Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem9N Structured version   Visualization version   GIF version

Theorem osumcllem9N 37905
Description: Lemma for osumclN 37908. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem9N (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀 = 𝑋)

Proof of Theorem osumcllem9N
StepHypRef Expression
1 inass 4150 . . . . . . 7 ((( 𝑋) ∩ 𝑈) ∩ 𝑀) = (( 𝑋) ∩ (𝑈𝑀))
2 simp11 1201 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝐾 ∈ HL)
3 simp13 1203 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑌𝐶)
4 simp21 1204 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ⊆ ( 𝑌))
5 osumcllem.l . . . . . . . . . 10 = (le‘𝐾)
6 osumcllem.j . . . . . . . . . 10 = (join‘𝐾)
7 osumcllem.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
8 osumcllem.p . . . . . . . . . 10 + = (+𝑃𝐾)
9 osumcllem.o . . . . . . . . . 10 = (⊥𝑃𝐾)
10 osumcllem.c . . . . . . . . . 10 𝐶 = (PSubCl‘𝐾)
11 osumcllem.m . . . . . . . . . 10 𝑀 = (𝑋 + {𝑝})
12 osumcllem.u . . . . . . . . . 10 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
135, 6, 7, 8, 9, 10, 11, 12osumcllem3N 37899 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (( 𝑋) ∩ 𝑈) = 𝑌)
142, 3, 4, 13syl3anc 1369 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( 𝑋) ∩ 𝑈) = 𝑌)
1514ineq1d 4142 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ((( 𝑋) ∩ 𝑈) ∩ 𝑀) = (𝑌𝑀))
161, 15eqtr3id 2793 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( 𝑋) ∩ (𝑈𝑀)) = (𝑌𝑀))
17 simp12 1202 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋𝐶)
187, 10psubclssatN 37882 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋𝐴)
192, 17, 18syl2anc 583 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋𝐴)
207, 10psubclssatN 37882 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌𝐴)
212, 3, 20syl2anc 583 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑌𝐴)
22 simp22 1205 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ≠ ∅)
237, 8paddssat 37755 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ 𝐴)
242, 19, 21, 23syl3anc 1369 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + 𝑌) ⊆ 𝐴)
257, 9polssatN 37849 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ 𝐴) → ( ‘(𝑋 + 𝑌)) ⊆ 𝐴)
262, 24, 25syl2anc 583 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘(𝑋 + 𝑌)) ⊆ 𝐴)
277, 9polssatN 37849 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ ( ‘(𝑋 + 𝑌)) ⊆ 𝐴) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ 𝐴)
282, 26, 27syl2anc 583 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ 𝐴)
2912, 28eqsstrid 3965 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑈𝐴)
30 simp23 1206 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝𝑈)
3129, 30sseldd 3918 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝𝐴)
32 simp3 1136 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ¬ 𝑝 ∈ (𝑋 + 𝑌))
335, 6, 7, 8, 9, 10, 11, 12osumcllem8N 37904 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌𝑀) = ∅)
342, 19, 21, 4, 22, 31, 32, 33syl331anc 1393 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌𝑀) = ∅)
3516, 34eqtrd 2778 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( 𝑋) ∩ (𝑈𝑀)) = ∅)
3635fveq2d 6760 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘(( 𝑋) ∩ (𝑈𝑀))) = ( ‘∅))
377, 9pol0N 37850 . . . . 5 (𝐾 ∈ HL → ( ‘∅) = 𝐴)
382, 37syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘∅) = 𝐴)
3936, 38eqtrd 2778 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘(( 𝑋) ∩ (𝑈𝑀))) = 𝐴)
405, 6, 7, 8, 9, 10, 11, 12osumcllem1N 37897 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → (𝑈𝑀) = 𝑀)
412, 19, 21, 30, 40syl31anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑈𝑀) = 𝑀)
4239, 41ineq12d 4144 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( ‘(( 𝑋) ∩ (𝑈𝑀))) ∩ (𝑈𝑀)) = (𝐴𝑀))
437, 9, 10polsubclN 37893 . . . . . 6 ((𝐾 ∈ HL ∧ ( ‘(𝑋 + 𝑌)) ⊆ 𝐴) → ( ‘( ‘(𝑋 + 𝑌))) ∈ 𝐶)
442, 26, 43syl2anc 583 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘( ‘(𝑋 + 𝑌))) ∈ 𝐶)
4512, 44eqeltrid 2843 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑈𝐶)
467, 8, 10paddatclN 37890 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑝𝐴) → (𝑋 + {𝑝}) ∈ 𝐶)
472, 17, 31, 46syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) ∈ 𝐶)
4811, 47eqeltrid 2843 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀𝐶)
4910psubclinN 37889 . . . 4 ((𝐾 ∈ HL ∧ 𝑈𝐶𝑀𝐶) → (𝑈𝑀) ∈ 𝐶)
502, 45, 48, 49syl3anc 1369 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑈𝑀) ∈ 𝐶)
515, 6, 7, 8, 9, 10, 11, 12osumcllem2N 37898 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑋 ⊆ (𝑈𝑀))
522, 19, 21, 30, 51syl31anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ⊆ (𝑈𝑀))
5310, 9poml6N 37896 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶 ∧ (𝑈𝑀) ∈ 𝐶) ∧ 𝑋 ⊆ (𝑈𝑀)) → (( ‘(( 𝑋) ∩ (𝑈𝑀))) ∩ (𝑈𝑀)) = 𝑋)
542, 17, 50, 52, 53syl31anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( ‘(( 𝑋) ∩ (𝑈𝑀))) ∩ (𝑈𝑀)) = 𝑋)
5531snssd 4739 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → {𝑝} ⊆ 𝐴)
567, 8paddssat 37755 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ {𝑝} ⊆ 𝐴) → (𝑋 + {𝑝}) ⊆ 𝐴)
572, 19, 55, 56syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) ⊆ 𝐴)
5811, 57eqsstrid 3965 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀𝐴)
59 sseqin2 4146 . . 3 (𝑀𝐴 ↔ (𝐴𝑀) = 𝑀)
6058, 59sylib 217 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝐴𝑀) = 𝑀)
6142, 54, 603eqtr3rd 2787 1 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cin 3882  wss 3883  c0 4253  {csn 4558  cfv 6418  (class class class)co 7255  lecple 16895  joincjn 17944  Atomscatm 37204  HLchlt 37291  +𝑃cpadd 37736  𝑃cpolN 37843  PSubClcpscN 37875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-undef 8060  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-polarityN 37844  df-psubclN 37876
This theorem is referenced by:  osumcllem11N  37907
  Copyright terms: Public domain W3C validator