Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfperiod Structured version   Visualization version   GIF version

Theorem cncfperiod 43310
Description: A periodic continuous function stays continuous if the domain is shifted a period. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfperiod.a (𝜑𝐴 ⊆ ℂ)
cncfperiod.t (𝜑𝑇 ∈ ℝ)
cncfperiod.b 𝐵 = {𝑥 ∈ ℂ ∣ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)}
cncfperiod.f (𝜑𝐹:dom 𝐹⟶ℂ)
cncfperiod.cssdmf (𝜑𝐵 ⊆ dom 𝐹)
cncfperiod.fper ((𝜑𝑥𝐴) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
cncfperiod.fcn (𝜑 → (𝐹𝐴) ∈ (𝐴cn→ℂ))
Assertion
Ref Expression
cncfperiod (𝜑 → (𝐹𝐵) ∈ (𝐵cn→ℂ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦

Proof of Theorem cncfperiod
Dummy variables 𝑎 𝑏 𝑤 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfperiod.f . . 3 (𝜑𝐹:dom 𝐹⟶ℂ)
2 cncfperiod.cssdmf . . 3 (𝜑𝐵 ⊆ dom 𝐹)
31, 2fssresd 6625 . 2 (𝜑 → (𝐹𝐵):𝐵⟶ℂ)
4 fvoveq1 7278 . . . . . . . . . . 11 (𝑎 = (𝑥𝑇) → (abs‘(𝑎𝑏)) = (abs‘((𝑥𝑇) − 𝑏)))
54breq1d 5080 . . . . . . . . . 10 (𝑎 = (𝑥𝑇) → ((abs‘(𝑎𝑏)) < 𝑧 ↔ (abs‘((𝑥𝑇) − 𝑏)) < 𝑧))
65imbrov2fvoveq 7280 . . . . . . . . 9 (𝑎 = (𝑥𝑇) → (((abs‘(𝑎𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘𝑎) − ((𝐹𝐴)‘𝑏))) < 𝑤) ↔ ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤)))
76rexralbidv 3229 . . . . . . . 8 (𝑎 = (𝑥𝑇) → (∃𝑧 ∈ ℝ+𝑏𝐴 ((abs‘(𝑎𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘𝑎) − ((𝐹𝐴)‘𝑏))) < 𝑤) ↔ ∃𝑧 ∈ ℝ+𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤)))
87ralbidv 3120 . . . . . . 7 (𝑎 = (𝑥𝑇) → (∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐴 ((abs‘(𝑎𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘𝑎) − ((𝐹𝐴)‘𝑏))) < 𝑤) ↔ ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤)))
9 cncfperiod.fcn . . . . . . . . . 10 (𝜑 → (𝐹𝐴) ∈ (𝐴cn→ℂ))
109adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝐹𝐴) ∈ (𝐴cn→ℂ))
11 cncfperiod.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℂ)
1211adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝐴 ⊆ ℂ)
13 ssidd 3940 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ℂ ⊆ ℂ)
14 elcncf 23958 . . . . . . . . . 10 ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐹𝐴) ∈ (𝐴cn→ℂ) ↔ ((𝐹𝐴):𝐴⟶ℂ ∧ ∀𝑎𝐴𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐴 ((abs‘(𝑎𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘𝑎) − ((𝐹𝐴)‘𝑏))) < 𝑤))))
1512, 13, 14syl2anc 583 . . . . . . . . 9 ((𝜑𝑥𝐵) → ((𝐹𝐴) ∈ (𝐴cn→ℂ) ↔ ((𝐹𝐴):𝐴⟶ℂ ∧ ∀𝑎𝐴𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐴 ((abs‘(𝑎𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘𝑎) − ((𝐹𝐴)‘𝑏))) < 𝑤))))
1610, 15mpbid 231 . . . . . . . 8 ((𝜑𝑥𝐵) → ((𝐹𝐴):𝐴⟶ℂ ∧ ∀𝑎𝐴𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐴 ((abs‘(𝑎𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘𝑎) − ((𝐹𝐴)‘𝑏))) < 𝑤)))
1716simprd 495 . . . . . . 7 ((𝜑𝑥𝐵) → ∀𝑎𝐴𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐴 ((abs‘(𝑎𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘𝑎) − ((𝐹𝐴)‘𝑏))) < 𝑤))
18 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → 𝑥𝐵)
19 cncfperiod.b . . . . . . . . . . 11 𝐵 = {𝑥 ∈ ℂ ∣ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)}
