![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idlmulssprm | Structured version Visualization version GIF version |
Description: Let 𝑃 be a prime ideal containing the product (𝐼 × 𝐽) of two ideals 𝐼 and 𝐽. Then 𝐼 ⊆ 𝑃 or 𝐽 ⊆ 𝑃. (Contributed by Thierry Arnoux, 13-Apr-2024.) |
Ref | Expression |
---|---|
idlmulssprm.1 | ⊢ × = (LSSum‘(mulGrp‘𝑅)) |
idlmulssprm.2 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
idlmulssprm.3 | ⊢ (𝜑 → 𝑃 ∈ (PrmIdeal‘𝑅)) |
idlmulssprm.4 | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
idlmulssprm.5 | ⊢ (𝜑 → 𝐽 ∈ (LIdeal‘𝑅)) |
idlmulssprm.6 | ⊢ (𝜑 → (𝐼 × 𝐽) ⊆ 𝑃) |
Ref | Expression |
---|---|
idlmulssprm | ⊢ (𝜑 → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlmulssprm.2 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | idlmulssprm.3 | . 2 ⊢ (𝜑 → 𝑃 ∈ (PrmIdeal‘𝑅)) | |
3 | idlmulssprm.4 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) | |
4 | idlmulssprm.5 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (LIdeal‘𝑅)) | |
5 | 3, 4 | jca 513 | . 2 ⊢ (𝜑 → (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) |
6 | idlmulssprm.6 | . . . . . 6 ⊢ (𝜑 → (𝐼 × 𝐽) ⊆ 𝑃) | |
7 | 6 | ad2antrr 725 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → (𝐼 × 𝐽) ⊆ 𝑃) |
8 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | eqid 2733 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
10 | eqid 2733 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
11 | idlmulssprm.1 | . . . . . 6 ⊢ × = (LSSum‘(mulGrp‘𝑅)) | |
12 | eqid 2733 | . . . . . . . . 9 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
13 | 8, 12 | lidlss 20820 | . . . . . . . 8 ⊢ (𝐼 ∈ (LIdeal‘𝑅) → 𝐼 ⊆ (Base‘𝑅)) |
14 | 3, 13 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ⊆ (Base‘𝑅)) |
15 | 14 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝐼 ⊆ (Base‘𝑅)) |
16 | 8, 12 | lidlss 20820 | . . . . . . . 8 ⊢ (𝐽 ∈ (LIdeal‘𝑅) → 𝐽 ⊆ (Base‘𝑅)) |
17 | 4, 16 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ⊆ (Base‘𝑅)) |
18 | 17 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝐽 ⊆ (Base‘𝑅)) |
19 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝑥 ∈ 𝐼) | |
20 | simpr 486 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝑦 ∈ 𝐽) | |
21 | 8, 9, 10, 11, 15, 18, 19, 20 | elringlsmd 32469 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → (𝑥(.r‘𝑅)𝑦) ∈ (𝐼 × 𝐽)) |
22 | 7, 21 | sseldd 3982 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑃) |
23 | 22 | anasss 468 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑃) |
24 | 23 | ralrimivva 3201 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐽 (𝑥(.r‘𝑅)𝑦) ∈ 𝑃) |
25 | 8, 9 | prmidl 32516 | . 2 ⊢ ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐽 (𝑥(.r‘𝑅)𝑦) ∈ 𝑃) → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)) |
26 | 1, 2, 5, 24, 25 | syl1111anc 839 | 1 ⊢ (𝜑 → (𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ⊆ wss 3947 ‘cfv 6540 (class class class)co 7404 Basecbs 17140 .rcmulr 17194 LSSumclsm 19495 mulGrpcmgp 19979 Ringcrg 20047 LIdealclidl 20771 PrmIdealcprmidl 32511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-sca 17209 df-vsca 17210 df-ip 17211 df-lsm 19497 df-mgp 19980 df-lss 20531 df-sra 20773 df-rgmod 20774 df-lidl 20775 df-prmidl 32512 |
This theorem is referenced by: zarclsun 32788 |
Copyright terms: Public domain | W3C validator |