![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prmidlc | Structured version Visualization version GIF version |
Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Thierry Arnoux, 12-Jan-2024.) |
Ref | Expression |
---|---|
isprmidlc.1 | ⊢ 𝐵 = (Base‘𝑅) |
isprmidlc.2 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
prmidlc | ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1194 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → 𝐼 ∈ 𝐵) | |
2 | simpr2 1195 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → 𝐽 ∈ 𝐵) | |
3 | isprmidlc.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
4 | isprmidlc.2 | . . . . . 6 ⊢ · = (.r‘𝑅) | |
5 | 3, 4 | isprmidlc 32417 | . . . . 5 ⊢ (𝑅 ∈ CRing → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))) |
6 | 5 | biimpa 477 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃 ≠ 𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
7 | 6 | simp3d 1144 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) |
8 | 7 | adantr 481 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) |
9 | simpr3 1196 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → (𝐼 · 𝐽) ∈ 𝑃) | |
10 | oveq12 7402 | . . . . . 6 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → (𝑎 · 𝑏) = (𝐼 · 𝐽)) | |
11 | 10 | eleq1d 2817 | . . . . 5 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → ((𝑎 · 𝑏) ∈ 𝑃 ↔ (𝐼 · 𝐽) ∈ 𝑃)) |
12 | simpl 483 | . . . . . . 7 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → 𝑎 = 𝐼) | |
13 | 12 | eleq1d 2817 | . . . . . 6 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → (𝑎 ∈ 𝑃 ↔ 𝐼 ∈ 𝑃)) |
14 | simpr 485 | . . . . . . 7 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → 𝑏 = 𝐽) | |
15 | 14 | eleq1d 2817 | . . . . . 6 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → (𝑏 ∈ 𝑃 ↔ 𝐽 ∈ 𝑃)) |
16 | 13, 15 | orbi12d 917 | . . . . 5 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → ((𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃) ↔ (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃))) |
17 | 11, 16 | imbi12d 344 | . . . 4 ⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐽) → (((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) ↔ ((𝐼 · 𝐽) ∈ 𝑃 → (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃)))) |
18 | 17 | rspc2gv 3617 | . . 3 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → ((𝐼 · 𝐽) ∈ 𝑃 → (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃)))) |
19 | 18 | imp31 418 | . 2 ⊢ ((((𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) ∧ (𝐼 · 𝐽) ∈ 𝑃) → (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃)) |
20 | 1, 2, 8, 9, 19 | syl1111anc 838 | 1 ⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ 𝐵 ∧ 𝐽 ∈ 𝐵 ∧ (𝐼 · 𝐽) ∈ 𝑃)) → (𝐼 ∈ 𝑃 ∨ 𝐽 ∈ 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 845 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2939 ∀wral 3060 ‘cfv 6532 (class class class)co 7393 Basecbs 17126 .rcmulr 17180 CRingccrg 20015 LIdealclidl 20732 PrmIdealcprmidl 32404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-3 12258 df-4 12259 df-5 12260 df-6 12261 df-7 12262 df-8 12263 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17127 df-ress 17156 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-0g 17369 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-grp 18797 df-minusg 18798 df-sbg 18799 df-subg 18975 df-cmn 19614 df-mgp 19947 df-ur 19964 df-ring 20016 df-cring 20017 df-subrg 20310 df-lmod 20422 df-lss 20492 df-lsp 20532 df-sra 20734 df-rgmod 20735 df-lidl 20736 df-rsp 20737 df-prmidl 32405 |
This theorem is referenced by: rhmpreimaprmidl 32421 |
Copyright terms: Public domain | W3C validator |