MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brbtwn2 Structured version   Visualization version   GIF version

Theorem brbtwn2 27562
Description: Alternate characterization of betweenness, with no existential quantifiers. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
brbtwn2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝐶,𝑖,𝑗

Proof of Theorem brbtwn2
Dummy variables 𝑘 𝑝 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brbtwn 27556 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘)))))
2 fveere 27558 . . . . . . . . . 10 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
323ad2antl2 1186 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
4 fveere 27558 . . . . . . . . . 10 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
543ad2antl3 1187 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
63, 5jca 513 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ))
7 resubcl 11391 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℝ)
873adant3 1132 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℝ)
98recnd 11109 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℂ)
109sqvald 13967 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (𝐶𝑖))↑2) = (((𝐵𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))))
1110oveq2d 7358 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) = ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖)))))
12 elicc01 13304 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
1312simp1bi 1145 . . . . . . . . . . . . . 14 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℝ)
1413recnd 11109 . . . . . . . . . . . . 13 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℂ)
15143ad2ant3 1135 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℂ)
16 1re 11081 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
17 resubcl 11391 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
1816, 13, 17sylancr 588 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0[,]1) → (1 − 𝑡) ∈ ℝ)
19183ad2ant3 1135 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℝ)
2019recnd 11109 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℂ)
2120negcld 11425 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → -(1 − 𝑡) ∈ ℂ)
2215, 9, 21, 9mul4d 11293 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · ((𝐵𝑖) − (𝐶𝑖))) · (-(1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖)))) = ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖)))))
23 recn 11067 . . . . . . . . . . . . . . 15 ((𝐵𝑖) ∈ ℝ → (𝐵𝑖) ∈ ℂ)
24233ad2ant1 1133 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝐵𝑖) ∈ ℂ)
25 recn 11067 . . . . . . . . . . . . . . 15 ((𝐶𝑖) ∈ ℝ → (𝐶𝑖) ∈ ℂ)
26253ad2ant2 1134 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝐶𝑖) ∈ ℂ)
2715, 24, 26subdid 11537 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · ((𝐵𝑖) − (𝐶𝑖))) = ((𝑡 · (𝐵𝑖)) − (𝑡 · (𝐶𝑖))))
28 ax-1cn 11035 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
29 subdir 11515 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (1 − 𝑡) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))))
3028, 20, 24, 29mp3an2i 1466 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))))
31 nncan 11356 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ) → (1 − (1 − 𝑡)) = 𝑡)
3228, 15, 31sylancr 588 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 − (1 − 𝑡)) = 𝑡)
3332oveq1d 7357 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = (𝑡 · (𝐵𝑖)))
3424mulid2d 11099 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 · (𝐵𝑖)) = (𝐵𝑖))
3534oveq1d 7357 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))) = ((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))))
3630, 33, 353eqtr3d 2785 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (𝐵𝑖)) = ((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))))
3736oveq1d 7357 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · (𝐵𝑖)) − (𝑡 · (𝐶𝑖))) = (((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))))
38 simp1 1136 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝐵𝑖) ∈ ℝ)
3919, 38remulcld 11111 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · (𝐵𝑖)) ∈ ℝ)
4039recnd 11109 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · (𝐵𝑖)) ∈ ℂ)
41133ad2ant3 1135 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℝ)
42 simp2 1137 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝐶𝑖) ∈ ℝ)
4341, 42remulcld 11111 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (𝐶𝑖)) ∈ ℝ)
4443recnd 11109 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (𝐶𝑖)) ∈ ℂ)
4524, 40, 44subsub4d 11469 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4627, 37, 453eqtrd 2781 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · ((𝐵𝑖) − (𝐶𝑖))) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4720, 9mulneg1d 11534 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (-(1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = -((1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))))
4820, 24, 26subdid 11537 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) − ((1 − 𝑡) · (𝐶𝑖))))
49 subdir 11515 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑖)) = ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))))
5028, 15, 26, 49mp3an2i 1466 . . . . . . . . . . . . . . . . 17 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · (𝐶𝑖)) = ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))))
5126mulid2d 11099 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 · (𝐶𝑖)) = (𝐶𝑖))
5251oveq1d 7357 . . . . . . . . . . . . . . . . 17 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))) = ((𝐶𝑖) − (𝑡 · (𝐶𝑖))))
5350, 52eqtrd 2777 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · (𝐶𝑖)) = ((𝐶𝑖) − (𝑡 · (𝐶𝑖))))
5453oveq2d 7358 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((1 − 𝑡) · (𝐵𝑖)) − ((1 − 𝑡) · (𝐶𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) − ((𝐶𝑖) − (𝑡 · (𝐶𝑖)))))
