| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prmidlc | Structured version Visualization version GIF version | ||
| Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
| Ref | Expression |
|---|---|
| isprmidlc.1 | ⊢ 𝐵 = (Base‘𝑅) |
| isprmidlc.2 | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| prmidlc | ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1195 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → 𝐼 ∈ 𝐵) | |
| 2 | simpr2 1196 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → 𝐽 ∈ 𝐵) | |
| 3 | isprmidlc.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | isprmidlc.2 | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 5 | 3, 4 | isprmidlc 33462 | . . . . 5 ⊢ (𝑅 ∈ CRing → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))) |
| 6 | 5 | biimpa 476 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
| 7 | 6 | simp3d 1144 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) |
| 8 | 7 | adantr 480 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) |
| 9 | simpr3 1197 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → (𝐼 · 𝐽) ∈ 𝑃) | |
| 10 | oveq12 7414 | . . . . . 6 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → (𝑎 · 𝑏) = (𝐼 · 𝐽)) | |
| 11 | 10 | eleq1d 2819 | . . . . 5 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → ((𝑎 · 𝑏) ∈ 𝑃 ↔ (𝐼 · 𝐽) ∈ 𝑃)) |
| 12 | simpl 482 | . . . . . . 7 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → 𝑎 = 𝐼) | |
| 13 | 12 | eleq1d 2819 | . . . . . 6 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → (𝑎 ∈ 𝑃 ↔ 𝐼 ∈ 𝑃)) |
| 14 | simpr 484 | . . . . . . 7 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → 𝑏 = 𝐽) | |
| 15 | 14 | eleq1d 2819 | . . . . . 6 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → (𝑏 ∈ 𝑃 ↔ 𝐽 ∈ 𝑃)) |
| 16 | 13, 15 | orbi12d 918 | . . . . 5 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → ((𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃) ↔ (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃))) |
| 17 | 11, 16 | imbi12d 344 | . . . 4 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → (((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) ↔ ((𝐼 · 𝐽) ∈ 𝑃 → (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃)))) |
| 18 | 17 | rspc2gv 3611 | . . 3 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → ((𝐼 · 𝐽) ∈ 𝑃 → (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃)))) |
| 19 | 18 | imp31 417 | . 2 ⊢ ((((𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) ∧ (𝐼 · 𝐽) ∈ 𝑃) → (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃)) |
| 20 | 1, 2, 8, 9, 19 | syl1111anc 840 | 1 ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 .rcmulr 17272 CRingccrg 20194 LIdealclidl 21167 PrmIdealcprmidl 33450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-subrg 20530 df-lmod 20819 df-lss 20889 df-lsp 20929 df-sra 21131 df-rgmod 21132 df-lidl 21169 df-rsp 21170 df-prmidl 33451 |
| This theorem is referenced by: rhmpreimaprmidl 33466 rsprprmprmidlb 33538 rprmirredb 33547 dfufd2lem 33564 |
| Copyright terms: Public domain | W3C validator |