![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idlmulssprm | Structured version Visualization version GIF version |
Description: Let π be a prime ideal containing the product (πΌ Γ π½) of two ideals πΌ and π½. Then πΌ β π or π½ β π. (Contributed by Thierry Arnoux, 13-Apr-2024.) |
Ref | Expression |
---|---|
idlmulssprm.1 | β’ Γ = (LSSumβ(mulGrpβπ )) |
idlmulssprm.2 | β’ (π β π β Ring) |
idlmulssprm.3 | β’ (π β π β (PrmIdealβπ )) |
idlmulssprm.4 | β’ (π β πΌ β (LIdealβπ )) |
idlmulssprm.5 | β’ (π β π½ β (LIdealβπ )) |
idlmulssprm.6 | β’ (π β (πΌ Γ π½) β π) |
Ref | Expression |
---|---|
idlmulssprm | β’ (π β (πΌ β π β¨ π½ β π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlmulssprm.2 | . 2 β’ (π β π β Ring) | |
2 | idlmulssprm.3 | . 2 β’ (π β π β (PrmIdealβπ )) | |
3 | idlmulssprm.4 | . . 3 β’ (π β πΌ β (LIdealβπ )) | |
4 | idlmulssprm.5 | . . 3 β’ (π β π½ β (LIdealβπ )) | |
5 | 3, 4 | jca 512 | . 2 β’ (π β (πΌ β (LIdealβπ ) β§ π½ β (LIdealβπ ))) |
6 | idlmulssprm.6 | . . . . . 6 β’ (π β (πΌ Γ π½) β π) | |
7 | 6 | ad2antrr 724 | . . . . 5 β’ (((π β§ π₯ β πΌ) β§ π¦ β π½) β (πΌ Γ π½) β π) |
8 | eqid 2732 | . . . . . 6 β’ (Baseβπ ) = (Baseβπ ) | |
9 | eqid 2732 | . . . . . 6 β’ (.rβπ ) = (.rβπ ) | |
10 | eqid 2732 | . . . . . 6 β’ (mulGrpβπ ) = (mulGrpβπ ) | |
11 | idlmulssprm.1 | . . . . . 6 β’ Γ = (LSSumβ(mulGrpβπ )) | |
12 | eqid 2732 | . . . . . . . . 9 β’ (LIdealβπ ) = (LIdealβπ ) | |
13 | 8, 12 | lidlss 20825 | . . . . . . . 8 β’ (πΌ β (LIdealβπ ) β πΌ β (Baseβπ )) |
14 | 3, 13 | syl 17 | . . . . . . 7 β’ (π β πΌ β (Baseβπ )) |
15 | 14 | ad2antrr 724 | . . . . . 6 β’ (((π β§ π₯ β πΌ) β§ π¦ β π½) β πΌ β (Baseβπ )) |
16 | 8, 12 | lidlss 20825 | . . . . . . . 8 β’ (π½ β (LIdealβπ ) β π½ β (Baseβπ )) |
17 | 4, 16 | syl 17 | . . . . . . 7 β’ (π β π½ β (Baseβπ )) |
18 | 17 | ad2antrr 724 | . . . . . 6 β’ (((π β§ π₯ β πΌ) β§ π¦ β π½) β π½ β (Baseβπ )) |
19 | simplr 767 | . . . . . 6 β’ (((π β§ π₯ β πΌ) β§ π¦ β π½) β π₯ β πΌ) | |
20 | simpr 485 | . . . . . 6 β’ (((π β§ π₯ β πΌ) β§ π¦ β π½) β π¦ β π½) | |
21 | 8, 9, 10, 11, 15, 18, 19, 20 | elringlsmd 32492 | . . . . 5 β’ (((π β§ π₯ β πΌ) β§ π¦ β π½) β (π₯(.rβπ )π¦) β (πΌ Γ π½)) |
22 | 7, 21 | sseldd 3982 | . . . 4 β’ (((π β§ π₯ β πΌ) β§ π¦ β π½) β (π₯(.rβπ )π¦) β π) |
23 | 22 | anasss 467 | . . 3 β’ ((π β§ (π₯ β πΌ β§ π¦ β π½)) β (π₯(.rβπ )π¦) β π) |
24 | 23 | ralrimivva 3200 | . 2 β’ (π β βπ₯ β πΌ βπ¦ β π½ (π₯(.rβπ )π¦) β π) |
25 | 8, 9 | prmidl 32546 | . 2 β’ ((((π β Ring β§ π β (PrmIdealβπ )) β§ (πΌ β (LIdealβπ ) β§ π½ β (LIdealβπ ))) β§ βπ₯ β πΌ βπ¦ β π½ (π₯(.rβπ )π¦) β π) β (πΌ β π β¨ π½ β π)) |
26 | 1, 2, 5, 24, 25 | syl1111anc 838 | 1 β’ (π β (πΌ β π β¨ π½ β π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β¨ wo 845 = wceq 1541 β wcel 2106 βwral 3061 β wss 3947 βcfv 6540 (class class class)co 7405 Basecbs 17140 .rcmulr 17194 LSSumclsm 19496 mulGrpcmgp 19981 Ringcrg 20049 LIdealclidl 20775 PrmIdealcprmidl 32541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-sca 17209 df-vsca 17210 df-ip 17211 df-lsm 19498 df-mgp 19982 df-lss 20535 df-sra 20777 df-rgmod 20778 df-lidl 20779 df-prmidl 32542 |
This theorem is referenced by: zarclsun 32838 |
Copyright terms: Public domain | W3C validator |