5540, 26, 44subsub3d 11468 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((1 − 𝑡) · (𝐵𝑖)) − ((𝐶𝑖) − (𝑡 · (𝐶𝑖)))) = ((((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) − (𝐶𝑖)))
5648, 54, 553eqtrd 2781 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = ((((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) − (𝐶𝑖)))
5756negeqd 11321 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → -((1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = -((((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) − (𝐶𝑖)))
5839, 43readdcld 11110 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∈ ℝ)
5958recnd 11109 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∈ ℂ)
6059, 26negsubdi2d 11454 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → -((((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) − (𝐶𝑖)) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
6147, 57, 603eqtrd 2781 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (-(1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
6246, 61oveq12d 7360 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · ((𝐵𝑖) − (𝐶𝑖))) · (-(1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖)))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
6311, 22, 623eqtr2rd 2784 . . . . . . . . . 10 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) = ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
6415, 20mulneg2d 11535 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · -(1 − 𝑡)) = -(𝑡 · (1 − 𝑡)))
6564oveq1d 7357 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) = (-(𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
6641, 19remulcld 11111 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (1 − 𝑡)) ∈ ℝ)
6766recnd 11109 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (1 − 𝑡)) ∈ ℂ)
688resqcld 14071 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (𝐶𝑖))↑2) ∈ ℝ)
6968recnd 11109 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (𝐶𝑖))↑2) ∈ ℂ)
7067, 69mulneg1d 11534 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (-(𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) = -((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
7165, 70eqtrd 2777 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) = -((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
7212simp2bi 1146 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0[,]1) → 0 ≤ 𝑡)
7312simp3bi 1147 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0[,]1) → 𝑡 ≤ 1)
74 subge0 11594 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (0 ≤ (1 − 𝑡) ↔ 𝑡 ≤ 1))
7516, 13, 74sylancr 588 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0[,]1) → (0 ≤ (1 − 𝑡) ↔ 𝑡 ≤ 1))
7673, 75mpbird 257 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0[,]1) → 0 ≤ (1 − 𝑡))
7713, 18, 72, 76mulge0d 11658 . . . . . . . . . . . . . 14 (𝑡 ∈ (0[,]1) → 0 ≤ (𝑡 · (1 − 𝑡)))
78773ad2ant3 1135 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ (𝑡 · (1 − 𝑡)))
798sqge0d 14072 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ (((𝐵𝑖) − (𝐶𝑖))↑2))
8066, 68, 78, 79mulge0d 11658 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
8166, 68remulcld 11111 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ∈ ℝ)
8281le0neg2d 11653 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (0 ≤ ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ↔ -((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ≤ 0))
8380, 82mpbid 231 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → -((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ≤ 0)
8471, 83eqbrtrd 5119 . . . . . . . . . 10 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ≤ 0)
8563, 84eqbrtrd 5119 . . . . . . . . 9 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
86853expa 1118 . . . . . . . 8 ((((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
876, 86sylan 581 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
8887an32s 650 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
8988ralrimiva 3140 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) → ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
90 fveecn 27559 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
91 fveecn 27559 . . . . . . . . . . . 12 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
9290, 91anim12i 614 . . . . . . . . . . 11 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁))) → ((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ))
9392anandirs 677 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ))
94 fveecn 27559 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) ∈ ℂ)
95 fveecn 27559 . . . . . . . . . . . 12 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
9694, 95anim12i 614 . . . . . . . . . . 11 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁))) → ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ))
9796anandirs 677 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ))
9893, 97anim12dan 620 . . . . . . . . 9 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)))
99983adantl1 1166 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)))
100 subcl 11326 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℂ)
1011003ad2ant1 1133 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℂ)
102 subcl 11326 . . . . . . . . . . . . . . 15 (((𝐶𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ) → ((𝐶𝑗) − (𝐵𝑗)) ∈ ℂ)
103102ancoms 460 . . . . . . . . . . . . . 14 (((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((𝐶𝑗) − (𝐵𝑗)) ∈ ℂ)
1041033ad2ant2 1134 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐶𝑗) − (𝐵𝑗)) ∈ ℂ)
105101, 104mulcomd 11102 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐵𝑖) − (𝐶𝑖))))
106 simp2r 1200 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝐶𝑗) ∈ ℂ)
