Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cantnftermord Structured version   Visualization version   GIF version

Theorem cantnftermord 43282
Description: For terms of the form of a power of omega times a non-zero natural number, ordering of the exponents implies ordering of the terms. Lemma 5.1 of [Schloeder] p. 15. (Contributed by RP, 30-Jan-2025.)
Assertion
Ref Expression
cantnftermord (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) → (𝐴𝐵 → ((ω ↑o 𝐴) ·o 𝐶) ∈ ((ω ↑o 𝐵) ·o 𝐷)))

Proof of Theorem cantnftermord
StepHypRef Expression
1 simplll 774 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → 𝐴 ∈ On)
2 onsuc 7847 . . . . . 6 (𝐴 ∈ On → suc 𝐴 ∈ On)
31, 2syl 17 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → suc 𝐴 ∈ On)
4 simpllr 775 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → 𝐵 ∈ On)
5 omelon 9715 . . . . . . 7 ω ∈ On
6 1onn 8696 . . . . . . 7 1o ∈ ω
7 ondif2 8558 . . . . . . 7 (ω ∈ (On ∖ 2o) ↔ (ω ∈ On ∧ 1o ∈ ω))
85, 6, 7mpbir2an 710 . . . . . 6 ω ∈ (On ∖ 2o)
98a1i 11 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → ω ∈ (On ∖ 2o))
10 onsucss 43228 . . . . . . 7 (𝐵 ∈ On → (𝐴𝐵 → suc 𝐴𝐵))
1110ad2antlr 726 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) → (𝐴𝐵 → suc 𝐴𝐵))
1211imp 406 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → suc 𝐴𝐵)
13 oeword 8646 . . . . . 6 ((suc 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ω ∈ (On ∖ 2o)) → (suc 𝐴𝐵 ↔ (ω ↑o suc 𝐴) ⊆ (ω ↑o 𝐵)))
1413biimpa 476 . . . . 5 (((suc 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ω ∈ (On ∖ 2o)) ∧ suc 𝐴𝐵) → (ω ↑o suc 𝐴) ⊆ (ω ↑o 𝐵))
153, 4, 9, 12, 14syl31anc 1373 . . . 4 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → (ω ↑o suc 𝐴) ⊆ (ω ↑o 𝐵))
165a1i 11 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ω ∈ On)
17 oecl 8593 . . . . . . . . 9 ((ω ∈ On ∧ 𝐵 ∈ On) → (ω ↑o 𝐵) ∈ On)
1816, 17sylancom 587 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ω ↑o 𝐵) ∈ On)
19 omsson 7907 . . . . . . . . . . . 12 ω ⊆ On
20 ssdif 4167 . . . . . . . . . . . 12 (ω ⊆ On → (ω ∖ 1o) ⊆ (On ∖ 1o))
2119, 20ax-mp 5 . . . . . . . . . . 11 (ω ∖ 1o) ⊆ (On ∖ 1o)
2221sseli 4004 . . . . . . . . . 10 (𝐷 ∈ (ω ∖ 1o) → 𝐷 ∈ (On ∖ 1o))
23 ondif1 8557 . . . . . . . . . 10 (𝐷 ∈ (On ∖ 1o) ↔ (𝐷 ∈ On ∧ ∅ ∈ 𝐷))
2422, 23sylib 218 . . . . . . . . 9 (𝐷 ∈ (ω ∖ 1o) → (𝐷 ∈ On ∧ ∅ ∈ 𝐷))
2524adantl 481 . . . . . . . 8 ((𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o)) → (𝐷 ∈ On ∧ ∅ ∈ 𝐷))
2618, 25anim12i 612 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) → ((ω ↑o 𝐵) ∈ On ∧ (𝐷 ∈ On ∧ ∅ ∈ 𝐷)))
