Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme26f Structured version   Visualization version   GIF version

Theorem cdleme26f 36433
 Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 6th and 7th lines on p. 115. 𝐹, 𝑁 represent f(t), ft(s) respectively. If t ≤ t ∨ v, then ft(s) ≤ f(t) ∨ v. TODO: FIX COMMENT. (Contributed by NM, 1-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b 𝐵 = (Base‘𝐾)
cdleme26.l = (le‘𝐾)
cdleme26.j = (join‘𝐾)
cdleme26.m = (meet‘𝐾)
cdleme26.a 𝐴 = (Atoms‘𝐾)
cdleme26.h 𝐻 = (LHyp‘𝐾)
cdleme26f.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme26f.f 𝐹 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme26f.n 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑆 𝑡) 𝑊)))
cdleme26f.i 𝐼 = (𝑢𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑢 = 𝑁))
Assertion
Ref Expression
cdleme26f ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑆 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ (𝑆𝑡𝑆 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐼 (𝐹 𝑉))
Distinct variable groups:   𝑢,𝑡,𝐴   𝑡,𝐵,𝑢   𝑡,𝐻   𝑡, ,𝑢   𝑡,𝐾   𝑡, ,𝑢   𝑡, ,𝑢   𝑢,𝑁   𝑡,𝑃,𝑢   𝑡,𝑄,𝑢   𝑡,𝑆,𝑢   𝑡,𝑈,𝑢   𝑡,𝑊,𝑢
Allowed substitution hints:   𝐹(𝑢,𝑡)   𝐻(𝑢)   𝐼(𝑢,𝑡)   𝐾(𝑢)   𝑁(𝑡)   𝑉(𝑢,𝑡)

Proof of Theorem cdleme26f
StepHypRef Expression
1 simp11 1264 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑆 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ (𝑆𝑡𝑆 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp21 1267 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑆 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ (𝑆𝑡𝑆 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp22 1268 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑆 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ (𝑆𝑡𝑆 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4 simp23l 1397 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑆 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ (𝑆𝑡𝑆 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑆𝐴)
5 simp23r 1398 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑆 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ (𝑆𝑡𝑆 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → ¬ 𝑆 𝑊)
6 simp12l 1389 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑆 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ (𝑆𝑡𝑆 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑃𝑄)
7 simp12r 1390 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑆 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ (𝑆𝑡𝑆 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑆 (𝑃 𝑄))
8 cdleme26.b . . . . 5 𝐵 = (Base‘𝐾)
9 cdleme26.l . . . . 5 = (le‘𝐾)
10 cdleme26.j . . . . 5 = (join‘𝐾)
11 cdleme26.m . . . . 5 = (meet‘𝐾)
12 cdleme26.a . . . . 5 𝐴 = (Atoms‘𝐾)
13 cdleme26.h . . . . 5 𝐻 = (LHyp‘𝐾)
14 cdleme26f.u . . . . 5 𝑈 = ((𝑃 𝑄) 𝑊)
15 cdleme26f.f . . . . 5 𝐹 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
16 cdleme26f.n . . . . 5 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑆 𝑡) 𝑊)))
17 cdleme26f.i . . . . 5 𝐼 = (𝑢𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑢 = 𝑁))
188, 9, 10, 11, 12, 13, 14, 15, 16, 17cdleme25cl 36427 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝐼𝐵)
191, 2, 3, 4, 5, 6, 7, 18syl322anc 1521 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑆 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ (𝑆𝑡𝑆 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐼𝐵)
20 simp13l 1391 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑆 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ (𝑆𝑡𝑆 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑡𝐴)
21 simp13r 1392 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑆 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ (𝑆𝑡𝑆 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → ¬ 𝑡 𝑊)
22 simp31 1270 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑆 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ (𝑆𝑡𝑆 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → ¬ 𝑡 (𝑃 𝑄))
238fvexi 6451 . . . 4 𝐵 ∈ V
2423, 17riotasv 35029 . . 3 ((𝐼𝐵𝑡𝐴 ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄))) → 𝐼 = 𝑁)
2519, 20, 21, 22, 24syl112anc 1497 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑆 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ (𝑆𝑡𝑆 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐼 = 𝑁)
26 simp23 1269 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑆 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ (𝑆𝑡𝑆 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
27 simp33 1272 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑆 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ (𝑆𝑡𝑆 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑉𝐴𝑉 𝑊))
28 simp32 1271 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑆 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ (𝑆𝑡𝑆 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → (𝑆𝑡𝑆 (𝑡 𝑉)))
299, 10, 11, 12, 13, 14, 15, 16cdleme22f 36416 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑡𝐴 ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑆𝑡𝑆 (𝑡 𝑉))) → 𝑁 (𝐹 𝑉))
301, 2, 3, 26, 20, 27, 28, 29syl331anc 1518 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑆 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ (𝑆𝑡𝑆 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑁 (𝐹 𝑉))
3125, 30eqbrtrd 4897 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑆 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ (𝑆𝑡𝑆 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐼 (𝐹 𝑉))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 386   ∧ w3a 1111   = wceq 1656   ∈ wcel 2164   ≠ wne 2999  ∀wral 3117   class class class wbr 4875  ‘cfv 6127  ℩crio 6870  (class class class)co 6910  Basecbs 16229  lecple 16319  joincjn 17304  meetcmee 17305  Atomscatm 35333  HLchlt 35420  LHypclh 36054 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-riotaBAD 35023 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-1st 7433  df-2nd 7434  df-undef 7669  df-proset 17288  df-poset 17306  df-plt 17318  df-lub 17334  df-glb 17335  df-join 17336  df-meet 17337  df-p0 17399  df-p1 17400  df-lat 17406  df-clat 17468  df-oposet 35246  df-ol 35248  df-oml 35249  df-covers 35336  df-ats 35337  df-atl 35368  df-cvlat 35392  df-hlat 35421  df-llines 35568  df-lplanes 35569  df-lvols 35570  df-lines 35571  df-psubsp 35573  df-pmap 35574  df-padd 35866  df-lhyp 36058 This theorem is referenced by:  cdleme27a  36437
 Copyright terms: Public domain W3C validator