Proof of Theorem osumcllem9N
| Step | Hyp | Ref
| Expression |
| 1 | | inass 4228 |
. . . . . . 7
⊢ ((( ⊥
‘𝑋) ∩ 𝑈) ∩ 𝑀) = (( ⊥ ‘𝑋) ∩ (𝑈 ∩ 𝑀)) |
| 2 | | simp11 1204 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝐾 ∈ HL) |
| 3 | | simp13 1206 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑌 ∈ 𝐶) |
| 4 | | simp21 1207 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ⊆ ( ⊥ ‘𝑌)) |
| 5 | | osumcllem.l |
. . . . . . . . . 10
⊢ ≤ =
(le‘𝐾) |
| 6 | | osumcllem.j |
. . . . . . . . . 10
⊢ ∨ =
(join‘𝐾) |
| 7 | | osumcllem.a |
. . . . . . . . . 10
⊢ 𝐴 = (Atoms‘𝐾) |
| 8 | | osumcllem.p |
. . . . . . . . . 10
⊢ + =
(+𝑃‘𝐾) |
| 9 | | osumcllem.o |
. . . . . . . . . 10
⊢ ⊥ =
(⊥𝑃‘𝐾) |
| 10 | | osumcllem.c |
. . . . . . . . . 10
⊢ 𝐶 = (PSubCl‘𝐾) |
| 11 | | osumcllem.m |
. . . . . . . . . 10
⊢ 𝑀 = (𝑋 + {𝑝}) |
| 12 | | osumcllem.u |
. . . . . . . . . 10
⊢ 𝑈 = ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) |
| 13 | 5, 6, 7, 8, 9, 10,
11, 12 | osumcllem3N 39960 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘𝑋) ∩ 𝑈) = 𝑌) |
| 14 | 2, 3, 4, 13 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( ⊥ ‘𝑋) ∩ 𝑈) = 𝑌) |
| 15 | 14 | ineq1d 4219 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ((( ⊥ ‘𝑋) ∩ 𝑈) ∩ 𝑀) = (𝑌 ∩ 𝑀)) |
| 16 | 1, 15 | eqtr3id 2791 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( ⊥ ‘𝑋) ∩ (𝑈 ∩ 𝑀)) = (𝑌 ∩ 𝑀)) |
| 17 | | simp12 1205 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ∈ 𝐶) |
| 18 | 7, 10 | psubclssatN 39943 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → 𝑋 ⊆ 𝐴) |
| 19 | 2, 17, 18 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ⊆ 𝐴) |
| 20 | 7, 10 | psubclssatN 39943 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → 𝑌 ⊆ 𝐴) |
| 21 | 2, 3, 20 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑌 ⊆ 𝐴) |
| 22 | | simp22 1208 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ≠ ∅) |
| 23 | 7, 8 | paddssat 39816 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) ⊆ 𝐴) |
| 24 | 2, 19, 21, 23 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + 𝑌) ⊆ 𝐴) |
| 25 | 7, 9 | polssatN 39910 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ 𝐴) → ( ⊥ ‘(𝑋 + 𝑌)) ⊆ 𝐴) |
| 26 | 2, 24, 25 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ⊥ ‘(𝑋 + 𝑌)) ⊆ 𝐴) |
| 27 | 7, 9 | polssatN 39910 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ ( ⊥
‘(𝑋 + 𝑌)) ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) ⊆ 𝐴) |
| 28 | 2, 26, 27 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) ⊆ 𝐴) |
| 29 | 12, 28 | eqsstrid 4022 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑈 ⊆ 𝐴) |
| 30 | | simp23 1209 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝 ∈ 𝑈) |
| 31 | 29, 30 | sseldd 3984 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝 ∈ 𝐴) |
| 32 | | simp3 1139 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ¬ 𝑝 ∈ (𝑋 + 𝑌)) |
| 33 | 5, 6, 7, 8, 9, 10,
11, 12 | osumcllem8N 39965 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌 ∩ 𝑀) = ∅) |
| 34 | 2, 19, 21, 4, 22, 31, 32, 33 | syl331anc 1397 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌 ∩ 𝑀) = ∅) |
| 35 | 16, 34 | eqtrd 2777 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( ⊥ ‘𝑋) ∩ (𝑈 ∩ 𝑀)) = ∅) |
| 36 | 35 | fveq2d 6910 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ⊥ ‘(( ⊥
‘𝑋) ∩ (𝑈 ∩ 𝑀))) = ( ⊥
‘∅)) |
| 37 | 7, 9 | pol0N 39911 |
. . . . 5
⊢ (𝐾 ∈ HL → ( ⊥
‘∅) = 𝐴) |
| 38 | 2, 37 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ⊥ ‘∅) =
𝐴) |
| 39 | 36, 38 | eqtrd 2777 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ⊥ ‘(( ⊥
‘𝑋) ∩ (𝑈 ∩ 𝑀))) = 𝐴) |
| 40 | 5, 6, 7, 8, 9, 10,
11, 12 | osumcllem1N 39958 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → (𝑈 ∩ 𝑀) = 𝑀) |
| 41 | 2, 19, 21, 30, 40 | syl31anc 1375 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑈 ∩ 𝑀) = 𝑀) |
| 42 | 39, 41 | ineq12d 4221 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( ⊥ ‘(( ⊥
‘𝑋) ∩ (𝑈 ∩ 𝑀))) ∩ (𝑈 ∩ 𝑀)) = (𝐴 ∩ 𝑀)) |
| 43 | 7, 9, 10 | polsubclN 39954 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ ( ⊥
‘(𝑋 + 𝑌)) ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) ∈ 𝐶) |
| 44 | 2, 26, 43 | syl2anc 584 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) ∈ 𝐶) |
| 45 | 12, 44 | eqeltrid 2845 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑈 ∈ 𝐶) |
| 46 | 7, 8, 10 | paddatclN 39951 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑝 ∈ 𝐴) → (𝑋 + {𝑝}) ∈ 𝐶) |
| 47 | 2, 17, 31, 46 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) ∈ 𝐶) |
| 48 | 11, 47 | eqeltrid 2845 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀 ∈ 𝐶) |
| 49 | 10 | psubclinN 39950 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑈 ∈ 𝐶 ∧ 𝑀 ∈ 𝐶) → (𝑈 ∩ 𝑀) ∈ 𝐶) |
| 50 | 2, 45, 48, 49 | syl3anc 1373 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑈 ∩ 𝑀) ∈ 𝐶) |
| 51 | 5, 6, 7, 8, 9, 10,
11, 12 | osumcllem2N 39959 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑋 ⊆ (𝑈 ∩ 𝑀)) |
| 52 | 2, 19, 21, 30, 51 | syl31anc 1375 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ⊆ (𝑈 ∩ 𝑀)) |
| 53 | 10, 9 | poml6N 39957 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ (𝑈 ∩ 𝑀) ∈ 𝐶) ∧ 𝑋 ⊆ (𝑈 ∩ 𝑀)) → (( ⊥ ‘(( ⊥
‘𝑋) ∩ (𝑈 ∩ 𝑀))) ∩ (𝑈 ∩ 𝑀)) = 𝑋) |
| 54 | 2, 17, 50, 52, 53 | syl31anc 1375 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( ⊥ ‘(( ⊥
‘𝑋) ∩ (𝑈 ∩ 𝑀))) ∩ (𝑈 ∩ 𝑀)) = 𝑋) |
| 55 | 31 | snssd 4809 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → {𝑝} ⊆ 𝐴) |
| 56 | 7, 8 | paddssat 39816 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ {𝑝} ⊆ 𝐴) → (𝑋 + {𝑝}) ⊆ 𝐴) |
| 57 | 2, 19, 55, 56 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) ⊆ 𝐴) |
| 58 | 11, 57 | eqsstrid 4022 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀 ⊆ 𝐴) |
| 59 | | sseqin2 4223 |
. . 3
⊢ (𝑀 ⊆ 𝐴 ↔ (𝐴 ∩ 𝑀) = 𝑀) |
| 60 | 58, 59 | sylib 218 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝐴 ∩ 𝑀) = 𝑀) |
| 61 | 42, 54, 60 | 3eqtr3rd 2786 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀 = 𝑋) |