| Step | Hyp | Ref
| Expression |
| 1 | | simp11l 1285 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → 𝐾 ∈ HL) |
| 2 | | simp11r 1286 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → 𝑊 ∈ 𝐻) |
| 3 | | simp21 1207 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 4 | | simp22 1208 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| 5 | | simp231 1318 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → 𝑃 ≠ 𝑄) |
| 6 | | cdlemd4.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 7 | | cdlemd4.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
| 8 | | cdlemd4.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
| 9 | | cdlemd4.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 10 | 6, 7, 8, 9 | cdlemb2 40043 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ∃𝑠 ∈ 𝐴 (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄))) |
| 11 | 1, 2, 3, 4, 5, 10 | syl221anc 1383 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → ∃𝑠 ∈ 𝐴 (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄))) |
| 12 | | simpl11 1249 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 13 | | simpl12 1250 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) |
| 14 | | simpl13 1251 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → 𝑅 ∈ 𝐴) |
| 15 | | simpl21 1252 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 16 | | simprl 771 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → 𝑠 ∈ 𝐴) |
| 17 | | simprrl 781 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑠 ≤ 𝑊) |
| 18 | 16, 17 | jca 511 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) |
| 19 | 1 | hllatd 39365 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → 𝐾 ∈ Lat) |
| 20 | 19 | adantr 480 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → 𝐾 ∈ Lat) |
| 21 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 22 | 21, 8 | atbase 39290 |
. . . . . 6
⊢ (𝑠 ∈ 𝐴 → 𝑠 ∈ (Base‘𝐾)) |
| 23 | 22 | ad2antrl 728 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → 𝑠 ∈ (Base‘𝐾)) |
| 24 | | simp21l 1291 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → 𝑃 ∈ 𝐴) |
| 25 | 21, 8 | atbase 39290 |
. . . . . . 7
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 26 | 24, 25 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → 𝑃 ∈ (Base‘𝐾)) |
| 27 | 26 | adantr 480 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → 𝑃 ∈ (Base‘𝐾)) |
| 28 | | simp22l 1293 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → 𝑄 ∈ 𝐴) |
| 29 | 21, 8 | atbase 39290 |
. . . . . . 7
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 30 | 28, 29 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → 𝑄 ∈ (Base‘𝐾)) |
| 31 | 30 | adantr 480 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → 𝑄 ∈ (Base‘𝐾)) |
| 32 | | simprrr 782 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) |
| 33 | 21, 6, 7 | latnlej1l 18502 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑠 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) → 𝑠 ≠ 𝑃) |
| 34 | 33 | necomd 2996 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑠 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑠) |
| 35 | 20, 23, 27, 31, 32, 34 | syl131anc 1385 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → 𝑃 ≠ 𝑠) |
| 36 | | simpl22 1253 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| 37 | | simpl23 1254 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) |
| 38 | 6, 7, 8, 9 | cdlemd3 40202 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ (𝑅 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑅 ≤ (𝑃 ∨ 𝑠)) |
| 39 | 12, 15, 36, 37, 14, 16, 32, 38 | syl133anc 1395 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑅 ≤ (𝑃 ∨ 𝑠)) |
| 40 | 35, 39 | jca 511 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → (𝑃 ≠ 𝑠 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑠))) |
| 41 | | simpl3l 1229 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → (𝐹‘𝑃) = (𝐺‘𝑃)) |
| 42 | 5 | adantr 480 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → 𝑃 ≠ 𝑄) |
| 43 | 42, 32 | jca 511 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄))) |
| 44 | | simpl3 1194 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) |
| 45 | | cdlemd4.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 46 | 6, 7, 8, 9, 45 | cdlemd2 40201 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑠 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐹‘𝑠) = (𝐺‘𝑠)) |
| 47 | 12, 13, 16, 15, 36, 43, 44, 46 | syl331anc 1397 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → (𝐹‘𝑠) = (𝐺‘𝑠)) |
| 48 | 6, 7, 8, 9, 45 | cdlemd2 40201 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑃 ≠ 𝑠 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑠))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑠) = (𝐺‘𝑠))) → (𝐹‘𝑅) = (𝐺‘𝑅)) |
| 49 | 12, 13, 14, 15, 18, 40, 41, 47, 48 | syl332anc 1403 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → (𝐹‘𝑅) = (𝐺‘𝑅)) |
| 50 | 11, 49 | rexlimddv 3161 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐹‘𝑅) = (𝐺‘𝑅)) |