Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem9N Structured version   Visualization version   GIF version

Theorem osumcllem9N 37260
Description: Lemma for osumclN 37263. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem9N (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀 = 𝑋)

Proof of Theorem osumcllem9N
StepHypRef Expression
1 inass 4146 . . . . . . 7 ((( 𝑋) ∩ 𝑈) ∩ 𝑀) = (( 𝑋) ∩ (𝑈𝑀))
2 simp11 1200 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝐾 ∈ HL)
3 simp13 1202 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑌𝐶)
4 simp21 1203 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ⊆ ( 𝑌))
5 osumcllem.l . . . . . . . . . 10 = (le‘𝐾)
6 osumcllem.j . . . . . . . . . 10 = (join‘𝐾)
7 osumcllem.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
8 osumcllem.p . . . . . . . . . 10 + = (+𝑃𝐾)
9 osumcllem.o . . . . . . . . . 10 = (⊥𝑃𝐾)
10 osumcllem.c . . . . . . . . . 10 𝐶 = (PSubCl‘𝐾)
11 osumcllem.m . . . . . . . . . 10 𝑀 = (𝑋 + {𝑝})
12 osumcllem.u . . . . . . . . . 10 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
135, 6, 7, 8, 9, 10, 11, 12osumcllem3N 37254 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (( 𝑋) ∩ 𝑈) = 𝑌)
142, 3, 4, 13syl3anc 1368 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( 𝑋) ∩ 𝑈) = 𝑌)
1514ineq1d 4138 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ((( 𝑋) ∩ 𝑈) ∩ 𝑀) = (𝑌𝑀))
161, 15syl5eqr 2847 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( 𝑋) ∩ (𝑈𝑀)) = (𝑌𝑀))
17 simp12 1201 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋𝐶)
187, 10psubclssatN 37237 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋𝐴)
192, 17, 18syl2anc 587 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋𝐴)
207, 10psubclssatN 37237 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌𝐴)
212, 3, 20syl2anc 587 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑌𝐴)
22 simp22 1204 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ≠ ∅)
237, 8paddssat 37110 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ 𝐴)
242, 19, 21, 23syl3anc 1368 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + 𝑌) ⊆ 𝐴)
257, 9polssatN 37204 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ 𝐴) → ( ‘(𝑋 + 𝑌)) ⊆ 𝐴)
262, 24, 25syl2anc 587 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘(𝑋 + 𝑌)) ⊆ 𝐴)
277, 9polssatN 37204 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ ( ‘(𝑋 + 𝑌)) ⊆ 𝐴) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ 𝐴)
282, 26, 27syl2anc 587 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ 𝐴)
2912, 28eqsstrid 3963 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑈𝐴)
30 simp23 1205 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝𝑈)
3129, 30sseldd 3916 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝𝐴)
32 simp3 1135 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ¬ 𝑝 ∈ (𝑋 + 𝑌))
335, 6, 7, 8, 9, 10, 11, 12osumcllem8N 37259 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌𝑀) = ∅)
342, 19, 21, 4, 22, 31, 32, 33syl331anc 1392 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌𝑀) = ∅)
3516, 34eqtrd 2833 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( 𝑋) ∩ (𝑈𝑀)) = ∅)
3635fveq2d 6649 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘(( 𝑋) ∩ (𝑈𝑀))) = ( ‘∅))
377, 9pol0N 37205 . . . . 5 (𝐾 ∈ HL → ( ‘∅) = 𝐴)
382, 37syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘∅) = 𝐴)
3936, 38eqtrd 2833 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘(( 𝑋) ∩ (𝑈𝑀))) = 𝐴)
405, 6, 7, 8, 9, 10, 11, 12osumcllem1N 37252 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → (𝑈𝑀) = 𝑀)
412, 19, 21, 30, 40syl31anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑈𝑀) = 𝑀)
4239, 41ineq12d 4140 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( ‘(( 𝑋) ∩ (𝑈𝑀))) ∩ (𝑈𝑀)) = (𝐴𝑀))
437, 9, 10polsubclN 37248 . . . . . 6 ((𝐾 ∈ HL ∧ ( ‘(𝑋 + 𝑌)) ⊆ 𝐴) → ( ‘( ‘(𝑋 + 𝑌))) ∈ 𝐶)
442, 26, 43syl2anc 587 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘( ‘(𝑋 + 𝑌))) ∈ 𝐶)
4512, 44eqeltrid 2894 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑈𝐶)
467, 8, 10paddatclN 37245 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑝𝐴) → (𝑋 + {𝑝}) ∈ 𝐶)
472, 17, 31, 46syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) ∈ 𝐶)
4811, 47eqeltrid 2894 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀𝐶)
4910psubclinN 37244 . . . 4 ((𝐾 ∈ HL ∧ 𝑈𝐶𝑀𝐶) → (𝑈𝑀) ∈ 𝐶)
502, 45, 48, 49syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑈𝑀) ∈ 𝐶)
515, 6, 7, 8, 9, 10, 11, 12osumcllem2N 37253 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑋 ⊆ (𝑈𝑀))
522, 19, 21, 30, 51syl31anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ⊆ (𝑈𝑀))
5310, 9poml6N 37251 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶 ∧ (𝑈𝑀) ∈ 𝐶) ∧ 𝑋 ⊆ (𝑈𝑀)) → (( ‘(( 𝑋) ∩ (𝑈𝑀))) ∩ (𝑈𝑀)) = 𝑋)
542, 17, 50, 52, 53syl31anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( ‘(( 𝑋) ∩ (𝑈𝑀))) ∩ (𝑈𝑀)) = 𝑋)
5531snssd 4702 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → {𝑝} ⊆ 𝐴)
567, 8paddssat 37110 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ {𝑝} ⊆ 𝐴) → (𝑋 + {𝑝}) ⊆ 𝐴)
572, 19, 55, 56syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) ⊆ 𝐴)
5811, 57eqsstrid 3963 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀𝐴)
59 sseqin2 4142 . . 3 (𝑀𝐴 ↔ (𝐴𝑀) = 𝑀)
6058, 59sylib 221 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝐴𝑀) = 𝑀)
6142, 54, 603eqtr3rd 2842 1 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1084   = wceq 1538  wcel 2111  wne 2987  cin 3880  wss 3881  c0 4243  {csn 4525  cfv 6324  (class class class)co 7135  lecple 16564  joincjn 17546  Atomscatm 36559  HLchlt 36646  +𝑃cpadd 37091  𝑃cpolN 37198  PSubClcpscN 37230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-riotaBAD 36249
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-undef 7922  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-psubsp 36799  df-pmap 36800  df-padd 37092  df-polarityN 37199  df-psubclN 37231
This theorem is referenced by:  osumcllem11N  37262
  Copyright terms: Public domain W3C validator