| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idlmulssprm | Structured version Visualization version GIF version | ||
| Description: Let 𝑃 be a prime ideal containing the product (𝐼 × 𝐽) of two ideals 𝐼 and 𝐽. Then 𝐼 ⊆ 𝑃 or 𝐽 ⊆ 𝑃. (Contributed by Thierry Arnoux, 13-Apr-2024.) |
| Ref | Expression |
|---|---|
| idlmulssprm.1 | ⊢ × = (LSSum‘(mulGrp‘𝑅)) |
| idlmulssprm.2 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| idlmulssprm.3 | ⊢ (𝜑 → 𝑃 ∈ (PrmIdeal‘𝑅)) |
| idlmulssprm.4 | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
| idlmulssprm.5 | ⊢ (𝜑 → 𝐽 ∈ (LIdeal‘𝑅)) |
| idlmulssprm.6 | ⊢ (𝜑 → (𝐼 × 𝐽) ⊆ 𝑃) |
| Ref | Expression |
|---|---|
| idlmulssprm | ⊢ (𝜑 → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idlmulssprm.2 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | idlmulssprm.3 | . 2 ⊢ (𝜑 → 𝑃 ∈ (PrmIdeal‘𝑅)) | |
| 3 | idlmulssprm.4 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) | |
| 4 | idlmulssprm.5 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (LIdeal‘𝑅)) | |
| 5 | 3, 4 | jca 511 | . 2 ⊢ (𝜑 → (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) |
| 6 | idlmulssprm.6 | . . . . . 6 ⊢ (𝜑 → (𝐼 × 𝐽) ⊆ 𝑃) | |
| 7 | 6 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → (𝐼 × 𝐽) ⊆ 𝑃) |
| 8 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 9 | eqid 2731 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 10 | eqid 2731 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 11 | idlmulssprm.1 | . . . . . 6 ⊢ × = (LSSum‘(mulGrp‘𝑅)) | |
| 12 | eqid 2731 | . . . . . . . . 9 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 13 | 8, 12 | lidlss 21147 | . . . . . . . 8 ⊢ (𝐼 ∈ (LIdeal‘𝑅) → 𝐼 ⊆ (Base‘𝑅)) |
| 14 | 3, 13 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ⊆ (Base‘𝑅)) |
| 15 | 14 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝐼 ⊆ (Base‘𝑅)) |
| 16 | 8, 12 | lidlss 21147 | . . . . . . . 8 ⊢ (𝐽 ∈ (LIdeal‘𝑅) → 𝐽 ⊆ (Base‘𝑅)) |
| 17 | 4, 16 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ⊆ (Base‘𝑅)) |
| 18 | 17 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝐽 ⊆ (Base‘𝑅)) |
| 19 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝑥 ∈ 𝐼) | |
| 20 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝑦 ∈ 𝐽) | |
| 21 | 8, 9, 10, 11, 15, 18, 19, 20 | elringlsmd 33354 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → (𝑥(.r‘𝑅)𝑦) ∈ (𝐼 × 𝐽)) |
| 22 | 7, 21 | sseldd 3935 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑃) |
| 23 | 22 | anasss 466 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑃) |
| 24 | 23 | ralrimivva 3175 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐽 (𝑥(.r‘𝑅)𝑦) ∈ 𝑃) |
| 25 | 8, 9 | prmidl 33400 | . 2 ⊢ ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐽 (𝑥(.r‘𝑅)𝑦) ∈ 𝑃) → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)) |
| 26 | 1, 2, 5, 24, 25 | syl1111anc 840 | 1 ⊢ (𝜑 → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3902 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 .rcmulr 17159 LSSumclsm 19544 mulGrpcmgp 20056 Ringcrg 20149 LIdealclidl 21141 PrmIdealcprmidl 33395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-sca 17174 df-vsca 17175 df-ip 17176 df-lsm 19546 df-mgp 20057 df-lss 20863 df-sra 21105 df-rgmod 21106 df-lidl 21143 df-prmidl 33396 |
| This theorem is referenced by: zarclsun 33878 |
| Copyright terms: Public domain | W3C validator |