Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idlmulssprm | Structured version Visualization version GIF version |
Description: Let 𝑃 be a prime ideal containing the product (𝐼 × 𝐽) of two ideals 𝐼 and 𝐽. Then 𝐼 ⊆ 𝑃 or 𝐽 ⊆ 𝑃. (Contributed by Thierry Arnoux, 13-Apr-2024.) |
Ref | Expression |
---|---|
idlmulssprm.1 | ⊢ × = (LSSum‘(mulGrp‘𝑅)) |
idlmulssprm.2 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
idlmulssprm.3 | ⊢ (𝜑 → 𝑃 ∈ (PrmIdeal‘𝑅)) |
idlmulssprm.4 | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
idlmulssprm.5 | ⊢ (𝜑 → 𝐽 ∈ (LIdeal‘𝑅)) |
idlmulssprm.6 | ⊢ (𝜑 → (𝐼 × 𝐽) ⊆ 𝑃) |
Ref | Expression |
---|---|
idlmulssprm | ⊢ (𝜑 → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlmulssprm.2 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | idlmulssprm.3 | . 2 ⊢ (𝜑 → 𝑃 ∈ (PrmIdeal‘𝑅)) | |
3 | idlmulssprm.4 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) | |
4 | idlmulssprm.5 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (LIdeal‘𝑅)) | |
5 | 3, 4 | jca 511 | . 2 ⊢ (𝜑 → (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) |
6 | idlmulssprm.6 | . . . . . 6 ⊢ (𝜑 → (𝐼 × 𝐽) ⊆ 𝑃) | |
7 | 6 | ad2antrr 722 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → (𝐼 × 𝐽) ⊆ 𝑃) |
8 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | eqid 2738 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
10 | eqid 2738 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
11 | idlmulssprm.1 | . . . . . 6 ⊢ × = (LSSum‘(mulGrp‘𝑅)) | |
12 | eqid 2738 | . . . . . . . . 9 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
13 | 8, 12 | lidlss 20394 | . . . . . . . 8 ⊢ (𝐼 ∈ (LIdeal‘𝑅) → 𝐼 ⊆ (Base‘𝑅)) |
14 | 3, 13 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ⊆ (Base‘𝑅)) |
15 | 14 | ad2antrr 722 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝐼 ⊆ (Base‘𝑅)) |
16 | 8, 12 | lidlss 20394 | . . . . . . . 8 ⊢ (𝐽 ∈ (LIdeal‘𝑅) → 𝐽 ⊆ (Base‘𝑅)) |
17 | 4, 16 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ⊆ (Base‘𝑅)) |
18 | 17 | ad2antrr 722 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝐽 ⊆ (Base‘𝑅)) |
19 | simplr 765 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝑥 ∈ 𝐼) | |
20 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝑦 ∈ 𝐽) | |
21 | 8, 9, 10, 11, 15, 18, 19, 20 | elringlsmd 31484 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → (𝑥(.r‘𝑅)𝑦) ∈ (𝐼 × 𝐽)) |
22 | 7, 21 | sseldd 3918 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑃) |
23 | 22 | anasss 466 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑃) |
24 | 23 | ralrimivva 3114 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐽 (𝑥(.r‘𝑅)𝑦) ∈ 𝑃) |
25 | 8, 9 | prmidl 31517 | . 2 ⊢ ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐽 (𝑥(.r‘𝑅)𝑦) ∈ 𝑃) → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)) |
26 | 1, 2, 5, 24, 25 | syl1111anc 836 | 1 ⊢ (𝜑 → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 .rcmulr 16889 LSSumclsm 19154 mulGrpcmgp 19635 Ringcrg 19698 LIdealclidl 20347 PrmIdealcprmidl 31512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-sca 16904 df-vsca 16905 df-ip 16906 df-lsm 19156 df-mgp 19636 df-lss 20109 df-sra 20349 df-rgmod 20350 df-lidl 20351 df-prmidl 31513 |
This theorem is referenced by: zarclsun 31722 |
Copyright terms: Public domain | W3C validator |