Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idlmulssprm | Structured version Visualization version GIF version |
Description: Let 𝑃 be a prime ideal containing the product (𝐼 × 𝐽) of two ideals 𝐼 and 𝐽. Then 𝐼 ⊆ 𝑃 or 𝐽 ⊆ 𝑃. (Contributed by Thierry Arnoux, 13-Apr-2024.) |
Ref | Expression |
---|---|
idlmulssprm.1 | ⊢ × = (LSSum‘(mulGrp‘𝑅)) |
idlmulssprm.2 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
idlmulssprm.3 | ⊢ (𝜑 → 𝑃 ∈ (PrmIdeal‘𝑅)) |
idlmulssprm.4 | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
idlmulssprm.5 | ⊢ (𝜑 → 𝐽 ∈ (LIdeal‘𝑅)) |
idlmulssprm.6 | ⊢ (𝜑 → (𝐼 × 𝐽) ⊆ 𝑃) |
Ref | Expression |
---|---|
idlmulssprm | ⊢ (𝜑 → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlmulssprm.2 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | idlmulssprm.3 | . 2 ⊢ (𝜑 → 𝑃 ∈ (PrmIdeal‘𝑅)) | |
3 | idlmulssprm.4 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) | |
4 | idlmulssprm.5 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (LIdeal‘𝑅)) | |
5 | 3, 4 | jca 515 | . 2 ⊢ (𝜑 → (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) |
6 | idlmulssprm.6 | . . . . . 6 ⊢ (𝜑 → (𝐼 × 𝐽) ⊆ 𝑃) | |
7 | 6 | ad2antrr 725 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → (𝐼 × 𝐽) ⊆ 𝑃) |
8 | eqid 2758 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | eqid 2758 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
10 | eqid 2758 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
11 | idlmulssprm.1 | . . . . . 6 ⊢ × = (LSSum‘(mulGrp‘𝑅)) | |
12 | eqid 2758 | . . . . . . . . 9 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
13 | 8, 12 | lidlss 20064 | . . . . . . . 8 ⊢ (𝐼 ∈ (LIdeal‘𝑅) → 𝐼 ⊆ (Base‘𝑅)) |
14 | 3, 13 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ⊆ (Base‘𝑅)) |
15 | 14 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝐼 ⊆ (Base‘𝑅)) |
16 | 8, 12 | lidlss 20064 | . . . . . . . 8 ⊢ (𝐽 ∈ (LIdeal‘𝑅) → 𝐽 ⊆ (Base‘𝑅)) |
17 | 4, 16 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ⊆ (Base‘𝑅)) |
18 | 17 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝐽 ⊆ (Base‘𝑅)) |
19 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝑥 ∈ 𝐼) | |
20 | simpr 488 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝑦 ∈ 𝐽) | |
21 | 8, 9, 10, 11, 15, 18, 19, 20 | elringlsmd 31115 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → (𝑥(.r‘𝑅)𝑦) ∈ (𝐼 × 𝐽)) |
22 | 7, 21 | sseldd 3895 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑃) |
23 | 22 | anasss 470 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑃) |
24 | 23 | ralrimivva 3120 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐽 (𝑥(.r‘𝑅)𝑦) ∈ 𝑃) |
25 | 8, 9 | prmidl 31148 | . 2 ⊢ ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐽 (𝑥(.r‘𝑅)𝑦) ∈ 𝑃) → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)) |
26 | 1, 2, 5, 24, 25 | syl1111anc 838 | 1 ⊢ (𝜑 → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ wo 844 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ⊆ wss 3860 ‘cfv 6340 (class class class)co 7156 Basecbs 16554 .rcmulr 16637 LSSumclsm 18839 mulGrpcmgp 19320 Ringcrg 19378 LIdealclidl 20023 PrmIdealcprmidl 31143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-ndx 16557 df-slot 16558 df-base 16560 df-sets 16561 df-plusg 16649 df-sca 16652 df-vsca 16653 df-ip 16654 df-lsm 18841 df-mgp 19321 df-lss 19785 df-sra 20025 df-rgmod 20026 df-lidl 20027 df-prmidl 31144 |
This theorem is referenced by: zarclsun 31353 |
Copyright terms: Public domain | W3C validator |