2018, 19eleqtrdi 2849 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝑥 ∈ {𝑥 ∈ ℂ ∣ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)})
21 rabid 3304 . . . . . . . . . 10 (𝑥 ∈ {𝑥 ∈ ℂ ∣ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)} ↔ (𝑥 ∈ ℂ ∧ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)))
2220, 21sylib 217 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑥 ∈ ℂ ∧ ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇)))
2322simprd 495 . . . . . . . 8 ((𝜑𝑥𝐵) → ∃𝑦𝐴 𝑥 = (𝑦 + 𝑇))
24 oveq1 7262 . . . . . . . . . . . 12 (𝑥 = (𝑦 + 𝑇) → (𝑥𝑇) = ((𝑦 + 𝑇) − 𝑇))
25243ad2ant3 1133 . . . . . . . . . . 11 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑥 = (𝑦 + 𝑇)) → (𝑥𝑇) = ((𝑦 + 𝑇) − 𝑇))
2611sselda 3917 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴) → 𝑦 ∈ ℂ)
27 cncfperiod.t . . . . . . . . . . . . . . . 16 (𝜑𝑇 ∈ ℝ)
2827recnd 10934 . . . . . . . . . . . . . . 15 (𝜑𝑇 ∈ ℂ)
2928adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴) → 𝑇 ∈ ℂ)
3026, 29pncand 11263 . . . . . . . . . . . . 13 ((𝜑𝑦𝐴) → ((𝑦 + 𝑇) − 𝑇) = 𝑦)
3130adantlr 711 . . . . . . . . . . . 12 (((𝜑𝑥𝐵) ∧ 𝑦𝐴) → ((𝑦 + 𝑇) − 𝑇) = 𝑦)
32313adant3 1130 . . . . . . . . . . 11 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑥 = (𝑦 + 𝑇)) → ((𝑦 + 𝑇) − 𝑇) = 𝑦)
3325, 32eqtrd 2778 . . . . . . . . . 10 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑥 = (𝑦 + 𝑇)) → (𝑥𝑇) = 𝑦)
34 simp2 1135 . . . . . . . . . 10 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑥 = (𝑦 + 𝑇)) → 𝑦𝐴)
3533, 34eqeltrd 2839 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑥 = (𝑦 + 𝑇)) → (𝑥𝑇) ∈ 𝐴)
3635rexlimdv3a 3214 . . . . . . . 8 ((𝜑𝑥𝐵) → (∃𝑦𝐴 𝑥 = (𝑦 + 𝑇) → (𝑥𝑇) ∈ 𝐴))
3723, 36mpd 15 . . . . . . 7 ((𝜑𝑥𝐵) → (𝑥𝑇) ∈ 𝐴)
388, 17, 37rspcdva 3554 . . . . . 6 ((𝜑𝑥𝐵) → ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤))
3938adantrr 713 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) → ∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤))
40 simprr 769 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) → 𝑤 ∈ ℝ+)
41 rspa 3130 . . . . 5 ((∀𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤) ∧ 𝑤 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤))
4239, 40, 41syl2anc 583 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤))
43 simpl1l 1222 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤)) ∧ 𝑣𝐵) → 𝜑)
4443adantr 480 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → 𝜑)
45 simp1rl 1236 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤)) → 𝑥𝐵)
4645adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤)) ∧ 𝑣𝐵) → 𝑥𝐵)
4746adantr 480 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → 𝑥𝐵)
48 simplr 765 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → 𝑣𝐵)
49 fvres 6775 . . . . . . . . . . . . . . 15 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
5049adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐵) → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
5119ssrab3 4011 . . . . . . . . . . . . . . . . . . 19 𝐵 ⊆ ℂ
5251sseli 3913 . . . . . . . . . . . . . . . . . 18 (𝑥𝐵𝑥 ∈ ℂ)
