Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcf1o Structured version   Visualization version   GIF version

Theorem mgcf1o 31183
Description: Given a Galois connection, exhibit an order isomorphism. (Contributed by Thierry Arnoux, 26-Jul-2024.)
Hypotheses
Ref Expression
mgcf1o.h 𝐻 = (𝑉MGalConn𝑊)
mgcf1o.a 𝐴 = (Base‘𝑉)
mgcf1o.b 𝐵 = (Base‘𝑊)
mgcf1o.1 = (le‘𝑉)
mgcf1o.2 = (le‘𝑊)
mgcf1o.v (𝜑𝑉 ∈ Poset)
mgcf1o.w (𝜑𝑊 ∈ Poset)
mgcf1o.f (𝜑𝐹𝐻𝐺)
Assertion
Ref Expression
mgcf1o (𝜑 → (𝐹 ↾ ran 𝐺) Isom , (ran 𝐺, ran 𝐹))

Proof of Theorem mgcf1o
Dummy variables 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (𝑥 ∈ ran 𝐺 ↦ (𝐹𝑥)) = (𝑥 ∈ ran 𝐺 ↦ (𝐹𝑥))
2 mgcf1o.f . . . . . . . 8 (𝜑𝐹𝐻𝐺)
3 mgcf1o.a . . . . . . . . 9 𝐴 = (Base‘𝑉)
4 mgcf1o.b . . . . . . . . 9 𝐵 = (Base‘𝑊)
5 mgcf1o.1 . . . . . . . . 9 = (le‘𝑉)
6 mgcf1o.2 . . . . . . . . 9 = (le‘𝑊)
7 mgcf1o.h . . . . . . . . 9 𝐻 = (𝑉MGalConn𝑊)
8 mgcf1o.v . . . . . . . . . 10 (𝜑𝑉 ∈ Poset)
9 posprs 17949 . . . . . . . . . 10 (𝑉 ∈ Poset → 𝑉 ∈ Proset )
108, 9syl 17 . . . . . . . . 9 (𝜑𝑉 ∈ Proset )
11 mgcf1o.w . . . . . . . . . 10 (𝜑𝑊 ∈ Poset)
12 posprs 17949 . . . . . . . . . 10 (𝑊 ∈ Poset → 𝑊 ∈ Proset )
1311, 12syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ Proset )
143, 4, 5, 6, 7, 10, 13dfmgc2 31176 . . . . . . . 8 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))))
152, 14mpbid 231 . . . . . . 7 (𝜑 → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥))))))
1615simplld 764 . . . . . 6 (𝜑𝐹:𝐴𝐵)
1716ffnd 6585 . . . . 5 (𝜑𝐹 Fn 𝐴)
1815simplrd 766 . . . . . . 7 (𝜑𝐺:𝐵𝐴)
1918frnd 6592 . . . . . 6 (𝜑 → ran 𝐺𝐴)
2019sselda 3917 . . . . 5 ((𝜑𝑥 ∈ ran 𝐺) → 𝑥𝐴)
21 fnfvelrn 6940 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ ran 𝐹)
2217, 20, 21syl2an2r 681 . . . 4 ((𝜑𝑥 ∈ ran 𝐺) → (𝐹𝑥) ∈ ran 𝐹)
2318ffnd 6585 . . . . 5 (𝜑𝐺 Fn 𝐵)
2416frnd 6592 . . . . . 6 (𝜑 → ran 𝐹𝐵)
2524sselda 3917 . . . . 5 ((𝜑𝑢 ∈ ran 𝐹) → 𝑢𝐵)
26 fnfvelrn 6940 . . . . 5 ((𝐺 Fn 𝐵𝑢𝐵) → (𝐺𝑢) ∈ ran 𝐺)
2723, 25, 26syl2an2r 681 . . . 4 ((𝜑𝑢 ∈ ran 𝐹) → (𝐺𝑢) ∈ ran 𝐺)
288ad4antr 728 . . . . . . . 8 (((((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺𝑢)) ∧ 𝑦𝐴) ∧ (𝐹𝑦) = 𝑢) → 𝑉 ∈ Poset)
2911ad4antr 728 . . . . . . . 8 (((((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺𝑢)) ∧ 𝑦𝐴) ∧ (𝐹𝑦) = 𝑢) → 𝑊 ∈ Poset)
302ad4antr 728 . . . . . . . 8 (((((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺𝑢)) ∧ 𝑦𝐴) ∧ (𝐹𝑦) = 𝑢) → 𝐹𝐻𝐺)
31 simplr 765 . . . . . . . 8 (((((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺𝑢)) ∧ 𝑦𝐴) ∧ (𝐹𝑦) = 𝑢) → 𝑦𝐴)
327, 3, 4, 5, 6, 28, 29, 30, 31mgcf1olem1 31181 . . . . . . 7 (((((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺𝑢)) ∧ 𝑦𝐴) ∧ (𝐹𝑦) = 𝑢) → (𝐹‘(𝐺‘(𝐹𝑦))) = (𝐹𝑦))
33 simpr 484 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺𝑢)) ∧ 𝑦𝐴) ∧ (𝐹𝑦) = 𝑢) → (𝐹𝑦) = 𝑢)
