Proof of Theorem 3atlem4
Step | Hyp | Ref
| Expression |
1 | | simp11 1201 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → 𝐾 ∈ HL) |
2 | | simp12 1202 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) |
3 | | simp13l 1286 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → 𝑆 ∈ 𝐴) |
4 | | simp13r 1287 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → 𝑇 ∈ 𝐴) |
5 | | simp123 1305 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → 𝑅 ∈ 𝐴) |
6 | 3, 4, 5 | 3jca 1126 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) |
7 | | simp2l 1197 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) |
8 | 1 | hllatd 37305 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → 𝐾 ∈ Lat) |
9 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
10 | | 3at.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
11 | 9, 10 | atbase 37230 |
. . . . 5
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
12 | 5, 11 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → 𝑅 ∈ (Base‘𝐾)) |
13 | | simp121 1303 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → 𝑃 ∈ 𝐴) |
14 | 9, 10 | atbase 37230 |
. . . . 5
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
15 | 13, 14 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → 𝑃 ∈ (Base‘𝐾)) |
16 | | simp122 1304 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → 𝑄 ∈ 𝐴) |
17 | 9, 10 | atbase 37230 |
. . . . 5
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
18 | 16, 17 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → 𝑄 ∈ (Base‘𝐾)) |
19 | | 3at.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
20 | | 3at.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
21 | 9, 19, 20 | latnlej1l 18090 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝑅 ≠ 𝑃) |
22 | 8, 12, 15, 18, 7, 21 | syl131anc 1381 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → 𝑅 ≠ 𝑃) |
23 | 22 | necomd 2998 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → 𝑃 ≠ 𝑅) |
24 | | simp2r 1198 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → 𝑃 ≠ 𝑄) |
25 | 24 | necomd 2998 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → 𝑄 ≠ 𝑃) |
26 | 19, 20, 10 | hlatexch1 37336 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑄 ≠ 𝑃) → (𝑄 ≤ (𝑃 ∨ 𝑅) → 𝑅 ≤ (𝑃 ∨ 𝑄))) |
27 | 1, 16, 5, 13, 25, 26 | syl131anc 1381 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → (𝑄 ≤ (𝑃 ∨ 𝑅) → 𝑅 ≤ (𝑃 ∨ 𝑄))) |
28 | 7, 27 | mtod 197 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → ¬ 𝑄 ≤ (𝑃 ∨ 𝑅)) |
29 | | simp3 1136 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) |
30 | 19, 20, 10 | 3atlem3 37426 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑅 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑅)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑅)) |
31 | 1, 2, 6, 7, 23, 28, 29, 30 | syl331anc 1393 |
1
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑅)) |