5352adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 𝑥 ∈ ℂ)
5428adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 𝑇 ∈ ℂ)
5553, 54npcand 11266 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐵) → ((𝑥𝑇) + 𝑇) = 𝑥)
5655eqcomd 2744 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐵) → 𝑥 = ((𝑥𝑇) + 𝑇))
5756fveq2d 6760 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐵) → (𝐹𝑥) = (𝐹‘((𝑥𝑇) + 𝑇)))
58 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 𝜑)
5958, 37jca 511 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐵) → (𝜑 ∧ (𝑥𝑇) ∈ 𝐴))
60 eleq1 2826 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑥𝑇) → (𝑦𝐴 ↔ (𝑥𝑇) ∈ 𝐴))
6160anbi2d 628 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑥𝑇) → ((𝜑𝑦𝐴) ↔ (𝜑 ∧ (𝑥𝑇) ∈ 𝐴)))
62 fvoveq1 7278 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑥𝑇) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘((𝑥𝑇) + 𝑇)))
63 fveq2 6756 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑥𝑇) → (𝐹𝑦) = (𝐹‘(𝑥𝑇)))
6462, 63eqeq12d 2754 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑥𝑇) → ((𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦) ↔ (𝐹‘((𝑥𝑇) + 𝑇)) = (𝐹‘(𝑥𝑇))))
6561, 64imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥𝑇) → (((𝜑𝑦𝐴) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦)) ↔ ((𝜑 ∧ (𝑥𝑇) ∈ 𝐴) → (𝐹‘((𝑥𝑇) + 𝑇)) = (𝐹‘(𝑥𝑇)))))
66 eleq1 2826 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
6766anbi2d 628 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → ((𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴)))
68 fvoveq1 7278 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑦 + 𝑇)))
69 fveq2 6756 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
7068, 69eqeq12d 2754 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥) ↔ (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦)))
7167, 70imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥)) ↔ ((𝜑𝑦𝐴) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))))
72 cncfperiod.fper . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
7371, 72chvarvv 2003 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐴) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))
7465, 73vtoclg 3495 . . . . . . . . . . . . . . . 16 ((𝑥𝑇) ∈ 𝐴 → ((𝜑 ∧ (𝑥𝑇) ∈ 𝐴) → (𝐹‘((𝑥𝑇) + 𝑇)) = (𝐹‘(𝑥𝑇))))
7537, 59, 74sylc 65 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐵) → (𝐹‘((𝑥𝑇) + 𝑇)) = (𝐹‘(𝑥𝑇)))
7637fvresd 6776 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐵) → ((𝐹𝐴)‘(𝑥𝑇)) = (𝐹‘(𝑥𝑇)))
7775, 76eqtr4d 2781 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐵) → (𝐹‘((𝑥𝑇) + 𝑇)) = ((𝐹𝐴)‘(𝑥𝑇)))
7850, 57, 773eqtrd 2782 . . . . . . . . . . . . 13 ((𝜑𝑥𝐵) → ((𝐹𝐵)‘𝑥) = ((𝐹𝐴)‘(𝑥𝑇)))
79783adant3 1130 . . . . . . . . . . . 12 ((𝜑𝑥𝐵𝑣𝐵) → ((𝐹𝐵)‘𝑥) = ((𝐹𝐴)‘(𝑥𝑇)))
80 eleq1 2826 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → (𝑥𝐵𝑣𝐵))
8180anbi2d 628 . . . . . . . . . . . . . . 15 (𝑥 = 𝑣 → ((𝜑𝑥𝐵) ↔ (𝜑𝑣𝐵)))
82 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → ((𝐹𝐵)‘𝑥) = ((𝐹𝐵)‘𝑣))
83 fvoveq1 7278 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → ((𝐹𝐴)‘(𝑥𝑇)) = ((𝐹𝐴)‘(𝑣𝑇)))
8482, 83eqeq12d 2754 . . . . . . . . . . . . . . 15 (𝑥 = 𝑣 → (((𝐹𝐵)‘𝑥) = ((𝐹𝐴)‘(𝑥𝑇)) ↔ ((𝐹𝐵)‘𝑣) = ((𝐹𝐴)‘(𝑣𝑇))))
8581, 84imbi12d 344 . . . . . . . . . . . . . 14 (𝑥 = 𝑣 → (((𝜑𝑥𝐵) → ((𝐹𝐵)‘𝑥) = ((𝐹𝐴)‘(𝑥𝑇))) ↔ ((𝜑𝑣𝐵) → ((𝐹𝐵)‘𝑣) = ((𝐹𝐴)‘(𝑣𝑇)))))
8685, 78chvarvv 2003 . . . . . . . . . . . . 13 ((𝜑𝑣𝐵) → ((𝐹𝐵)‘𝑣) = ((𝐹𝐴)‘(𝑣𝑇)))
87863adant2 1129 . . . . . . . . . . . 12 ((𝜑𝑥𝐵𝑣𝐵) → ((𝐹𝐵)‘𝑣) = ((𝐹𝐴)‘(𝑣𝑇)))
8879, 87oveq12d 7273 . . . . . . . . . . 11 ((𝜑𝑥𝐵𝑣𝐵) → (((𝐹𝐵)‘𝑥) − ((𝐹𝐵)‘𝑣)) = (((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘(𝑣𝑇))))
8988fveq2d 6760 . . . . . . . . . 10 ((𝜑𝑥𝐵𝑣𝐵) → (abs‘(((𝐹𝐵)‘𝑥) − ((𝐹𝐵)‘𝑣))) = (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘(𝑣𝑇)))))
9044, 47, 48, 89syl3anc 1369 . . . . . . . . 9 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑥) − ((𝐹𝐵)‘𝑣))) = (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘(𝑣𝑇)))))
91 simpr 484 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → (abs‘(𝑥𝑣)) < 𝑧)
9222simpld 494 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐵) → 𝑥 ∈ ℂ)
9392adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ 𝑣𝐵) → 𝑥 ∈ ℂ)
9451sseli 3913 . . . . . . . . . . . . . . . 16 (𝑣𝐵𝑣 ∈ ℂ)
9594adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ 𝑣𝐵) → 𝑣 ∈ ℂ)
9654adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ 𝑣𝐵) → 𝑇 ∈ ℂ)
9793, 95, 96nnncan2d 11297 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ 𝑣𝐵) → ((𝑥𝑇) − (𝑣𝑇)) = (𝑥𝑣))
9897fveq2d 6760 . . . . . . . . . . . . 13 (((𝜑𝑥𝐵) ∧ 𝑣𝐵) → (abs‘((𝑥𝑇) − (𝑣𝑇))) = (abs‘(𝑥𝑣)))
9998adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑥𝐵) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → (abs‘((𝑥𝑇) − (𝑣𝑇))) = (abs‘(𝑥𝑣)))
100 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑥𝐵) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → (abs‘(𝑥𝑣)) < 𝑧)
10199, 100eqbrtrd 5092 . . . . . . . . . . 11 ((((𝜑𝑥𝐵) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → (abs‘((𝑥𝑇) − (𝑣𝑇))) < 𝑧)
10244, 47, 48, 91, 101syl1111anc 836 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → (abs‘((𝑥𝑇) − (𝑣𝑇))) < 𝑧)
103 oveq2 7263 . . . . . . . . . . . . . 14 (𝑏 = (𝑣𝑇) → ((𝑥𝑇) − 𝑏) = ((𝑥𝑇) − (𝑣𝑇)))
104103fveq2d 6760 . . . . . . . . . . . . 13 (𝑏 = (𝑣𝑇) → (abs‘((𝑥𝑇) − 𝑏)) = (abs‘((𝑥𝑇) − (𝑣𝑇))))
105104breq1d 5080 . . . . . . . . . . . 12 (𝑏 = (𝑣𝑇) → ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 ↔ (abs‘((𝑥𝑇) − (𝑣𝑇))) < 𝑧))
106 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑏 = (𝑣𝑇) → ((𝐹𝐴)‘𝑏) = ((𝐹𝐴)‘(𝑣𝑇)))
107106oveq2d 7271 . . . . . . . . . . . . . 14 (𝑏 = (𝑣𝑇) → (((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏)) = (((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘(𝑣𝑇))))
108107fveq2d 6760 . . . . . . . . . . . . 13 (𝑏 = (𝑣𝑇) → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) = (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘(𝑣𝑇)))))
109108breq1d 5080 . . . . . . . . . . . 12 (𝑏 = (𝑣𝑇) → ((abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤 ↔ (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘(𝑣𝑇)))) < 𝑤))
