Proof of Theorem 3atlem6
Step | Hyp | Ref
| Expression |
1 | | simp11 1201 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → 𝐾 ∈ HL) |
2 | | simp121 1303 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → 𝑃 ∈ 𝐴) |
3 | | simp122 1304 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → 𝑄 ∈ 𝐴) |
4 | | simp123 1305 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → 𝑅 ∈ 𝐴) |
5 | | 3at.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
6 | | 3at.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
7 | 5, 6 | hlatj32 37313 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑃 ∨ 𝑅) ∨ 𝑄)) |
8 | 1, 2, 3, 4, 7 | syl13anc 1370 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑃 ∨ 𝑅) ∨ 𝑄)) |
9 | 2, 4, 3 | 3jca 1126 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
10 | | simp13 1203 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) |
11 | | simp21 1204 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) |
12 | | simp22 1205 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → 𝑃 ≠ 𝑄) |
13 | 12 | necomd 2998 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → 𝑄 ≠ 𝑃) |
14 | | 3at.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
15 | 14, 5, 6 | hlatexch1 37336 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑄 ≠ 𝑃) → (𝑄 ≤ (𝑃 ∨ 𝑅) → 𝑅 ≤ (𝑃 ∨ 𝑄))) |
16 | 1, 3, 4, 2, 13, 15 | syl131anc 1381 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → (𝑄 ≤ (𝑃 ∨ 𝑅) → 𝑅 ≤ (𝑃 ∨ 𝑄))) |
17 | 11, 16 | mtod 197 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ¬ 𝑄 ≤ (𝑃 ∨ 𝑅)) |
18 | 1 | hllatd 37305 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → 𝐾 ∈ Lat) |
19 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
20 | 19, 6 | atbase 37230 |
. . . . 5
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
21 | 4, 20 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → 𝑅 ∈ (Base‘𝐾)) |
22 | 19, 6 | atbase 37230 |
. . . . 5
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
23 | 2, 22 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → 𝑃 ∈ (Base‘𝐾)) |
24 | 19, 6 | atbase 37230 |
. . . . 5
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
25 | 3, 24 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → 𝑄 ∈ (Base‘𝐾)) |
26 | 19, 14, 5 | latnlej1l 18090 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝑅 ≠ 𝑃) |
27 | 26 | necomd 2998 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑅) |
28 | 18, 21, 23, 25, 11, 27 | syl131anc 1381 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → 𝑃 ≠ 𝑅) |
29 | | simp23 1206 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → 𝑄 ≤ (𝑃 ∨ 𝑈)) |
30 | | simp133 1308 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → 𝑈 ∈ 𝐴) |
31 | 14, 5, 6 | hlatexchb1 37334 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑄 ≠ 𝑃) → (𝑄 ≤ (𝑃 ∨ 𝑈) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑈))) |
32 | 1, 3, 30, 2, 13, 31 | syl131anc 1381 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → (𝑄 ≤ (𝑃 ∨ 𝑈) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑈))) |
33 | 29, 32 | mpbid 231 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑈)) |
34 | 33 | breq2d 5082 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → (𝑅 ≤ (𝑃 ∨ 𝑄) ↔ 𝑅 ≤ (𝑃 ∨ 𝑈))) |
35 | 11, 34 | mtbid 323 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ¬ 𝑅 ≤ (𝑃 ∨ 𝑈)) |
36 | | simp3 1136 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
37 | 8, 36 | eqbrtrrd 5094 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑅) ∨ 𝑄) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
38 | 14, 5, 6 | 3atlem5 37428 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑄 ≤ (𝑃 ∨ 𝑅) ∧ 𝑃 ≠ 𝑅 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑅) ∨ 𝑄) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑅) ∨ 𝑄) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
39 | 1, 9, 10, 17, 28, 35, 37, 38 | syl331anc 1393 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑅) ∨ 𝑄) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
40 | 8, 39 | eqtrd 2778 |
1
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) |