107 simp2l 1199 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝐵𝑗) ∈ ℂ)
108 simp1l 1197 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝐵𝑖) ∈ ℂ)
109 simp1r 1198 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝐶𝑖) ∈ ℂ)
110 mulsub2 11525 . . . . . . . . . . . . 13 ((((𝐶𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ) ∧ ((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ)) → (((𝐶𝑗) − (𝐵𝑗)) · ((𝐵𝑖) − (𝐶𝑖))) = (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖))))
111106, 107, 108, 109, 110syl22anc 837 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑗) − (𝐵𝑗)) · ((𝐵𝑖) − (𝐶𝑖))) = (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖))))
112105, 111eqtrd 2777 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗))) = (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖))))
113112oveq2d 7358 . . . . . . . . . 10 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗)))) = ((𝑡 · (1 − 𝑡)) · (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖)))))
114 simp3 1138 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → 𝑡 ∈ ℂ)
115 subcl 11326 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ) → (1 − 𝑡) ∈ ℂ)
11628, 115mpan 688 . . . . . . . . . . . . 13 (𝑡 ∈ ℂ → (1 − 𝑡) ∈ ℂ)
1171163ad2ant3 1135 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 − 𝑡) ∈ ℂ)
118114, 117, 101, 104mul4d 11293 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗)))) = ((𝑡 · ((𝐵𝑖) − (𝐶𝑖))) · ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗)))))
119114, 108, 109subdid 11537 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · ((𝐵𝑖) − (𝐶𝑖))) = ((𝑡 · (𝐵𝑖)) − (𝑡 · (𝐶𝑖))))
12028, 117, 108, 29mp3an2i 1466 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))))
12128, 31mpan 688 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ℂ → (1 − (1 − 𝑡)) = 𝑡)
1221213ad2ant3 1135 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 − (1 − 𝑡)) = 𝑡)
123122oveq1d 7357 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = (𝑡 · (𝐵𝑖)))
124108mulid2d 11099 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 · (𝐵𝑖)) = (𝐵𝑖))
125124oveq1d 7357 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))) = ((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))))
126120, 123, 1253eqtr3d 2785 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · (𝐵𝑖)) = ((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))))
127126oveq1d 7357 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (𝐵𝑖)) − (𝑡 · (𝐶𝑖))) = (((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))))
128117, 108mulcld 11101 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐵𝑖)) ∈ ℂ)
129114, 109mulcld 11101 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · (𝐶𝑖)) ∈ ℂ)
130108, 128, 129subsub4d 11469 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
131119, 127, 1303eqtrd 2781 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · ((𝐵𝑖) − (𝐶𝑖))) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
132117, 106, 107subdid 11537 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗))) = (((1 − 𝑡) · (𝐶𝑗)) − ((1 − 𝑡) · (𝐵𝑗))))
133 subdir 11515 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑗)) = ((1 · (𝐶𝑗)) − (𝑡 · (𝐶𝑗))))
13428, 114, 106, 133mp3an2i 1466 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑗)) = ((1 · (𝐶𝑗)) − (𝑡 · (𝐶𝑗))))
135106mulid2d 11099 . . . . . . . . . . . . . . . . 17 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 · (𝐶𝑗)) = (𝐶𝑗))
136135oveq1d 7357 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 · (𝐶𝑗)) − (𝑡 · (𝐶𝑗))) = ((𝐶𝑗) − (𝑡 · (𝐶𝑗))))
137134, 136eqtrd 2777 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑗)) = ((𝐶𝑗) − (𝑡 · (𝐶𝑗))))
138137oveq1d 7357 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((1 − 𝑡) · (𝐶𝑗)) − ((1 − 𝑡) · (𝐵𝑗))) = (((𝐶𝑗) − (𝑡 · (𝐶𝑗))) − ((1 − 𝑡) · (𝐵𝑗))))
139132, 138eqtrd 2777 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝑡 · (𝐶𝑗))) − ((1 − 𝑡) · (𝐵𝑗))))
140114, 106mulcld 11101 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · (𝐶𝑗)) ∈ ℂ)
141117, 107mulcld 11101 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐵𝑗)) ∈ ℂ)
142106, 140, 141sub32d 11470 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑗) − (𝑡 · (𝐶𝑗))) − ((1 − 𝑡) · (𝐵𝑗))) = (((𝐶𝑗) − ((1 − 𝑡) · (𝐵𝑗))) − (𝑡 · (𝐶𝑗))))
143106, 141, 140subsub4d 11469 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑗) − ((1 − 𝑡) · (𝐵𝑗))) − (𝑡 · (𝐶𝑗))) = ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
144139, 142, 1433eqtrd 2781 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗))) = ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
145131, 144oveq12d 7360 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · ((𝐵𝑖) − (𝐶𝑖))) · ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗)))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))))
146118, 145eqtrd 2777 . . . . . . . . . 10 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗)))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))))
147 subcl 11326 . . . . . . . . . . . . 13 (((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((𝐵𝑗) − (𝐶𝑗)) ∈ ℂ)
1481473ad2ant2 1134 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐵𝑗) − (𝐶𝑗)) ∈ ℂ)
149 subcl 11326 . . . . . . . . . . . . . 14 (((𝐶𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → ((𝐶𝑖) − (𝐵𝑖)) ∈ ℂ)
150149ancoms 460 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((𝐶𝑖) − (𝐵𝑖)) ∈ ℂ)
1511503ad2ant1 1133 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐶𝑖) − (𝐵𝑖)) ∈ ℂ)
152114, 117, 148, 151mul4d 11293 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖)))) = ((𝑡 · ((𝐵𝑗) − (𝐶𝑗))) · ((1 − 𝑡) · ((𝐶𝑖) − (𝐵𝑖)))))
153114, 107, 106subdid 11537 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · ((𝐵𝑗) − (𝐶𝑗))) = ((𝑡 · (𝐵𝑗)) − (𝑡 · (𝐶𝑗))))
154 subdir 11515 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (1 − 𝑡) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑗)) = ((1 · (𝐵𝑗)) − ((1 − 𝑡) · (𝐵𝑗))))
15528, 117, 107, 154mp3an2i 1466 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑗)) = ((1 · (𝐵𝑗)) − ((1 − 𝑡) · (𝐵𝑗))))
156122oveq1d 7357 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑗)) = (𝑡 · (𝐵𝑗)))
157107mulid2d 11099 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 · (𝐵𝑗)) = (𝐵𝑗))
158157oveq1d 7357 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 · (𝐵𝑗)) − ((1 − 𝑡) · (𝐵𝑗))) = ((𝐵𝑗) − ((1 − 𝑡) · (𝐵𝑗))))
159155, 156, 1583eqtr3rd 2786 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐵𝑗) − ((1 − 𝑡) · (𝐵𝑗))) = (𝑡 · (𝐵𝑗)))
160159oveq1d 7357 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑗) − ((1 − 𝑡) · (𝐵𝑗))) − (𝑡 · (𝐶𝑗))) = ((𝑡 · (𝐵𝑗)) − (𝑡 · (𝐶𝑗))))
161107, 141, 140subsub4d 11469 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑗) − ((1 − 𝑡) · (𝐵𝑗))) − (𝑡 · (𝐶𝑗))) = ((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
162153, 160, 1613eqtr2d 2783 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · ((𝐵𝑗) − (𝐶𝑗))) = ((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
163117, 109, 108subdid 11537 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑖) − (𝐵𝑖))) = (((1 − 𝑡) · (𝐶𝑖)) − ((1 − 𝑡) · (𝐵𝑖))))
16428, 114, 109, 49mp3an2i 1466 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑖)) = ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))))
165109mulid2d 11099 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 · (𝐶𝑖)) = (𝐶𝑖))
166165oveq1d 7357 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))) = ((𝐶𝑖) − (𝑡 · (𝐶𝑖))))
167164, 166eqtrd 2777 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑖)) = ((𝐶𝑖) − (𝑡 · (𝐶𝑖))))
168167oveq1d 7357 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((1 − 𝑡) · (𝐶𝑖)) − ((1 − 𝑡) · (𝐵𝑖))) = (((𝐶𝑖) − (𝑡 · (𝐶𝑖))) − ((1 − 𝑡) · (𝐵𝑖))))
169109, 129, 128sub32d 11470 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑖) − (𝑡 · (𝐶𝑖))) − ((1 − 𝑡) · (𝐵𝑖))) = (((𝐶𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))))
170109, 128, 129subsub4d 11469 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
171169, 170eqtrd 2777 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑖) − (𝑡 · (𝐶𝑖))) − ((1 − 𝑡) · (𝐵𝑖))) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
172163, 168, 1713eqtrd 2781 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑖) − (𝐵𝑖))) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
173162, 172oveq12d 7360 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · ((𝐵𝑗) − (𝐶𝑗))) · ((1 − 𝑡) · ((𝐶𝑖) − (𝐵𝑖)))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
174152, 173eqtrd 2777 . . . . . . . . . 10 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖)))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
175113, 146, 1743eqtr3d 2785 . . . . . . . . 9 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
1761753expa 1118 . . . . . . . 8 (((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
17799, 14, 176syl2an 597 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
178177an32s 650 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
179178ralrimivva 3194 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) → ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
180 fveq2 6830 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝐴𝑘) = (𝐴𝑖))
181 fveq2 6830 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
182181oveq2d 7358 . . . . . . . . . . . 12 (𝑘 = 𝑖 → ((1 − 𝑡) · (𝐵𝑘)) = ((1 − 𝑡) · (𝐵𝑖)))
183 fveq2 6830 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝐶𝑘) = (𝐶𝑖))
184183oveq2d 7358 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝑡 · (𝐶𝑘)) = (𝑡 · (𝐶𝑖)))
185182, 184oveq12d 7360 . . . . . . . . . . 11 (𝑘 = 𝑖 → (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))
186180, 185eqeq12d 2753 . . . . . . . . . 10 (𝑘 = 𝑖 → ((𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
187186rspccva 3573 . . . . . . . . 9 ((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))
188 oveq2 7350 . . . . . . . . . . 11 ((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ((𝐵𝑖) − (𝐴𝑖)) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
189 oveq2 7350 . . . . . . . . . . 11 ((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ((𝐶𝑖) − (𝐴𝑖)) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
190188, 189oveq12d 7360 . . . . . . . . . 10 ((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
191190breq1d 5107 . . . . . . . . 9 ((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0))
192187, 191syl 17 . . . . . . . 8 ((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0))
193192ralbidva 3169 . . . . . . 7 (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0))
194 fveq2 6830 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
195 fveq2 6830 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
196195oveq2d 7358 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((1 − 𝑡) · (𝐵𝑘)) = ((1 − 𝑡) · (𝐵𝑗)))
197 fveq2 6830 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝐶𝑘) = (𝐶𝑗))
198197oveq2d 7358 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑡 · (𝐶𝑘)) = (𝑡 · (𝐶𝑗)))
199196, 198oveq12d 7360 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))
200194, 199eqeq12d 2753 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
201200rspccva 3573 . . . . . . . . . 10 ((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))
202 oveq2 7350 . . . . . . . . . . . 12 ((𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))) → ((𝐶𝑗) − (𝐴𝑗)) = ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
203188, 202oveqan12d 7361 . . . . . . . . . . 11 (((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) → (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))))
204 oveq2 7350 . . . . . . . . . . . 12 ((𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))) → ((𝐵𝑗) − (𝐴𝑗)) = ((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
205204, 189oveqan12rd 7362 . . . . . . . . . . 11 (((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) → (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
206203, 205eqeq12d 2753 . . . . . . . . . 10 (((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
207187, 201, 206syl2an 597 . . . . . . . . 9 (((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑖 ∈ (1...𝑁)) ∧ (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑗 ∈ (1...𝑁))) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
208207anandis 676 . . . . . . . 8 ((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
2092082ralbidva 3207 . . . . . . 7 (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
210193, 209anbi12d 632 . . . . . 6 (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))))
211210biimprcd 250 . . . . 5 ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))) → (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
21289, 179, 211syl2anc 585 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) → (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
213212rexlimdva 3149 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
214 fveere 27558 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
2152143ad2antl1 1185 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
216 mulsuble0b 11953 . . . . . . 7 (((𝐵𝑖) ∈ ℝ ∧ (𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
2173, 215, 5, 216syl3anc 1371 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
218217ralbidva 3169 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
219218anbi1d 631 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
220 simpl2 1192 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → 𝐵 ∈ (𝔼‘𝑁))
221 simpl1 1191 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → 𝐴 ∈ (𝔼‘𝑁))
222 eqeefv 27560 . . . . . . . . . . 11 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐴 ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (𝐴𝑖)))
223220, 221, 222syl2anc 585 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → (𝐵 = 𝐴 ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (𝐴𝑖)))
2243adantlr 713 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
225215adantlr 713 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
226224, 225letri3d 11223 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) = (𝐴𝑖) ↔ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))))
227 pm4.25 904 . . . . . . . . . . . . 13 (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ∨ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))))
228 fveq1 6829 . . . . . . . . . . . . . . . . 17 (𝐵 = 𝐶 → (𝐵𝑖) = (𝐶𝑖))
229228breq2d 5109 . . . . . . . . . . . . . . . 16 (𝐵 = 𝐶 → ((𝐴𝑖) ≤ (𝐵𝑖) ↔ (𝐴𝑖) ≤ (𝐶𝑖)))
230229anbi2d 630 . . . . . . . . . . . . . . 15 (𝐵 = 𝐶 → (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖))))
231228breq1d 5107 . . . . . . . . . . . . . . . 16 (𝐵 = 𝐶 → ((𝐵𝑖) ≤ (𝐴𝑖) ↔ (𝐶𝑖) ≤ (𝐴𝑖)))
232231anbi1d 631 . . . . . . . . . . . . . . 15 (𝐵 = 𝐶 → (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))))
233230, 232orbi12d 917 . . . . . . . . . . . . . 14 (𝐵 = 𝐶 → ((((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ∨ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
234233ad2antlr 725 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ∨ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
235227, 234bitrid 283 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
236226, 235bitrd 279 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) = (𝐴𝑖) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
237236ralbidva 3169 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (𝐴𝑖) ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
238223, 237bitrd 279 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → (𝐵 = 𝐴 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
239238biimprd 248 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) → 𝐵 = 𝐴))
240239adantrd 493 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → 𝐵 = 𝐴))
241240ex 414 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → 𝐵 = 𝐴)))
242 0elunit 13307 . . . . . . . 8 0 ∈ (0[,]1)
243 fveecn 27559 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
2442433ad2antl1 1185 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
245 fveecn 27559 . . . . . . . . . . . . 13 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℂ)
2462453ad2antl2 1186 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℂ)
247 fveecn 27559 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℂ)
2482473ad2antl3 1187 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℂ)
249244, 246, 2483jca 1128 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ))
250 mulid2 11080 . . . . . . . . . . . . . . . 16 ((𝐵𝑘) ∈ ℂ → (1 · (𝐵𝑘)) = (𝐵𝑘))
251 mul02 11259 . . . . . . . . . . . . . . . 16 ((𝐶𝑘) ∈ ℂ → (0 · (𝐶𝑘)) = 0)
252250, 251oveqan12d 7361 . . . . . . . . . . . . . . 15 (((𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) → ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))) = ((𝐵𝑘) + 0))
253 addid1 11261 . . . . . . . . . . . . . . . 16 ((𝐵𝑘) ∈ ℂ → ((𝐵𝑘) + 0) = (𝐵𝑘))
254253adantr 482 . . . . . . . . . . . . . . 15 (((𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) → ((𝐵𝑘) + 0) = (𝐵𝑘))
255252, 254eqtrd 2777 . . . . . . . . . . . . . 14 (((𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) → ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))) = (𝐵𝑘))
2562553adant1 1130 . . . . . . . . . . . . 13 (((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) → ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))) = (𝐵𝑘))
257256adantr 482 . . . . . . . . . . . 12 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))) = (𝐵𝑘))
258 fveq1 6829 . . . . . . . . . . . . 13 (𝐵 = 𝐴 → (𝐵𝑘) = (𝐴𝑘))
259258ad2antll 727 . . . . . . . . . . . 12 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → (𝐵𝑘) = (𝐴𝑘))
260257, 259eqtr2d 2778 . . . . . . . . . . 11 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → (𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
261249, 260sylan 581 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → (𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
262261an32s 650 . . . . . . . . 9 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
263262ralrimiva 3140 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
264 oveq2 7350 . . . . . . . . . . . . . 14 (𝑡 = 0 → (1 − 𝑡) = (1 − 0))
265 1m0e1 12200 . . . . . . . . . . . . . 14 (1 − 0) = 1
266264, 265eqtrdi 2793 . . . . . . . . . . . . 13 (𝑡 = 0 → (1 − 𝑡) = 1)
267266oveq1d 7357 . . . . . . . . . . . 12 (𝑡 = 0 → ((1 − 𝑡) · (𝐵𝑘)) = (1 · (𝐵𝑘)))
268 oveq1 7349 . . . . . . . . . . . 12 (𝑡 = 0 → (𝑡 · (𝐶𝑘)) = (0 · (𝐶𝑘)))
269267, 268oveq12d 7360 . . . . . . . . . . 11 (𝑡 = 0 → (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
270269eqeq2d 2748 . . . . . . . . . 10 (𝑡 = 0 → ((𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘)))))
271270ralbidv 3171 . . . . . . . . 9 (𝑡 = 0 → (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘)))))
272271rspcev 3574 . . . . . . . 8 ((0 ∈ (0[,]1) ∧ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))
273242, 263, 272sylancr 588 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))
274273exp32 422 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 → (𝐵 = 𝐴 → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))))
275241, 274syldd 72 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))))
276 eqeefv 27560 . . . . . . . . 9 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 ↔ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝)))
2772763adant1 1130 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 ↔ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝)))
278277necon3abid 2978 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵𝐶 ↔ ¬ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝)))
279 df-ne 2942 . . . . . . . . 9 ((𝐵𝑝) ≠ (𝐶𝑝) ↔ ¬ (𝐵𝑝) = (𝐶𝑝))
280279rexbii 3094 . . . . . . . 8 (∃𝑝 ∈ (1...𝑁)(𝐵𝑝) ≠ (𝐶𝑝) ↔ ∃𝑝 ∈ (1...𝑁) ¬ (𝐵𝑝) = (𝐶𝑝))
281 rexnal 3100 . . . . . . . 8 (∃𝑝 ∈ (1...𝑁) ¬ (𝐵𝑝) = (𝐶𝑝) ↔ ¬ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝))
282280, 281bitri 275 . . . . . . 7 (∃𝑝 ∈ (1...𝑁)(𝐵𝑝) ≠ (𝐶𝑝) ↔ ¬ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝))
283278, 282bitr4di 289 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵𝐶 ↔ ∃𝑝 ∈ (1...𝑁)(𝐵𝑝) ≠ (𝐶𝑝)))
284 fveq2 6830 . . . . . . . . . . . . . . 15 (𝑖 = 𝑝 → (𝐵𝑖) = (𝐵𝑝))
285 fveq2 6830 . . . . . . . . . . . . . . 15 (𝑖 = 𝑝 → (𝐴𝑖) = (𝐴𝑝))
286284, 285breq12d 5110 . . . . . . . . . . . . . 14 (𝑖 = 𝑝 → ((𝐵𝑖) ≤ (𝐴𝑖) ↔ (𝐵𝑝) ≤ (𝐴𝑝)))
287 fveq2 6830 . . . . . . . . . . . . . . 15 (𝑖 = 𝑝 → (𝐶𝑖) = (𝐶𝑝))
288285, 287breq12d 5110 . . . . . . . . . . . . . 14 (𝑖 = 𝑝 → ((𝐴𝑖) ≤ (𝐶𝑖) ↔ (𝐴𝑝) ≤ (𝐶𝑝)))
289286, 288anbi12d 632 . . . . . . . . . . . . 13 (𝑖 = 𝑝 → (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ↔ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))))
290287, 285breq12d 5110 . . . . . . . . . . . . . 14 (𝑖 = 𝑝 → ((𝐶𝑖) ≤ (𝐴𝑖) ↔ (𝐶𝑝) ≤ (𝐴𝑝)))
291285, 284breq12d 5110 . . . . . . . . . . . . . 14 (𝑖 = 𝑝 → ((𝐴𝑖) ≤ (𝐵𝑖) ↔ (𝐴𝑝) ≤ (𝐵𝑝)))
292290, 291anbi12d 632 . . . . . . . . . . . . 13 (𝑖 = 𝑝 → (((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))))
293289, 292orbi12d 917 . . . . . . . . . . . 12 (𝑖 = 𝑝 → ((((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ↔ (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)))))
294293rspcv 3570 . . . . . . . . . . 11 (𝑝 ∈ (1...𝑁) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) → (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)))))
295294ad2antrl 726 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) → (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)))))
296 simprr 771 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐴𝑝) ≤ (𝐶𝑝))
297 simp1 1136 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
298 simpl 484 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) → 𝑝 ∈ (1...𝑁))
299 fveere 27558 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐴𝑝) ∈ ℝ)
300297, 298, 299syl2an 597 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐴𝑝) ∈ ℝ)
301 simp3 1138 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
302 fveere 27558 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐶𝑝) ∈ ℝ)
303301, 298, 302syl2an 597 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐶𝑝) ∈ ℝ)
304 simpl2 1192 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → 𝐵 ∈ (𝔼‘𝑁))
305 simprl 769 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → 𝑝 ∈ (1...𝑁))
306 fveere 27558 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐵𝑝) ∈ ℝ)
307304, 305, 306syl2anc 585 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐵𝑝) ∈ ℝ)
308300, 303, 307lesub1d 11688 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐴𝑝) ≤ (𝐶𝑝) ↔ ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝))))
309308adantr 482 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐴𝑝) ≤ (𝐶𝑝) ↔ ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝))))
310296, 309mpbid 231 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝)))
311300, 307resubcld 11509 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐴𝑝) − (𝐵𝑝)) ∈ ℝ)
312311adantr 482 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐴𝑝) − (𝐵𝑝)) ∈ ℝ)
313 simprl 769 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐵𝑝) ≤ (𝐴𝑝))
314300, 307subge0d 11671 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (0 ≤ ((𝐴𝑝) − (𝐵𝑝)) ↔ (𝐵𝑝) ≤ (𝐴𝑝)))
315314adantr 482 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (0 ≤ ((𝐴𝑝) − (𝐵𝑝)) ↔ (𝐵𝑝) ≤ (𝐴𝑝)))
316313, 315mpbird 257 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → 0 ≤ ((𝐴𝑝) − (𝐵𝑝)))
317303, 307resubcld 11509 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐶𝑝) − (𝐵𝑝)) ∈ ℝ)
318317adantr 482 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐶𝑝) − (𝐵𝑝)) ∈ ℝ)
319 letr 11175 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑝) ∈ ℝ ∧ (𝐴𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) → (𝐵𝑝) ≤ (𝐶𝑝)))
320307, 300, 303, 319syl3anc 1371 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) → (𝐵𝑝) ≤ (𝐶𝑝)))
321320imp 408 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐵𝑝) ≤ (𝐶𝑝))
322 simplrr 776 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐵𝑝) ≠ (𝐶𝑝))
323322necomd 2997 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐶𝑝) ≠ (𝐵𝑝))
324307, 303ltlend 11226 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐵𝑝) < (𝐶𝑝) ↔ ((𝐵𝑝) ≤ (𝐶𝑝) ∧ (𝐶𝑝) ≠ (𝐵𝑝))))
325324adantr 482 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐵𝑝) < (𝐶𝑝) ↔ ((𝐵𝑝) ≤ (𝐶𝑝) ∧ (𝐶𝑝) ≠ (𝐵𝑝))))
326321, 323, 325mpbir2and 711 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐵𝑝) < (𝐶𝑝))
327307, 303posdifd 11668 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐵𝑝) < (𝐶𝑝) ↔ 0 < ((𝐶𝑝) − (𝐵𝑝))))
328327adantr 482 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐵𝑝) < (𝐶𝑝) ↔ 0 < ((𝐶𝑝) − (𝐵𝑝))))
329326, 328mpbid 231 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → 0 < ((𝐶𝑝) − (𝐵𝑝)))
330 divelunit 13332 . . . . . . . . . . . . . 14 (((((𝐴𝑝) − (𝐵𝑝)) ∈ ℝ ∧ 0 ≤ ((𝐴𝑝) − (𝐵𝑝))) ∧ (((𝐶𝑝) − (𝐵𝑝)) ∈ ℝ ∧ 0 < ((𝐶𝑝) − (𝐵𝑝)))) → ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1) ↔ ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝))))
331312, 316, 318, 329, 330syl22anc 837 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1) ↔ ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝))))
332310, 331mpbird 257 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1))
333300recnd 11109 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐴𝑝) ∈ ℂ)
334307recnd 11109 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐵𝑝) ∈ ℂ)
335303recnd 11109 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐶𝑝) ∈ ℂ)
336 simprr 771 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐵𝑝) ≠ (𝐶𝑝))
337336necomd 2997 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐶𝑝) ≠ (𝐵𝑝))
338333, 334, 335, 334, 337div2subd 11907 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))))
339338adantr 482 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))))
340 simprl 769 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐶𝑝) ≤ (𝐴𝑝))
341303, 300, 307lesub2d 11689 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐶𝑝) ≤ (𝐴𝑝) ↔ ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝))))
342341adantr 482 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐶𝑝) ≤ (𝐴𝑝) ↔ ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝))))
343340, 342mpbid 231 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝)))
344307, 300resubcld 11509 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐵𝑝) − (𝐴𝑝)) ∈ ℝ)
345344adantr 482 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐵𝑝) − (𝐴𝑝)) ∈ ℝ)
346 simprr 771 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐴𝑝) ≤ (𝐵𝑝))
347307, 300subge0d 11671 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (0 ≤ ((𝐵𝑝) − (𝐴𝑝)) ↔ (𝐴𝑝) ≤ (𝐵𝑝)))
348347adantr 482 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (0 ≤ ((𝐵𝑝) − (𝐴𝑝)) ↔ (𝐴𝑝) ≤ (𝐵𝑝)))
349346, 348mpbird 257 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → 0 ≤ ((𝐵𝑝) − (𝐴𝑝)))
350307, 303resubcld 11509 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐵𝑝) − (𝐶𝑝)) ∈ ℝ)
351350adantr 482 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐵𝑝) − (𝐶𝑝)) ∈ ℝ)
352 letr 11175 . . . . . . . . . . . . . . . . . . 19 (((𝐶𝑝) ∈ ℝ ∧ (𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ) → (((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)) → (𝐶𝑝) ≤ (𝐵𝑝)))
353303, 300, 307, 352syl3anc 1371 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)) → (𝐶𝑝) ≤ (𝐵𝑝)))
354353imp 408 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐶𝑝) ≤ (𝐵𝑝))
355 simplrr 776 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐵𝑝) ≠ (𝐶𝑝))
356303, 307ltlend 11226 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐶𝑝) < (𝐵𝑝) ↔ ((𝐶𝑝) ≤ (𝐵𝑝) ∧ (𝐵𝑝) ≠ (𝐶𝑝))))
357356adantr 482 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐶𝑝) < (𝐵𝑝) ↔ ((𝐶𝑝) ≤ (𝐵𝑝) ∧ (𝐵𝑝) ≠ (𝐶𝑝))))
358354, 355, 357mpbir2and 711 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐶𝑝) < (𝐵𝑝))
359303, 307posdifd 11668 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐶𝑝) < (𝐵𝑝) ↔ 0 < ((𝐵𝑝) − (𝐶𝑝))))
360359adantr 482 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐶𝑝) < (𝐵𝑝) ↔ 0 < ((𝐵𝑝) − (𝐶𝑝))))
361358, 360mpbid 231 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → 0 < ((𝐵𝑝) − (𝐶𝑝)))
362 divelunit 13332 . . . . . . . . . . . . . . 15 (((((𝐵𝑝) − (𝐴𝑝)) ∈ ℝ ∧ 0 ≤ ((𝐵𝑝) − (𝐴𝑝))) ∧ (((𝐵𝑝) − (𝐶𝑝)) ∈ ℝ ∧ 0 < ((𝐵𝑝) − (𝐶𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))) ∈ (0[,]1) ↔ ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝))))
363345, 349, 351, 361, 362syl22anc 837 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))) ∈ (0[,]1) ↔ ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝))))
364343, 363mpbird 257 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))) ∈ (0[,]1))
365339, 364eqeltrd 2838 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1))
366332, 365jaodan 956 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1))
367366ex 414 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1)))
368295, 367syld 47 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1)))
369 simp2l 1199 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝑝 ∈ (1...𝑁))
370 simp3 1138 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ (1...𝑁))
371284, 285oveq12d 7360 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑝 → ((𝐵𝑖) − (𝐴𝑖)) = ((𝐵𝑝) − (𝐴𝑝)))
