Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . 4
⊢ (𝑥 ∈ ran 𝐺 ↦ (𝐹‘𝑥)) = (𝑥 ∈ ran 𝐺 ↦ (𝐹‘𝑥)) |
2 | | mgcf1o.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹𝐻𝐺) |
3 | | mgcf1o.a |
. . . . . . . . 9
⊢ 𝐴 = (Base‘𝑉) |
4 | | mgcf1o.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑊) |
5 | | mgcf1o.1 |
. . . . . . . . 9
⊢ ≤ =
(le‘𝑉) |
6 | | mgcf1o.2 |
. . . . . . . . 9
⊢ ≲ =
(le‘𝑊) |
7 | | mgcf1o.h |
. . . . . . . . 9
⊢ 𝐻 = (𝑉MGalConn𝑊) |
8 | | mgcf1o.v |
. . . . . . . . . 10
⊢ (𝜑 → 𝑉 ∈ Poset) |
9 | | posprs 17675 |
. . . . . . . . . 10
⊢ (𝑉 ∈ Poset → 𝑉 ∈ Proset
) |
10 | 8, 9 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑉 ∈ Proset ) |
11 | | mgcf1o.w |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ Poset) |
12 | | posprs 17675 |
. . . . . . . . . 10
⊢ (𝑊 ∈ Poset → 𝑊 ∈ Proset
) |
13 | 11, 12 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ Proset ) |
14 | 3, 4, 5, 6, 7, 10,
13 | dfmgc2 30851 |
. . . . . . . 8
⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))))))) |
15 | 2, 14 | mpbid 235 |
. . . . . . 7
⊢ (𝜑 → ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥)))))) |
16 | 15 | simplld 768 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
17 | 16 | ffnd 6505 |
. . . . 5
⊢ (𝜑 → 𝐹 Fn 𝐴) |
18 | 15 | simplrd 770 |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
19 | 18 | frnd 6512 |
. . . . . 6
⊢ (𝜑 → ran 𝐺 ⊆ 𝐴) |
20 | 19 | sselda 3877 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐺) → 𝑥 ∈ 𝐴) |
21 | | fnfvelrn 6858 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ran 𝐹) |
22 | 17, 20, 21 | syl2an2r 685 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐺) → (𝐹‘𝑥) ∈ ran 𝐹) |
23 | 18 | ffnd 6505 |
. . . . 5
⊢ (𝜑 → 𝐺 Fn 𝐵) |
24 | 16 | frnd 6512 |
. . . . . 6
⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
25 | 24 | sselda 3877 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → 𝑢 ∈ 𝐵) |
26 | | fnfvelrn 6858 |
. . . . 5
⊢ ((𝐺 Fn 𝐵 ∧ 𝑢 ∈ 𝐵) → (𝐺‘𝑢) ∈ ran 𝐺) |
27 | 23, 25, 26 | syl2an2r 685 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → (𝐺‘𝑢) ∈ ran 𝐺) |
28 | 8 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺‘𝑢)) ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑦) = 𝑢) → 𝑉 ∈ Poset) |
29 | 11 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺‘𝑢)) ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑦) = 𝑢) → 𝑊 ∈ Poset) |
30 | 2 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺‘𝑢)) ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑦) = 𝑢) → 𝐹𝐻𝐺) |
31 | | simplr 769 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺‘𝑢)) ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑦) = 𝑢) → 𝑦 ∈ 𝐴) |
32 | 7, 3, 4, 5, 6, 28,
29, 30, 31 | mgcf1olem1 30856 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺‘𝑢)) ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑦) = 𝑢) → (𝐹‘(𝐺‘(𝐹‘𝑦))) = (𝐹‘𝑦)) |
33 | | simpr 488 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺‘𝑢)) ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑦) = 𝑢) → (𝐹‘𝑦) = 𝑢) |
34 | 33 | fveq2d 6678 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺‘𝑢)) ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑦) = 𝑢) → (𝐺‘(𝐹‘𝑦)) = (𝐺‘𝑢)) |
35 | | simpllr 776 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺‘𝑢)) ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑦) = 𝑢) → 𝑥 = (𝐺‘𝑢)) |
36 | 34, 35 | eqtr4d 2776 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺‘𝑢)) ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑦) = 𝑢) → (𝐺‘(𝐹‘𝑦)) = 𝑥) |
37 | 36 | fveq2d 6678 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺‘𝑢)) ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑦) = 𝑢) → (𝐹‘(𝐺‘(𝐹‘𝑦))) = (𝐹‘𝑥)) |
38 | 32, 37, 33 | 3eqtr3rd 2782 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺‘𝑢)) ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑦) = 𝑢) → 𝑢 = (𝐹‘𝑥)) |
39 | 17 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺‘𝑢)) → 𝐹 Fn 𝐴) |
40 | | simplrr 778 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺‘𝑢)) → 𝑢 ∈ ran 𝐹) |
41 | | fvelrnb 6730 |
. . . . . . . 8
⊢ (𝐹 Fn 𝐴 → (𝑢 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑢)) |
42 | 41 | biimpa 480 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝑢 ∈ ran 𝐹) → ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑢) |
43 | 39, 40, 42 | syl2anc 587 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺‘𝑢)) → ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑢) |
44 | 38, 43 | r19.29a 3199 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑥 = (𝐺‘𝑢)) → 𝑢 = (𝐹‘𝑥)) |
45 | 8 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹‘𝑥)) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑥) → 𝑉 ∈ Poset) |
46 | 11 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹‘𝑥)) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑥) → 𝑊 ∈ Poset) |
47 | 2 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹‘𝑥)) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑥) → 𝐹𝐻𝐺) |
48 | | simplr 769 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹‘𝑥)) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑥) → 𝑣 ∈ 𝐵) |
49 | 7, 3, 4, 5, 6, 45,
46, 47, 48 | mgcf1olem2 30857 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹‘𝑥)) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑥) → (𝐺‘(𝐹‘(𝐺‘𝑣))) = (𝐺‘𝑣)) |
50 | | simpr 488 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹‘𝑥)) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑥) → (𝐺‘𝑣) = 𝑥) |
51 | 50 | fveq2d 6678 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹‘𝑥)) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑥) → (𝐹‘(𝐺‘𝑣)) = (𝐹‘𝑥)) |
52 | | simpllr 776 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹‘𝑥)) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑥) → 𝑢 = (𝐹‘𝑥)) |
53 | 51, 52 | eqtr4d 2776 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹‘𝑥)) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑥) → (𝐹‘(𝐺‘𝑣)) = 𝑢) |
54 | 53 | fveq2d 6678 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹‘𝑥)) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑥) → (𝐺‘(𝐹‘(𝐺‘𝑣))) = (𝐺‘𝑢)) |
55 | 49, 54, 50 | 3eqtr3rd 2782 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹‘𝑥)) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑥) → 𝑥 = (𝐺‘𝑢)) |
56 | 23 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹‘𝑥)) → 𝐺 Fn 𝐵) |
57 | | simplrl 777 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹‘𝑥)) → 𝑥 ∈ ran 𝐺) |
58 | | fvelrnb 6730 |
. . . . . . . 8
⊢ (𝐺 Fn 𝐵 → (𝑥 ∈ ran 𝐺 ↔ ∃𝑣 ∈ 𝐵 (𝐺‘𝑣) = 𝑥)) |
59 | 58 | biimpa 480 |
. . . . . . 7
⊢ ((𝐺 Fn 𝐵 ∧ 𝑥 ∈ ran 𝐺) → ∃𝑣 ∈ 𝐵 (𝐺‘𝑣) = 𝑥) |
60 | 56, 57, 59 | syl2anc 587 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹‘𝑥)) → ∃𝑣 ∈ 𝐵 (𝐺‘𝑣) = 𝑥) |
61 | 55, 60 | r19.29a 3199 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) ∧ 𝑢 = (𝐹‘𝑥)) → 𝑥 = (𝐺‘𝑢)) |
62 | 44, 61 | impbida 801 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑢 ∈ ran 𝐹)) → (𝑥 = (𝐺‘𝑢) ↔ 𝑢 = (𝐹‘𝑥))) |
63 | 1, 22, 27, 62 | f1o2d 7415 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ran 𝐺 ↦ (𝐹‘𝑥)):ran 𝐺–1-1-onto→ran
𝐹) |
64 | 16, 19 | feqresmpt 6738 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ ran 𝐺) = (𝑥 ∈ ran 𝐺 ↦ (𝐹‘𝑥))) |
65 | 64 | f1oeq1d 6613 |
. . 3
⊢ (𝜑 → ((𝐹 ↾ ran 𝐺):ran 𝐺–1-1-onto→ran
𝐹 ↔ (𝑥 ∈ ran 𝐺 ↦ (𝐹‘𝑥)):ran 𝐺–1-1-onto→ran
𝐹)) |
66 | 63, 65 | mpbird 260 |
. 2
⊢ (𝜑 → (𝐹 ↾ ran 𝐺):ran 𝐺–1-1-onto→ran
𝐹) |
67 | | simplll 775 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ 𝑥 ≤ 𝑦) → 𝜑) |
68 | 19 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) → ran 𝐺 ⊆ 𝐴) |
69 | | simplr 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) → 𝑥 ∈ ran 𝐺) |
70 | 68, 69 | sseldd 3878 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) → 𝑥 ∈ 𝐴) |
71 | 70 | adantr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ 𝑥 ≤ 𝑦) → 𝑥 ∈ 𝐴) |
72 | | simpr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) → 𝑦 ∈ ran 𝐺) |
73 | 68, 72 | sseldd 3878 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) → 𝑦 ∈ 𝐴) |
74 | 73 | adantr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ 𝑥 ≤ 𝑦) → 𝑦 ∈ 𝐴) |
75 | | simpr 488 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ 𝑥 ≤ 𝑦) → 𝑥 ≤ 𝑦) |
76 | 15 | simprld 772 |
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣)))) |
77 | 76 | simpld 498 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) |
78 | 77 | r19.21bi 3121 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) |
79 | 78 | r19.21bi 3121 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) |
80 | 79 | imp 410 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≤ 𝑦) → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) |
81 | 67, 71, 74, 75, 80 | syl1111anc 839 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ 𝑥 ≤ 𝑦) → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) |
82 | 69 | fvresd 6694 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) → ((𝐹 ↾ ran 𝐺)‘𝑥) = (𝐹‘𝑥)) |
83 | 82 | adantr 484 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ 𝑥 ≤ 𝑦) → ((𝐹 ↾ ran 𝐺)‘𝑥) = (𝐹‘𝑥)) |
84 | 72 | fvresd 6694 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) → ((𝐹 ↾ ran 𝐺)‘𝑦) = (𝐹‘𝑦)) |
85 | 84 | adantr 484 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ 𝑥 ≤ 𝑦) → ((𝐹 ↾ ran 𝐺)‘𝑦) = (𝐹‘𝑦)) |
86 | 81, 83, 85 | 3brtr4d 5062 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ 𝑥 ≤ 𝑦) → ((𝐹 ↾ ran 𝐺)‘𝑥) ≲ ((𝐹 ↾ ran 𝐺)‘𝑦)) |
87 | 82, 84 | breq12d 5043 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) → (((𝐹 ↾ ran 𝐺)‘𝑥) ≲ ((𝐹 ↾ ran 𝐺)‘𝑦) ↔ (𝐹‘𝑥) ≲ (𝐹‘𝑦))) |
88 | 87 | biimpa 480 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑥) ≲ ((𝐹 ↾ ran 𝐺)‘𝑦)) → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) |
89 | 11 | ad7antr 738 |
. . . . . . . . . . 11
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → 𝑊 ∈ Poset) |
90 | 8 | ad7antr 738 |
. . . . . . . . . . 11
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → 𝑉 ∈ Poset) |
91 | 7, 10, 13, 2 | mgcmnt2d 30853 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ∈ (𝑊Monot𝑉)) |
92 | 91 | ad7antr 738 |
. . . . . . . . . . 11
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → 𝐺 ∈ (𝑊Monot𝑉)) |
93 | 16 | ad7antr 738 |
. . . . . . . . . . . 12
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → 𝐹:𝐴⟶𝐵) |
94 | 18 | ad7antr 738 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → 𝐺:𝐵⟶𝐴) |
95 | | simp-4r 784 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → 𝑢 ∈ 𝐵) |
96 | 94, 95 | ffvelrnd 6862 |
. . . . . . . . . . . 12
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → (𝐺‘𝑢) ∈ 𝐴) |
97 | 93, 96 | ffvelrnd 6862 |
. . . . . . . . . . 11
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → (𝐹‘(𝐺‘𝑢)) ∈ 𝐵) |
98 | | simplr 769 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → 𝑣 ∈ 𝐵) |
99 | 94, 98 | ffvelrnd 6862 |
. . . . . . . . . . . 12
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → (𝐺‘𝑣) ∈ 𝐴) |
100 | 93, 99 | ffvelrnd 6862 |
. . . . . . . . . . 11
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → (𝐹‘(𝐺‘𝑣)) ∈ 𝐵) |
101 | | simpr 488 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) |
102 | 101 | ad4antr 732 |
. . . . . . . . . . . 12
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) |
103 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → (𝐺‘𝑢) = 𝑥) |
104 | 103 | fveq2d 6678 |
. . . . . . . . . . . 12
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → (𝐹‘(𝐺‘𝑢)) = (𝐹‘𝑥)) |
105 | | simpr 488 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → (𝐺‘𝑣) = 𝑦) |
106 | 105 | fveq2d 6678 |
. . . . . . . . . . . 12
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → (𝐹‘(𝐺‘𝑣)) = (𝐹‘𝑦)) |
107 | 102, 104,
106 | 3brtr4d 5062 |
. . . . . . . . . . 11
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → (𝐹‘(𝐺‘𝑢)) ≲ (𝐹‘(𝐺‘𝑣))) |
108 | 4, 3, 6, 5, 89, 90, 92, 97, 100, 107 | ismntd 30839 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → (𝐺‘(𝐹‘(𝐺‘𝑢))) ≤ (𝐺‘(𝐹‘(𝐺‘𝑣)))) |
109 | 2 | ad7antr 738 |
. . . . . . . . . . 11
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → 𝐹𝐻𝐺) |
110 | 7, 3, 4, 5, 6, 90,
89, 109, 95 | mgcf1olem2 30857 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → (𝐺‘(𝐹‘(𝐺‘𝑢))) = (𝐺‘𝑢)) |
111 | 7, 3, 4, 5, 6, 90,
89, 109, 98 | mgcf1olem2 30857 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → (𝐺‘(𝐹‘(𝐺‘𝑣))) = (𝐺‘𝑣)) |
112 | 108, 110,
111 | 3brtr3d 5061 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → (𝐺‘𝑢) ≤ (𝐺‘𝑣)) |
113 | 112, 103,
105 | 3brtr3d 5061 |
. . . . . . . 8
⊢
((((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) ∧ 𝑣 ∈ 𝐵) ∧ (𝐺‘𝑣) = 𝑦) → 𝑥 ≤ 𝑦) |
114 | 23 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) → 𝐺 Fn 𝐵) |
115 | 114 | ad2antrr 726 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) → 𝐺 Fn 𝐵) |
116 | | simp-4r 784 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) → 𝑦 ∈ ran 𝐺) |
117 | | fvelrnb 6730 |
. . . . . . . . . 10
⊢ (𝐺 Fn 𝐵 → (𝑦 ∈ ran 𝐺 ↔ ∃𝑣 ∈ 𝐵 (𝐺‘𝑣) = 𝑦)) |
118 | 117 | biimpa 480 |
. . . . . . . . 9
⊢ ((𝐺 Fn 𝐵 ∧ 𝑦 ∈ ran 𝐺) → ∃𝑣 ∈ 𝐵 (𝐺‘𝑣) = 𝑦) |
119 | 115, 116,
118 | syl2anc 587 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) → ∃𝑣 ∈ 𝐵 (𝐺‘𝑣) = 𝑦) |
120 | 113, 119 | r19.29a 3199 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ (𝐺‘𝑢) = 𝑥) → 𝑥 ≤ 𝑦) |
121 | | simpllr 776 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) → 𝑥 ∈ ran 𝐺) |
122 | | fvelrnb 6730 |
. . . . . . . . 9
⊢ (𝐺 Fn 𝐵 → (𝑥 ∈ ran 𝐺 ↔ ∃𝑢 ∈ 𝐵 (𝐺‘𝑢) = 𝑥)) |
123 | 122 | biimpa 480 |
. . . . . . . 8
⊢ ((𝐺 Fn 𝐵 ∧ 𝑥 ∈ ran 𝐺) → ∃𝑢 ∈ 𝐵 (𝐺‘𝑢) = 𝑥) |
124 | 114, 121,
123 | syl2anc 587 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) → ∃𝑢 ∈ 𝐵 (𝐺‘𝑢) = 𝑥) |
125 | 120, 124 | r19.29a 3199 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ (𝐹‘𝑥) ≲ (𝐹‘𝑦)) → 𝑥 ≤ 𝑦) |
126 | 88, 125 | syldan 594 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑥) ≲ ((𝐹 ↾ ran 𝐺)‘𝑦)) → 𝑥 ≤ 𝑦) |
127 | 86, 126 | impbida 801 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐺) → (𝑥 ≤ 𝑦 ↔ ((𝐹 ↾ ran 𝐺)‘𝑥) ≲ ((𝐹 ↾ ran 𝐺)‘𝑦))) |
128 | 127 | anasss 470 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) → (𝑥 ≤ 𝑦 ↔ ((𝐹 ↾ ran 𝐺)‘𝑥) ≲ ((𝐹 ↾ ran 𝐺)‘𝑦))) |
129 | 128 | ralrimivva 3103 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(𝑥 ≤ 𝑦 ↔ ((𝐹 ↾ ran 𝐺)‘𝑥) ≲ ((𝐹 ↾ ran 𝐺)‘𝑦))) |
130 | | df-isom 6348 |
. 2
⊢ ((𝐹 ↾ ran 𝐺) Isom ≤ , ≲ (ran 𝐺, ran 𝐹) ↔ ((𝐹 ↾ ran 𝐺):ran 𝐺–1-1-onto→ran
𝐹 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(𝑥 ≤ 𝑦 ↔ ((𝐹 ↾ ran 𝐺)‘𝑥) ≲ ((𝐹 ↾ ran 𝐺)‘𝑦)))) |
131 | 66, 129, 130 | sylanbrc 586 |
1
⊢ (𝜑 → (𝐹 ↾ ran 𝐺) Isom ≤ , ≲ (ran 𝐺, ran 𝐹)) |