2726adantr 480 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → ((ω ↑o 𝐵) ∈ On ∧ (𝐷 ∈ On ∧ ∅ ∈ 𝐷)))
28 anass 468 . . . . . 6 ((((ω ↑o 𝐵) ∈ On ∧ 𝐷 ∈ On) ∧ ∅ ∈ 𝐷) ↔ ((ω ↑o 𝐵) ∈ On ∧ (𝐷 ∈ On ∧ ∅ ∈ 𝐷)))
2927, 28sylibr 234 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → (((ω ↑o 𝐵) ∈ On ∧ 𝐷 ∈ On) ∧ ∅ ∈ 𝐷))
30 omword1 8629 . . . . 5 ((((ω ↑o 𝐵) ∈ On ∧ 𝐷 ∈ On) ∧ ∅ ∈ 𝐷) → (ω ↑o 𝐵) ⊆ ((ω ↑o 𝐵) ·o 𝐷))
3129, 30syl 17 . . . 4 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → (ω ↑o 𝐵) ⊆ ((ω ↑o 𝐵) ·o 𝐷))
3215, 31sstrd 4019 . . 3 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → (ω ↑o suc 𝐴) ⊆ ((ω ↑o 𝐵) ·o 𝐷))
335a1i 11 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → ω ∈ On)
341, 5jctil 519 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → (ω ∈ On ∧ 𝐴 ∈ On))
35 oecl 8593 . . . . . 6 ((ω ∈ On ∧ 𝐴 ∈ On) → (ω ↑o 𝐴) ∈ On)
3634, 35syl 17 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → (ω ↑o 𝐴) ∈ On)
37 peano1 7927 . . . . . 6 ∅ ∈ ω
38 oen0 8642 . . . . . 6 (((ω ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑o 𝐴))
3934, 37, 38sylancl 585 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → ∅ ∈ (ω ↑o 𝐴))
40 simplrl 776 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → 𝐶 ∈ (ω ∖ 1o))
4140eldifad 3988 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → 𝐶 ∈ ω)
42 omordi 8622 . . . . . 6 (((ω ∈ On ∧ (ω ↑o 𝐴) ∈ On) ∧ ∅ ∈ (ω ↑o 𝐴)) → (𝐶 ∈ ω → ((ω ↑o 𝐴) ·o 𝐶) ∈ ((ω ↑o 𝐴) ·o ω)))
4342imp 406 . . . . 5 ((((ω ∈ On ∧ (ω ↑o 𝐴) ∈ On) ∧ ∅ ∈ (ω ↑o 𝐴)) ∧ 𝐶 ∈ ω) → ((ω ↑o 𝐴) ·o 𝐶) ∈ ((ω ↑o 𝐴) ·o ω))
4433, 36, 39, 41, 43syl1111anc 839 . . . 4 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → ((ω ↑o 𝐴) ·o 𝐶) ∈ ((ω ↑o 𝐴) ·o ω))
45 oesuc 8583 . . . . 5 ((ω ∈ On ∧ 𝐴 ∈ On) → (ω ↑o suc 𝐴) = ((ω ↑o 𝐴) ·o ω))
4634, 45syl 17 . . . 4 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → (ω ↑o suc 𝐴) = ((ω ↑o 𝐴) ·o ω))
4744, 46eleqtrrd 2847 . . 3 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → ((ω ↑o 𝐴) ·o 𝐶) ∈ (ω ↑o suc 𝐴))
4832, 47sseldd 4009 . 2 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → ((ω ↑o 𝐴) ·o 𝐶) ∈ ((ω ↑o 𝐵) ·o 𝐷))
4948ex 412 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) → (𝐴𝐵 → ((ω ↑o 𝐴) ·o 𝐶) ∈ ((ω ↑o 𝐵) ·o 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cdif 3973  wss 3976  c0 4352  Oncon0 6395  suc csuc 6397  (class class class)co 7448  ωcom 7903  1oc1o 8515  2oc2o 8516   ·o comu 8520  o coe 8521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-oexp 8528
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator