Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmidlc Structured version   Visualization version   GIF version

Theorem prmidlc 33441
Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Thierry Arnoux, 12-Jan-2024.)
Hypotheses
Ref Expression
isprmidlc.1 𝐵 = (Base‘𝑅)
isprmidlc.2 · = (.r𝑅)
Assertion
Ref Expression
prmidlc (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼𝐵𝐽𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → (𝐼𝑃𝐽𝑃))

Proof of Theorem prmidlc
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 1194 . 2 (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼𝐵𝐽𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → 𝐼𝐵)
2 simpr2 1195 . 2 (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼𝐵𝐽𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → 𝐽𝐵)
3 isprmidlc.1 . . . . . 6 𝐵 = (Base‘𝑅)
4 isprmidlc.2 . . . . . 6 · = (.r𝑅)
53, 4isprmidlc 33440 . . . . 5 (𝑅 ∈ CRing → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
65biimpa 476 . . . 4 ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
76simp3d 1144 . . 3 ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → ∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
87adantr 480 . 2 (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼𝐵𝐽𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → ∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
9 simpr3 1196 . 2 (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼𝐵𝐽𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → (𝐼 · 𝐽) ∈ 𝑃)
10 oveq12 7457 . . . . . 6 ((𝑎 = 𝐼𝑏 = 𝐽) → (𝑎 · 𝑏) = (𝐼 · 𝐽))
1110eleq1d 2829 . . . . 5 ((𝑎 = 𝐼𝑏 = 𝐽) → ((𝑎 · 𝑏) ∈ 𝑃 ↔ (𝐼 · 𝐽) ∈ 𝑃))
12 simpl 482 . . . . . . 7 ((𝑎 = 𝐼𝑏 = 𝐽) → 𝑎 = 𝐼)
1312eleq1d 2829 . . . . . 6 ((𝑎 = 𝐼𝑏 = 𝐽) → (𝑎𝑃𝐼𝑃))
14 simpr 484 . . . . . . 7 ((𝑎 = 𝐼𝑏 = 𝐽) → 𝑏 = 𝐽)
1514eleq1d 2829 . . . . . 6 ((𝑎 = 𝐼𝑏 = 𝐽) → (𝑏𝑃𝐽𝑃))
1613, 15orbi12d 917 . . . . 5 ((𝑎 = 𝐼𝑏 = 𝐽) → ((𝑎𝑃𝑏𝑃) ↔ (𝐼𝑃𝐽𝑃)))
1711, 16imbi12d 344 . . . 4 ((𝑎 = 𝐼𝑏 = 𝐽) → (((𝑎 · 𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) ↔ ((𝐼 · 𝐽) ∈ 𝑃 → (𝐼𝑃𝐽𝑃))))
1817rspc2gv 3645 . . 3 ((𝐼𝐵𝐽𝐵) → (∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ((𝐼 · 𝐽) ∈ 𝑃 → (𝐼𝑃𝐽𝑃))))
1918imp31 417 . 2 ((((𝐼𝐵𝐽𝐵) ∧ ∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))) ∧ (𝐼 · 𝐽) ∈ 𝑃) → (𝐼𝑃𝐽𝑃))
201, 2, 8, 9, 19syl1111anc 839 1 (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼𝐵𝐽𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → (𝐼𝑃𝐽𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312  CRingccrg 20261  LIdealclidl 21239  PrmIdealcprmidl 33428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-prmidl 33429
This theorem is referenced by:  rhmpreimaprmidl  33444  rsprprmprmidlb  33516  rprmirredb  33525  dfufd2lem  33542
  Copyright terms: Public domain W3C validator