3433fveq2d 6760 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺𝑢)) ∧ 𝑦𝐴) ∧ (𝐹𝑦) = 𝑢) → (𝐺‘(𝐹𝑦)) = (𝐺𝑢))
35 simpllr 772 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺𝑢)) ∧ 𝑦𝐴) ∧ (𝐹𝑦) = 𝑢) → 𝑥 = (𝐺𝑢))
3634, 35eqtr4d 2781 . . . . . . . 8 (((((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺𝑢)) ∧ 𝑦𝐴) ∧ (𝐹𝑦) = 𝑢) → (𝐺‘(𝐹𝑦)) = 𝑥)
3736fveq2d 6760 . . . . . . 7 (((((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺𝑢)) ∧ 𝑦𝐴) ∧ (𝐹𝑦) = 𝑢) → (𝐹‘(𝐺‘(𝐹𝑦))) = (𝐹𝑥))
3832, 37, 333eqtr3rd 2787 . . . . . 6 (((((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺𝑢)) ∧ 𝑦𝐴) ∧ (𝐹𝑦) = 𝑢) → 𝑢 = (𝐹𝑥))
3917ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺𝑢)) → 𝐹 Fn 𝐴)
40 simplrr 774 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺𝑢)) → 𝑢 ∈ ran 𝐹)
41 fvelrnb 6812 . . . . . . . 8 (𝐹 Fn 𝐴 → (𝑢 ∈ ran 𝐹 ↔ ∃𝑦𝐴 (𝐹𝑦) = 𝑢))
4241biimpa 476 . . . . . . 7 ((𝐹 Fn 𝐴𝑢 ∈ ran 𝐹) → ∃𝑦𝐴 (𝐹𝑦) = 𝑢)
4339, 40, 42syl2anc 583 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺𝑢)) → ∃𝑦𝐴 (𝐹𝑦) = 𝑢)
4438, 43r19.29a 3217 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺𝑢)) → 𝑢 = (𝐹𝑥))
458ad4antr 728 . . . . . . . 8 (((((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹𝑥)) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑥) → 𝑉 ∈ Poset)
4611ad4antr 728 . . . . . . . 8 (((((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹𝑥)) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑥) → 𝑊 ∈ Poset)
472ad4antr 728 . . . . . . . 8 (((((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹𝑥)) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑥) → 𝐹𝐻𝐺)
48 simplr 765 . . . . . . . 8 (((((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹𝑥)) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑥) → 𝑣𝐵)
497, 3, 4, 5, 6, 45, 46, 47, 48mgcf1olem2 31182 . . . . . . 7 (((((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹𝑥)) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑥) → (𝐺‘(𝐹‘(𝐺𝑣))) = (𝐺𝑣))
50 simpr 484 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹𝑥)) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑥) → (𝐺𝑣) = 𝑥)
5150fveq2d 6760 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹𝑥)) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑥) → (𝐹‘(𝐺𝑣)) = (𝐹𝑥))
52 simpllr 772 . . . . . . . . 9 (((((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹𝑥)) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑥) → 𝑢 = (𝐹𝑥))
5351, 52eqtr4d 2781 . . . . . . . 8 (((((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹𝑥)) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑥) → (𝐹‘(𝐺𝑣)) = 𝑢)
5453fveq2d 6760 . . . . . . 7 (((((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹𝑥)) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑥) → (𝐺‘(𝐹‘(𝐺𝑣))) = (𝐺𝑢))
5549, 54, 503eqtr3rd 2787 . . . . . 6 (((((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹𝑥)) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑥) → 𝑥 = (𝐺𝑢))
5623ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹𝑥)) → 𝐺 Fn 𝐵)
57 simplrl 773 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹𝑥)) → 𝑥 ∈ ran 𝐺)
58 fvelrnb 6812 . . . . . . . 8 (𝐺 Fn 𝐵 → (𝑥 ∈ ran 𝐺 ↔ ∃𝑣𝐵 (𝐺𝑣) = 𝑥))
5958biimpa 476 . . . . . . 7 ((𝐺 Fn 𝐵𝑥 ∈ ran 𝐺) → ∃𝑣𝐵 (𝐺𝑣) = 𝑥)
6056, 57, 59syl2anc 583 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹𝑥)) → ∃𝑣𝐵 (𝐺𝑣) = 𝑥)
6155, 60r19.29a 3217 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹𝑥)) → 𝑥 = (𝐺𝑢))
6244, 61impbida 797 . . . 4 ((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑢 ∈ ran 𝐹)) → (𝑥 = (𝐺𝑢) ↔ 𝑢 = (𝐹𝑥)))
631, 22, 27, 62f1o2d 7501 . . 3 (𝜑 → (𝑥 ∈ ran 𝐺 ↦ (𝐹𝑥)):ran 𝐺1-1-onto→ran 𝐹)
6416, 19feqresmpt 6820 . . . 4 (𝜑 → (𝐹 ↾ ran 𝐺) = (𝑥 ∈ ran 𝐺 ↦ (𝐹𝑥)))
6564f1oeq1d 6695 . . 3 (𝜑 → ((𝐹 ↾ ran 𝐺):ran 𝐺1-1-onto→ran 𝐹 ↔ (𝑥 ∈ ran 𝐺 ↦ (𝐹𝑥)):ran 𝐺1-1-onto→ran 𝐹))
6663, 65mpbird 256 . 2 (𝜑 → (𝐹 ↾ ran 𝐺):ran 𝐺1-1-onto→ran 𝐹)
67 simplll 771 . . . . . . 7 ((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ 𝑥 𝑦) → 𝜑)
6819ad2antrr 722 . . . . . . . . 9 (((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) → ran 𝐺𝐴)
69 simplr 765 . . . . . . . . 9 (((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) → 𝑥 ∈ ran 𝐺)
7068, 69sseldd 3918 . . . . . . . 8 (((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) → 𝑥𝐴)
7170adantr 480 . . . . . . 7 ((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ 𝑥 𝑦) → 𝑥𝐴)
72 simpr 484 . . . . . . . . 9 (((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) → 𝑦 ∈ ran 𝐺)
7368, 72sseldd 3918 . . . . . . . 8 (((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) → 𝑦𝐴)
7473adantr 480 . . . . . . 7 ((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ 𝑥 𝑦) → 𝑦𝐴)
75 simpr 484 . . . . . . 7 ((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ 𝑥 𝑦) → 𝑥 𝑦)
7615simprld 768 . . . . . . . . . . 11 (𝜑 → (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))))
7776simpld 494 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
7877r19.21bi 3132 . . . . . . . . 9 ((𝜑𝑥𝐴) → ∀𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
7978r19.21bi 3132 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦𝐴) → (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
8079imp 406 . . . . . . 7 ((((𝜑𝑥𝐴) ∧ 𝑦𝐴) ∧ 𝑥 𝑦) → (𝐹𝑥) (𝐹𝑦))
8167, 71, 74, 75, 80syl1111anc 836 . . . . . 6 ((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ 𝑥 𝑦) → (𝐹𝑥) (𝐹𝑦))
8269fvresd 6776 . . . . . . 7 (((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) → ((𝐹 ↾ ran 𝐺)‘𝑥) = (𝐹𝑥))
