Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cantnftermord Structured version   Visualization version   GIF version

Theorem cantnftermord 43295
Description: For terms of the form of a power of omega times a non-zero natural number, ordering of the exponents implies ordering of the terms. Lemma 5.1 of [Schloeder] p. 15. (Contributed by RP, 30-Jan-2025.)
Assertion
Ref Expression
cantnftermord (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) → (𝐴𝐵 → ((ω ↑o 𝐴) ·o 𝐶) ∈ ((ω ↑o 𝐵) ·o 𝐷)))

Proof of Theorem cantnftermord
StepHypRef Expression
1 simplll 774 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → 𝐴 ∈ On)
2 onsuc 7813 . . . . . 6 (𝐴 ∈ On → suc 𝐴 ∈ On)
31, 2syl 17 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → suc 𝐴 ∈ On)
4 simpllr 775 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → 𝐵 ∈ On)
5 omelon 9668 . . . . . . 7 ω ∈ On
6 1onn 8660 . . . . . . 7 1o ∈ ω
7 ondif2 8522 . . . . . . 7 (ω ∈ (On ∖ 2o) ↔ (ω ∈ On ∧ 1o ∈ ω))
85, 6, 7mpbir2an 711 . . . . . 6 ω ∈ (On ∖ 2o)
98a1i 11 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → ω ∈ (On ∖ 2o))
10 onsucss 43241 . . . . . . 7 (𝐵 ∈ On → (𝐴𝐵 → suc 𝐴𝐵))
1110ad2antlr 727 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) → (𝐴𝐵 → suc 𝐴𝐵))
1211imp 406 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → suc 𝐴𝐵)
13 oeword 8610 . . . . . 6 ((suc 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ω ∈ (On ∖ 2o)) → (suc 𝐴𝐵 ↔ (ω ↑o suc 𝐴) ⊆ (ω ↑o 𝐵)))
1413biimpa 476 . . . . 5 (((suc 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ω ∈ (On ∖ 2o)) ∧ suc 𝐴𝐵) → (ω ↑o suc 𝐴) ⊆ (ω ↑o 𝐵))
153, 4, 9, 12, 14syl31anc 1374 . . . 4 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → (ω ↑o suc 𝐴) ⊆ (ω ↑o 𝐵))
165a1i 11 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ω ∈ On)
17 oecl 8557 . . . . . . . . 9 ((ω ∈ On ∧ 𝐵 ∈ On) → (ω ↑o 𝐵) ∈ On)
1816, 17sylancom 588 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ω ↑o 𝐵) ∈ On)
19 omsson 7873 . . . . . . . . . . . 12 ω ⊆ On
20 ssdif 4124 . . . . . . . . . . . 12 (ω ⊆ On → (ω ∖ 1o) ⊆ (On ∖ 1o))
2119, 20ax-mp 5 . . . . . . . . . . 11 (ω ∖ 1o) ⊆ (On ∖ 1o)
2221sseli 3959 . . . . . . . . . 10 (𝐷 ∈ (ω ∖ 1o) → 𝐷 ∈ (On ∖ 1o))
23 ondif1 8521 . . . . . . . . . 10 (𝐷 ∈ (On ∖ 1o) ↔ (𝐷 ∈ On ∧ ∅ ∈ 𝐷))
2422, 23sylib 218 . . . . . . . . 9 (𝐷 ∈ (ω ∖ 1o) → (𝐷 ∈ On ∧ ∅ ∈ 𝐷))
2524adantl 481 . . . . . . . 8 ((𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o)) → (𝐷 ∈ On ∧ ∅ ∈ 𝐷))
2618, 25anim12i 613 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) → ((ω ↑o 𝐵) ∈ On ∧ (𝐷 ∈ On ∧ ∅ ∈ 𝐷)))
2726adantr 480 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → ((ω ↑o 𝐵) ∈ On ∧ (𝐷 ∈ On ∧ ∅ ∈ 𝐷)))
28 anass 468 . . . . . 6 ((((ω ↑o 𝐵) ∈ On ∧ 𝐷 ∈ On) ∧ ∅ ∈ 𝐷) ↔ ((ω ↑o 𝐵) ∈ On ∧ (𝐷 ∈ On ∧ ∅ ∈ 𝐷)))
2927, 28sylibr 234 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → (((ω ↑o 𝐵) ∈ On ∧ 𝐷 ∈ On) ∧ ∅ ∈ 𝐷))
30 omword1 8593 . . . . 5 ((((ω ↑o 𝐵) ∈ On ∧ 𝐷 ∈ On) ∧ ∅ ∈ 𝐷) → (ω ↑o 𝐵) ⊆ ((ω ↑o 𝐵) ·o 𝐷))
3129, 30syl 17 . . . 4 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → (ω ↑o 𝐵) ⊆ ((ω ↑o 𝐵) ·o 𝐷))
3215, 31sstrd 3974 . . 3 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → (ω ↑o suc 𝐴) ⊆ ((ω ↑o 𝐵) ·o 𝐷))
335a1i 11 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → ω ∈ On)
341, 5jctil 519 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → (ω ∈ On ∧ 𝐴 ∈ On))
35 oecl 8557 . . . . . 6 ((ω ∈ On ∧ 𝐴 ∈ On) → (ω ↑o 𝐴) ∈ On)
3634, 35syl 17 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → (ω ↑o 𝐴) ∈ On)
37 peano1 7892 . . . . . 6 ∅ ∈ ω
38 oen0 8606 . . . . . 6 (((ω ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑o 𝐴))
3934, 37, 38sylancl 586 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → ∅ ∈ (ω ↑o 𝐴))
40 simplrl 776 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → 𝐶 ∈ (ω ∖ 1o))
4140eldifad 3943 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → 𝐶 ∈ ω)
42 omordi 8586 . . . . . 6 (((ω ∈ On ∧ (ω ↑o 𝐴) ∈ On) ∧ ∅ ∈ (ω ↑o 𝐴)) → (𝐶 ∈ ω → ((ω ↑o 𝐴) ·o 𝐶) ∈ ((ω ↑o 𝐴) ·o ω)))
4342imp 406 . . . . 5 ((((ω ∈ On ∧ (ω ↑o 𝐴) ∈ On) ∧ ∅ ∈ (ω ↑o 𝐴)) ∧ 𝐶 ∈ ω) → ((ω ↑o 𝐴) ·o 𝐶) ∈ ((ω ↑o 𝐴) ·o ω))
4433, 36, 39, 41, 43syl1111anc 840 . . . 4 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → ((ω ↑o 𝐴) ·o 𝐶) ∈ ((ω ↑o 𝐴) ·o ω))
45 oesuc 8547 . . . . 5 ((ω ∈ On ∧ 𝐴 ∈ On) → (ω ↑o suc 𝐴) = ((ω ↑o 𝐴) ·o ω))
4634, 45syl 17 . . . 4 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → (ω ↑o suc 𝐴) = ((ω ↑o 𝐴) ·o ω))
4744, 46eleqtrrd 2836 . . 3 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → ((ω ↑o 𝐴) ·o 𝐶) ∈ (ω ↑o suc 𝐴))
4832, 47sseldd 3964 . 2 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) ∧ 𝐴𝐵) → ((ω ↑o 𝐴) ·o 𝐶) ∈ ((ω ↑o 𝐵) ·o 𝐷))
4948ex 412 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) → (𝐴𝐵 → ((ω ↑o 𝐴) ·o 𝐶) ∈ ((ω ↑o 𝐵) ·o 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cdif 3928  wss 3931  c0 4313  Oncon0 6363  suc csuc 6365  (class class class)co 7413  ωcom 7869  1oc1o 8481  2oc2o 8482   ·o comu 8486  o coe 8487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737  ax-inf2 9663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-omul 8493  df-oexp 8494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator