Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prmidlc | Structured version Visualization version GIF version |
Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
Ref | Expression |
---|---|
isprmidlc.1 | ⊢ 𝐵 = (Base‘𝑅) |
isprmidlc.2 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
prmidlc | ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1191 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → 𝐼 ∈ 𝐵) | |
2 | simpr2 1192 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → 𝐽 ∈ 𝐵) | |
3 | isprmidlc.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
4 | isprmidlc.2 | . . . . . 6 ⊢ · = (.r‘𝑅) | |
5 | 3, 4 | isprmidlc 31148 | . . . . 5 ⊢ (𝑅 ∈ CRing → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))) |
6 | 5 | biimpa 480 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
7 | 6 | simp3d 1141 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) |
8 | 7 | adantr 484 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) |
9 | simpr3 1193 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → (𝐼 · 𝐽) ∈ 𝑃) | |
10 | oveq12 7164 | . . . . . 6 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → (𝑎 · 𝑏) = (𝐼 · 𝐽)) | |
11 | 10 | eleq1d 2836 | . . . . 5 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → ((𝑎 · 𝑏) ∈ 𝑃 ↔ (𝐼 · 𝐽) ∈ 𝑃)) |
12 | simpl 486 | . . . . . . 7 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → 𝑎 = 𝐼) | |
13 | 12 | eleq1d 2836 | . . . . . 6 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → (𝑎 ∈ 𝑃 ↔ 𝐼 ∈ 𝑃)) |
14 | simpr 488 | . . . . . . 7 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → 𝑏 = 𝐽) | |
15 | 14 | eleq1d 2836 | . . . . . 6 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → (𝑏 ∈ 𝑃 ↔ 𝐽 ∈ 𝑃)) |
16 | 13, 15 | orbi12d 916 | . . . . 5 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → ((𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃) ↔ (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃))) |
17 | 11, 16 | imbi12d 348 | . . . 4 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → (((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) ↔ ((𝐼 · 𝐽) ∈ 𝑃 → (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃)))) |
18 | 17 | rspc2gv 3552 | . . 3 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → ((𝐼 · 𝐽) ∈ 𝑃 → (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃)))) |
19 | 18 | imp31 421 | . 2 ⊢ ((((𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) ∧ (𝐼 · 𝐽) ∈ 𝑃) → (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃)) |
20 | 1, 2, 8, 9, 19 | syl1111anc 838 | 1 ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ wo 844 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 ‘cfv 6339 (class class class)co 7155 Basecbs 16546 .rcmulr 16629 CRingccrg 19371 LIdealclidl 20015 PrmIdealcprmidl 31135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-ndx 16549 df-slot 16550 df-base 16552 df-sets 16553 df-ress 16554 df-plusg 16641 df-mulr 16642 df-sca 16644 df-vsca 16645 df-ip 16646 df-0g 16778 df-mgm 17923 df-sgrp 17972 df-mnd 17983 df-grp 18177 df-minusg 18178 df-sbg 18179 df-subg 18348 df-cmn 18980 df-mgp 19313 df-ur 19325 df-ring 19372 df-cring 19373 df-subrg 19606 df-lmod 19709 df-lss 19777 df-lsp 19817 df-sra 20017 df-rgmod 20018 df-lidl 20019 df-rsp 20020 df-prmidl 31136 |
This theorem is referenced by: rhmpreimaprmidl 31152 |
Copyright terms: Public domain | W3C validator |