Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem9N Structured version   Visualization version   GIF version

Theorem osumcllem9N 39966
Description: Lemma for osumclN 39969. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem9N (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀 = 𝑋)

Proof of Theorem osumcllem9N
StepHypRef Expression
1 inass 4228 . . . . . . 7 ((( 𝑋) ∩ 𝑈) ∩ 𝑀) = (( 𝑋) ∩ (𝑈𝑀))
2 simp11 1204 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝐾 ∈ HL)
3 simp13 1206 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑌𝐶)
4 simp21 1207 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ⊆ ( 𝑌))
5 osumcllem.l . . . . . . . . . 10 = (le‘𝐾)
6 osumcllem.j . . . . . . . . . 10 = (join‘𝐾)
7 osumcllem.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
8 osumcllem.p . . . . . . . . . 10 + = (+𝑃𝐾)
9 osumcllem.o . . . . . . . . . 10 = (⊥𝑃𝐾)
10 osumcllem.c . . . . . . . . . 10 𝐶 = (PSubCl‘𝐾)
11 osumcllem.m . . . . . . . . . 10 𝑀 = (𝑋 + {𝑝})
12 osumcllem.u . . . . . . . . . 10 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
135, 6, 7, 8, 9, 10, 11, 12osumcllem3N 39960 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (( 𝑋) ∩ 𝑈) = 𝑌)
142, 3, 4, 13syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( 𝑋) ∩ 𝑈) = 𝑌)
1514ineq1d 4219 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ((( 𝑋) ∩ 𝑈) ∩ 𝑀) = (𝑌𝑀))
161, 15eqtr3id 2791 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( 𝑋) ∩ (𝑈𝑀)) = (𝑌𝑀))
17 simp12 1205 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋𝐶)
187, 10psubclssatN 39943 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋𝐴)
192, 17, 18syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋𝐴)
207, 10psubclssatN 39943 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌𝐴)
212, 3, 20syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑌𝐴)
22 simp22 1208 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ≠ ∅)
237, 8paddssat 39816 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ 𝐴)
242, 19, 21, 23syl3anc 1373 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + 𝑌) ⊆ 𝐴)
257, 9polssatN 39910 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ 𝐴) → ( ‘(𝑋 + 𝑌)) ⊆ 𝐴)
262, 24, 25syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘(𝑋 + 𝑌)) ⊆ 𝐴)
277, 9polssatN 39910 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ ( ‘(𝑋 + 𝑌)) ⊆ 𝐴) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ 𝐴)
282, 26, 27syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ 𝐴)
2912, 28eqsstrid 4022 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑈𝐴)
30 simp23 1209 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝𝑈)
3129, 30sseldd 3984 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝𝐴)
32 simp3 1139 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ¬ 𝑝 ∈ (𝑋 + 𝑌))
335, 6, 7, 8, 9, 10, 11, 12osumcllem8N 39965 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌𝑀) = ∅)
342, 19, 21, 4, 22, 31, 32, 33syl331anc 1397 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌𝑀) = ∅)
3516, 34eqtrd 2777 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( 𝑋) ∩ (𝑈𝑀)) = ∅)
3635fveq2d 6910 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘(( 𝑋) ∩ (𝑈𝑀))) = ( ‘∅))
377, 9pol0N 39911 . . . . 5 (𝐾 ∈ HL → ( ‘∅) = 𝐴)
382, 37syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘∅) = 𝐴)
3936, 38eqtrd 2777 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘(( 𝑋) ∩ (𝑈𝑀))) = 𝐴)
405, 6, 7, 8, 9, 10, 11, 12osumcllem1N 39958 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → (𝑈𝑀) = 𝑀)
412, 19, 21, 30, 40syl31anc 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑈𝑀) = 𝑀)
4239, 41ineq12d 4221 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( ‘(( 𝑋) ∩ (𝑈𝑀))) ∩ (𝑈𝑀)) = (𝐴𝑀))
437, 9, 10polsubclN 39954 . . . . . 6 ((𝐾 ∈ HL ∧ ( ‘(𝑋 + 𝑌)) ⊆ 𝐴) → ( ‘( ‘(𝑋 + 𝑌))) ∈ 𝐶)
442, 26, 43syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘( ‘(𝑋 + 𝑌))) ∈ 𝐶)
4512, 44eqeltrid 2845 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑈𝐶)
467, 8, 10paddatclN 39951 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑝𝐴) → (𝑋 + {𝑝}) ∈ 𝐶)
472, 17, 31, 46syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) ∈ 𝐶)
4811, 47eqeltrid 2845 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀𝐶)
4910psubclinN 39950 . . . 4 ((𝐾 ∈ HL ∧ 𝑈𝐶𝑀𝐶) → (𝑈𝑀) ∈ 𝐶)
502, 45, 48, 49syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑈𝑀) ∈ 𝐶)
515, 6, 7, 8, 9, 10, 11, 12osumcllem2N 39959 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑋 ⊆ (𝑈𝑀))
522, 19, 21, 30, 51syl31anc 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ⊆ (𝑈𝑀))
5310, 9poml6N 39957 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶 ∧ (𝑈𝑀) ∈ 𝐶) ∧ 𝑋 ⊆ (𝑈𝑀)) → (( ‘(( 𝑋) ∩ (𝑈𝑀))) ∩ (𝑈𝑀)) = 𝑋)
542, 17, 50, 52, 53syl31anc 1375 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( ‘(( 𝑋) ∩ (𝑈𝑀))) ∩ (𝑈𝑀)) = 𝑋)
5531snssd 4809 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → {𝑝} ⊆ 𝐴)
567, 8paddssat 39816 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ {𝑝} ⊆ 𝐴) → (𝑋 + {𝑝}) ⊆ 𝐴)
572, 19, 55, 56syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) ⊆ 𝐴)
5811, 57eqsstrid 4022 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀𝐴)
59 sseqin2 4223 . . 3 (𝑀𝐴 ↔ (𝐴𝑀) = 𝑀)
6058, 59sylib 218 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝐴𝑀) = 𝑀)
6142, 54, 603eqtr3rd 2786 1 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1087   = wceq 1540  wcel 2108  wne 2940  cin 3950  wss 3951  c0 4333  {csn 4626  cfv 6561  (class class class)co 7431  lecple 17304  joincjn 18357  Atomscatm 39264  HLchlt 39351  +𝑃cpadd 39797  𝑃cpolN 39904  PSubClcpscN 39936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-psubsp 39505  df-pmap 39506  df-padd 39798  df-polarityN 39905  df-psubclN 39937
This theorem is referenced by:  osumcllem11N  39968
  Copyright terms: Public domain W3C validator