8382adantr 480 . . . . . 6 ((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ 𝑥 𝑦) → ((𝐹 ↾ ran 𝐺)‘𝑥) = (𝐹𝑥))
8472fvresd 6776 . . . . . . 7 (((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) → ((𝐹 ↾ ran 𝐺)‘𝑦) = (𝐹𝑦))
8584adantr 480 . . . . . 6 ((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ 𝑥 𝑦) → ((𝐹 ↾ ran 𝐺)‘𝑦) = (𝐹𝑦))
8681, 83, 853brtr4d 5102 . . . . 5 ((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ 𝑥 𝑦) → ((𝐹 ↾ ran 𝐺)‘𝑥) ((𝐹 ↾ ran 𝐺)‘𝑦))
8782, 84breq12d 5083 . . . . . . 7 (((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) → (((𝐹 ↾ ran 𝐺)‘𝑥) ((𝐹 ↾ ran 𝐺)‘𝑦) ↔ (𝐹𝑥) (𝐹𝑦)))
8887biimpa 476 . . . . . 6 ((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑥) ((𝐹 ↾ ran 𝐺)‘𝑦)) → (𝐹𝑥) (𝐹𝑦))
8911ad7antr 734 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → 𝑊 ∈ Poset)
908ad7antr 734 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → 𝑉 ∈ Poset)
917, 10, 13, 2mgcmnt2d 31178 . . . . . . . . . . . 12 (𝜑𝐺 ∈ (𝑊Monot𝑉))
9291ad7antr 734 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → 𝐺 ∈ (𝑊Monot𝑉))
9316ad7antr 734 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → 𝐹:𝐴𝐵)
9418ad7antr 734 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → 𝐺:𝐵𝐴)
95 simp-4r 780 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → 𝑢𝐵)
9694, 95ffvelrnd 6944 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → (𝐺𝑢) ∈ 𝐴)
9793, 96ffvelrnd 6944 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → (𝐹‘(𝐺𝑢)) ∈ 𝐵)
98 simplr 765 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → 𝑣𝐵)
9994, 98ffvelrnd 6944 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → (𝐺𝑣) ∈ 𝐴)
10093, 99ffvelrnd 6944 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → (𝐹‘(𝐺𝑣)) ∈ 𝐵)
101 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) → (𝐹𝑥) (𝐹𝑦))
102101ad4antr 728 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → (𝐹𝑥) (𝐹𝑦))
103 simpllr 772 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → (𝐺𝑢) = 𝑥)
104103fveq2d 6760 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → (𝐹‘(𝐺𝑢)) = (𝐹𝑥))
105 simpr 484 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → (𝐺𝑣) = 𝑦)
106105fveq2d 6760 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → (𝐹‘(𝐺𝑣)) = (𝐹𝑦))
107102, 104, 1063brtr4d 5102 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → (𝐹‘(𝐺𝑢)) (𝐹‘(𝐺𝑣)))
1084, 3, 6, 5, 89, 90, 92, 97, 100, 107ismntd 31164 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → (𝐺‘(𝐹‘(𝐺𝑢))) (𝐺‘(𝐹‘(𝐺𝑣))))
1092ad7antr 734 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → 𝐹𝐻𝐺)
1107, 3, 4, 5, 6, 90, 89, 109, 95mgcf1olem2 31182 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → (𝐺‘(𝐹‘(𝐺𝑢))) = (𝐺𝑢))
