 2081  wne 2984  wral 3105  wrex 3106  Vcvv 3437  cdif 3856  wss 3859  c0 4211  {csn 4472   class class class wbr 4962  cmpt 5041  wf 6221  cfv 6225  (class class class)co 7016  𝑚 cmap 8256   finSupp cfsupp 8679  1c1 10384  chash 13540  Basecbs 16312  s cress 16313  .rcmulr 16395  Scalarcsca 16397   ·𝑠 cvsca 16398  0gc0g 16542   Σg cgsu 16543  Mndcmnd 17733  1rcur 18941  Ringcrg 18987  CRingccrg 18988  Unitcui 19079  invrcinvr 19111  DivRingcdr 19192  Fieldcfield 19193  SubRingcsubrg 19221  LModclmod 19324  LBasisclbs 19536  LVecclvec 19564  subringAlg csra 19630  LIndSclinds 20631  dimcldim 30603  /FldExtcfldext 30632  [:]cextdg 30635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-reg 8902  ax-inf2 8950  ax-ac2 9731  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-rpss 7307  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-tpos 7743  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-sup 8752  df-oi 8820  df-r1 9039  df-rank 9040  df-dju 9176  df-card 9214  df-acn 9217  df-ac 9388  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-xnn0 11816  df-z 11830  df-dec 11948  df-uz 12094  df-fz 12743  df-fzo 12884  df-seq 13220  df-hash 13541  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ocomp 16415  df-ds 16416  df-hom 16418  df-cco 16419  df-0g 16544  df-gsum 16545  df-prds 16550  df-pws 16552  df-mre 16686  df-mrc 16687  df-mri 16688  df-acs 16689  df-proset 17367  df-drs 17368  df-poset 17385  df-ipo 17591  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-mhm 17774  df-submnd 17775  df-grp 17864  df-minusg 17865  df-sbg 17866  df-mulg 17982  df-subg 18030  df-ghm 18097  df-cntz 18188  df-cmn 18635  df-abl 18636  df-mgp 18930  df-ur 18942  df-ring 18989  df-cring 18990  df-oppr 19063  df-dvdsr 19081  df-unit 19082  df-invr 19112  df-drng 19194  df-field 19195  df-subrg 19223  df-lmod 19326  df-lss 19394  df-lsp 19434  df-lmhm 19484  df-lbs 19537  df-lvec 19565  df-sra 19634  df-rgmod 19635  df-nzr 19720  df-dsmm 20558  df-frlm 20573  df-uvc 20609  df-lindf 20632  df-linds 20633  df-dim 30604  df-fldext 30636  df-extdg 30637
This theorem is referenced by:  extdg1b  30658
  Copyright terms: Public domain W3C validator