110105, 109imbi12d 344 . . . . . . . . . . 11 (𝑏 = (𝑣𝑇) → (((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤) ↔ ((abs‘((𝑥𝑇) − (𝑣𝑇))) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘(𝑣𝑇)))) < 𝑤)))
111 simpll3 1212 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤))
112 oveq1 7262 . . . . . . . . . . . . . . 15 (𝑥 = 𝑣 → (𝑥𝑇) = (𝑣𝑇))
113112eleq1d 2823 . . . . . . . . . . . . . 14 (𝑥 = 𝑣 → ((𝑥𝑇) ∈ 𝐴 ↔ (𝑣𝑇) ∈ 𝐴))
11481, 113imbi12d 344 . . . . . . . . . . . . 13 (𝑥 = 𝑣 → (((𝜑𝑥𝐵) → (𝑥𝑇) ∈ 𝐴) ↔ ((𝜑𝑣𝐵) → (𝑣𝑇) ∈ 𝐴)))
115114, 37chvarvv 2003 . . . . . . . . . . . 12 ((𝜑𝑣𝐵) → (𝑣𝑇) ∈ 𝐴)
11644, 48, 115syl2anc 583 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → (𝑣𝑇) ∈ 𝐴)
117110, 111, 116rspcdva 3554 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → ((abs‘((𝑥𝑇) − (𝑣𝑇))) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘(𝑣𝑇)))) < 𝑤))
118102, 117mpd 15 . . . . . . . . 9 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘(𝑣𝑇)))) < 𝑤)
11990, 118eqbrtrd 5092 . . . . . . . 8 (((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤)) ∧ 𝑣𝐵) ∧ (abs‘(𝑥𝑣)) < 𝑧) → (abs‘(((𝐹𝐵)‘𝑥) − ((𝐹𝐵)‘𝑣))) < 𝑤)
120119ex 412 . . . . . . 7 ((((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤)) ∧ 𝑣𝐵) → ((abs‘(𝑥𝑣)) < 𝑧 → (abs‘(((𝐹𝐵)‘𝑥) − ((𝐹𝐵)‘𝑣))) < 𝑤))
121120ralrimiva 3107 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) ∧ 𝑧 ∈ ℝ+ ∧ ∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤)) → ∀𝑣𝐵 ((abs‘(𝑥𝑣)) < 𝑧 → (abs‘(((𝐹𝐵)‘𝑥) − ((𝐹𝐵)‘𝑣))) < 𝑤))
1221213exp 1117 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) → (𝑧 ∈ ℝ+ → (∀𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤) → ∀𝑣𝐵 ((abs‘(𝑥𝑣)) < 𝑧 → (abs‘(((𝐹𝐵)‘𝑥) − ((𝐹𝐵)‘𝑣))) < 𝑤))))
123122reximdvai 3199 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) → (∃𝑧 ∈ ℝ+𝑏𝐴 ((abs‘((𝑥𝑇) − 𝑏)) < 𝑧 → (abs‘(((𝐹𝐴)‘(𝑥𝑇)) − ((𝐹𝐴)‘𝑏))) < 𝑤) → ∃𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑥𝑣)) < 𝑧 → (abs‘(((𝐹𝐵)‘𝑥) − ((𝐹𝐵)‘𝑣))) < 𝑤)))
12442, 123mpd 15 . . 3 ((𝜑 ∧ (𝑥𝐵𝑤 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑥𝑣)) < 𝑧 → (abs‘(((𝐹𝐵)‘𝑥) − ((𝐹𝐵)‘𝑣))) < 𝑤))
125124ralrimivva 3114 . 2 (𝜑 → ∀𝑥𝐵𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑥𝑣)) < 𝑧 → (abs‘(((𝐹𝐵)‘𝑥) − ((𝐹𝐵)‘𝑣))) < 𝑤))
12651a1i 11 . . 3 (𝜑𝐵 ⊆ ℂ)
127 ssidd 3940 . . 3 (𝜑 → ℂ ⊆ ℂ)
128 elcncf 23958 . . 3 ((𝐵 ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐹𝐵) ∈ (𝐵cn→ℂ) ↔ ((𝐹𝐵):𝐵⟶ℂ ∧ ∀𝑥𝐵𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑥𝑣)) < 𝑧 → (abs‘(((𝐹𝐵)‘𝑥) − ((𝐹𝐵)‘𝑣))) < 𝑤))))
129126, 127, 128syl2anc 583 . 2 (𝜑 → ((𝐹𝐵) ∈ (𝐵cn→ℂ) ↔ ((𝐹𝐵):𝐵⟶ℂ ∧ ∀𝑥𝐵𝑤 ∈ ℝ+𝑧 ∈ ℝ+𝑣𝐵 ((abs‘(𝑥𝑣)) < 𝑧 → (abs‘(((𝐹𝐵)‘𝑥) − ((𝐹𝐵)‘𝑣))) < 𝑤))))
1303, 125, 129mpbir2and 709 1 (𝜑 → (𝐹𝐵) ∈ (𝐵cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  wss 3883   class class class wbr 5070  dom cdm 5580  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801   + caddc 10805   < clt 10940  cmin 11135  +crp 12659  abscabs 14873  cnccncf 23945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137  df-cncf 23947
This theorem is referenced by:  itgperiod  43412  fourierdlem81  43618
  Copyright terms: Public domain W3C validator