1117, 3, 4, 5, 6, 90, 89, 109, 98mgcf1olem2 31182 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → (𝐺‘(𝐹‘(𝐺𝑣))) = (𝐺𝑣))
112108, 110, 1113brtr3d 5101 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → (𝐺𝑢) (𝐺𝑣))
113112, 103, 1053brtr3d 5101 . . . . . . . 8 ((((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) ∧ 𝑣𝐵) ∧ (𝐺𝑣) = 𝑦) → 𝑥 𝑦)
11423ad3antrrr 726 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) → 𝐺 Fn 𝐵)
115114ad2antrr 722 . . . . . . . . 9 ((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) → 𝐺 Fn 𝐵)
116 simp-4r 780 . . . . . . . . 9 ((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) → 𝑦 ∈ ran 𝐺)
117 fvelrnb 6812 . . . . . . . . . 10 (𝐺 Fn 𝐵 → (𝑦 ∈ ran 𝐺 ↔ ∃𝑣𝐵 (𝐺𝑣) = 𝑦))
118117biimpa 476 . . . . . . . . 9 ((𝐺 Fn 𝐵𝑦 ∈ ran 𝐺) → ∃𝑣𝐵 (𝐺𝑣) = 𝑦)
119115, 116, 118syl2anc 583 . . . . . . . 8 ((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) → ∃𝑣𝐵 (𝐺𝑣) = 𝑦)
120113, 119r19.29a 3217 . . . . . . 7 ((((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) ∧ 𝑢𝐵) ∧ (𝐺𝑢) = 𝑥) → 𝑥 𝑦)
121 simpllr 772 . . . . . . . 8 ((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) → 𝑥 ∈ ran 𝐺)
122 fvelrnb 6812 . . . . . . . . 9 (𝐺 Fn 𝐵 → (𝑥 ∈ ran 𝐺 ↔ ∃𝑢𝐵 (𝐺𝑢) = 𝑥))
123122biimpa 476 . . . . . . . 8 ((𝐺 Fn 𝐵𝑥 ∈ ran 𝐺) → ∃𝑢𝐵 (𝐺𝑢) = 𝑥)
124114, 121, 123syl2anc 583 . . . . . . 7 ((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) → ∃𝑢𝐵 (𝐺𝑢) = 𝑥)
125120, 124r19.29a 3217 . . . . . 6 ((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹𝑥) (𝐹𝑦)) → 𝑥 𝑦)
12688, 125syldan 590 . . . . 5 ((((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑥) ((𝐹 ↾ ran 𝐺)‘𝑦)) → 𝑥 𝑦)
12786, 126impbida 797 . . . 4 (((𝜑𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) → (𝑥 𝑦 ↔ ((𝐹 ↾ ran 𝐺)‘𝑥) ((𝐹 ↾ ran 𝐺)‘𝑦)))
128127anasss 466 . . 3 ((𝜑 ∧ (𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺)) → (𝑥 𝑦 ↔ ((𝐹 ↾ ran 𝐺)‘𝑥) ((𝐹 ↾ ran 𝐺)‘𝑦)))
129128ralrimivva 3114 . 2 (𝜑 → ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺(𝑥 𝑦 ↔ ((𝐹 ↾ ran 𝐺)‘𝑥) ((𝐹 ↾ ran 𝐺)‘𝑦)))
130 df-isom 6427 . 2 ((𝐹 ↾ ran 𝐺) Isom , (ran 𝐺, ran 𝐹) ↔ ((𝐹 ↾ ran 𝐺):ran 𝐺1-1-onto→ran 𝐹 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺(𝑥 𝑦 ↔ ((𝐹 ↾ ran 𝐺)‘𝑥) ((𝐹 ↾ ran 𝐺)‘𝑦))))
13166, 129, 130sylanbrc 582 1 (𝜑 → (𝐹 ↾ ran 𝐺) Isom , (ran 𝐺, ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883   class class class wbr 5070  cmpt 5153  ran crn 5581  cres 5582   Fn wfn 6413  wf 6414  1-1-ontowf1o 6417  cfv 6418   Isom wiso 6419  (class class class)co 7255  Basecbs 16840  lecple 16895   Proset cproset 17926  Posetcpo 17940  Monotcmnt 31158  MGalConncmgc 31159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-proset 17928  df-poset 17946  df-mnt 31160  df-mgc 31161
This theorem is referenced by:  nsgqusf1o  31503
  Copyright terms: Public domain W3C validator