![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idlmulssprm | Structured version Visualization version GIF version |
Description: Let 𝑃 be a prime ideal containing the product (𝐼 × 𝐽) of two ideals 𝐼 and 𝐽. Then 𝐼 ⊆ 𝑃 or 𝐽 ⊆ 𝑃. (Contributed by Thierry Arnoux, 13-Apr-2024.) |
Ref | Expression |
---|---|
idlmulssprm.1 | ⊢ × = (LSSum‘(mulGrp‘𝑅)) |
idlmulssprm.2 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
idlmulssprm.3 | ⊢ (𝜑 → 𝑃 ∈ (PrmIdeal‘𝑅)) |
idlmulssprm.4 | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
idlmulssprm.5 | ⊢ (𝜑 → 𝐽 ∈ (LIdeal‘𝑅)) |
idlmulssprm.6 | ⊢ (𝜑 → (𝐼 × 𝐽) ⊆ 𝑃) |
Ref | Expression |
---|---|
idlmulssprm | ⊢ (𝜑 → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlmulssprm.2 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | idlmulssprm.3 | . 2 ⊢ (𝜑 → 𝑃 ∈ (PrmIdeal‘𝑅)) | |
3 | idlmulssprm.4 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) | |
4 | idlmulssprm.5 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (LIdeal‘𝑅)) | |
5 | 3, 4 | jca 511 | . 2 ⊢ (𝜑 → (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) |
6 | idlmulssprm.6 | . . . . . 6 ⊢ (𝜑 → (𝐼 × 𝐽) ⊆ 𝑃) | |
7 | 6 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → (𝐼 × 𝐽) ⊆ 𝑃) |
8 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | eqid 2735 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
10 | eqid 2735 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
11 | idlmulssprm.1 | . . . . . 6 ⊢ × = (LSSum‘(mulGrp‘𝑅)) | |
12 | eqid 2735 | . . . . . . . . 9 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
13 | 8, 12 | lidlss 21240 | . . . . . . . 8 ⊢ (𝐼 ∈ (LIdeal‘𝑅) → 𝐼 ⊆ (Base‘𝑅)) |
14 | 3, 13 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ⊆ (Base‘𝑅)) |
15 | 14 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝐼 ⊆ (Base‘𝑅)) |
16 | 8, 12 | lidlss 21240 | . . . . . . . 8 ⊢ (𝐽 ∈ (LIdeal‘𝑅) → 𝐽 ⊆ (Base‘𝑅)) |
17 | 4, 16 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ⊆ (Base‘𝑅)) |
18 | 17 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝐽 ⊆ (Base‘𝑅)) |
19 | simplr 769 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝑥 ∈ 𝐼) | |
20 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝑦 ∈ 𝐽) | |
21 | 8, 9, 10, 11, 15, 18, 19, 20 | elringlsmd 33402 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → (𝑥(.r‘𝑅)𝑦) ∈ (𝐼 × 𝐽)) |
22 | 7, 21 | sseldd 3996 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑃) |
23 | 22 | anasss 466 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑃) |
24 | 23 | ralrimivva 3200 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐽 (𝑥(.r‘𝑅)𝑦) ∈ 𝑃) |
25 | 8, 9 | prmidl 33448 | . 2 ⊢ ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐽 (𝑥(.r‘𝑅)𝑦) ∈ 𝑃) → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)) |
26 | 1, 2, 5, 24, 25 | syl1111anc 840 | 1 ⊢ (𝜑 → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ⊆ wss 3963 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 .rcmulr 17299 LSSumclsm 19667 mulGrpcmgp 20152 Ringcrg 20251 LIdealclidl 21234 PrmIdealcprmidl 33443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-sca 17314 df-vsca 17315 df-ip 17316 df-lsm 19669 df-mgp 20153 df-lss 20948 df-sra 21190 df-rgmod 21191 df-lidl 21236 df-prmidl 33444 |
This theorem is referenced by: zarclsun 33831 |
Copyright terms: Public domain | W3C validator |