![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prmidlc | Structured version Visualization version GIF version |
Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
Ref | Expression |
---|---|
isprmidlc.1 | ⊢ 𝐵 = (Base‘𝑅) |
isprmidlc.2 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
prmidlc | ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1194 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → 𝐼 ∈ 𝐵) | |
2 | simpr2 1195 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → 𝐽 ∈ 𝐵) | |
3 | isprmidlc.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
4 | isprmidlc.2 | . . . . . 6 ⊢ · = (.r‘𝑅) | |
5 | 3, 4 | isprmidlc 33440 | . . . . 5 ⊢ (𝑅 ∈ CRing → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))) |
6 | 5 | biimpa 476 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
7 | 6 | simp3d 1144 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) |
8 | 7 | adantr 480 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) |
9 | simpr3 1196 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → (𝐼 · 𝐽) ∈ 𝑃) | |
10 | oveq12 7457 | . . . . . 6 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → (𝑎 · 𝑏) = (𝐼 · 𝐽)) | |
11 | 10 | eleq1d 2829 | . . . . 5 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → ((𝑎 · 𝑏) ∈ 𝑃 ↔ (𝐼 · 𝐽) ∈ 𝑃)) |
12 | simpl 482 | . . . . . . 7 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → 𝑎 = 𝐼) | |
13 | 12 | eleq1d 2829 | . . . . . 6 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → (𝑎 ∈ 𝑃 ↔ 𝐼 ∈ 𝑃)) |
14 | simpr 484 | . . . . . . 7 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → 𝑏 = 𝐽) | |
15 | 14 | eleq1d 2829 | . . . . . 6 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → (𝑏 ∈ 𝑃 ↔ 𝐽 ∈ 𝑃)) |
16 | 13, 15 | orbi12d 917 | . . . . 5 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → ((𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃) ↔ (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃))) |
17 | 11, 16 | imbi12d 344 | . . . 4 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → (((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) ↔ ((𝐼 · 𝐽) ∈ 𝑃 → (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃)))) |
18 | 17 | rspc2gv 3645 | . . 3 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → ((𝐼 · 𝐽) ∈ 𝑃 → (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃)))) |
19 | 18 | imp31 417 | . 2 ⊢ ((((𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) ∧ (𝐼 · 𝐽) ∈ 𝑃) → (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃)) |
20 | 1, 2, 8, 9, 19 | syl1111anc 839 | 1 ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 CRingccrg 20261 LIdealclidl 21239 PrmIdealcprmidl 33428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-subrg 20597 df-lmod 20882 df-lss 20953 df-lsp 20993 df-sra 21195 df-rgmod 21196 df-lidl 21241 df-rsp 21242 df-prmidl 33429 |
This theorem is referenced by: rhmpreimaprmidl 33444 rsprprmprmidlb 33516 rprmirredb 33525 dfufd2lem 33542 |
Copyright terms: Public domain | W3C validator |