372371oveq1d 7357 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑝 → (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑗) − (𝐴𝑗))))
373287, 285oveq12d 7360 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑝 → ((𝐶𝑖) − (𝐴𝑖)) = ((𝐶𝑝) − (𝐴𝑝)))
374373oveq2d 7358 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑝 → (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑝) − (𝐴𝑝))))
375372, 374eqeq12d 2753 . . . . . . . . . . . . . . 15 (𝑖 = 𝑝 → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑝) − (𝐴𝑝)))))
376 fveq2 6830 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → (𝐶𝑗) = (𝐶𝑘))
377 fveq2 6830 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
378376, 377oveq12d 7360 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → ((𝐶𝑗) − (𝐴𝑗)) = ((𝐶𝑘) − (𝐴𝑘)))
379378oveq2d 7358 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))))
380 fveq2 6830 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
381380, 377oveq12d 7360 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → ((𝐵𝑗) − (𝐴𝑗)) = ((𝐵𝑘) − (𝐴𝑘)))
382381oveq1d 7357 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))))
383379, 382eqeq12d 2753 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑝) − (𝐴𝑝))) ↔ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))))
384375, 383rspc2v 3583 . . . . . . . . . . . . . 14 ((𝑝 ∈ (1...𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))))
385369, 370, 384syl2anc 585 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))))
386 simp11 1203 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
387386, 370, 243syl2anc 585 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
388 simp12 1204 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
389388, 370, 245syl2anc 585 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℂ)
390 simp13 1205 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
391390, 370, 247syl2anc 585 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℂ)
3923333adant3 1132 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑝) ∈ ℂ)
3933343adant3 1132 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑝) ∈ ℂ)
3943353adant3 1132 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑝) ∈ ℂ)
395 simp2r 1200 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑝) ≠ (𝐶𝑝))
396395necomd 2997 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑝) ≠ (𝐵𝑝))
397 simpl23 1253 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐶𝑝) ∈ ℂ)
398 simpl21 1251 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐴𝑝) ∈ ℂ)
399397, 398subcld 11438 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐶𝑝) − (𝐴𝑝)) ∈ ℂ)
400 simpl12 1249 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐵𝑘) ∈ ℂ)
401399, 400mulcld 11101 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) ∈ ℂ)
402 simpl22 1252 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐵𝑝) ∈ ℂ)
403398, 402subcld 11438 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐴𝑝) − (𝐵𝑝)) ∈ ℂ)
404 simpl13 1250 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐶𝑘) ∈ ℂ)
405403, 404mulcld 11101 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)) ∈ ℂ)
406397, 402subcld 11438 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐶𝑝) − (𝐵𝑝)) ∈ ℂ)
407 simpl3 1193 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐶𝑝) ≠ (𝐵𝑝))
408397, 402, 407subne0d 11447 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐶𝑝) − (𝐵𝑝)) ≠ 0)
409401, 405, 406, 408divdird 11895 . . . . . . . . . . . . . . . 16 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) / ((𝐶𝑝) − (𝐵𝑝))) = (((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) + ((((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)) / ((𝐶𝑝) − (𝐵𝑝)))))
410 npncan2 11354 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐵𝑝) ∈ ℂ ∧ (𝐴𝑝) ∈ ℂ) → (((𝐵𝑝) − (𝐴𝑝)) + ((𝐴𝑝) − (𝐵𝑝))) = 0)
411402, 398, 410syl2anc 585 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) + ((𝐴𝑝) − (𝐵𝑝))) = 0)
412411oveq1d 7357 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) + ((𝐴𝑝) − (𝐵𝑝))) · (𝐶𝑘)) = (0 · (𝐶𝑘)))
413402, 398subcld 11438 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐵𝑝) − (𝐴𝑝)) ∈ ℂ)
414413, 403, 404adddird 11106 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) + ((𝐴𝑝) − (𝐵𝑝))) · (𝐶𝑘)) = ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
415404mul02d 11279 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (0 · (𝐶𝑘)) = 0)
416412, 414, 4153eqtr3d 2785 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) = 0)
417416oveq1d 7357 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = (0 + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))))
418413, 404mulcld 11101 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) ∈ ℂ)
419 simpl11 1248 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐴𝑘) ∈ ℂ)
420406, 419mulcld 11101 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) ∈ ℂ)
421418, 405, 420add32d 11308 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
422420addid2d 11282 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (0 + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)))
423417, 421, 4223eqtr3rd 2786 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
424399, 419mulcld 11101 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) ∈ ℂ)
425413, 419mulcld 11101 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘)) ∈ ℂ)
426418, 424, 425addsubd 11459 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
427397, 402, 398nnncan2d 11473 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) − ((𝐵𝑝) − (𝐴𝑝))) = ((𝐶𝑝) − (𝐵𝑝)))
428427oveq1d 7357 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) − ((𝐵𝑝) − (𝐴𝑝))) · (𝐴𝑘)) = (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)))
429399, 413, 419subdird 11538 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) − ((𝐵𝑝) − (𝐴𝑝))) · (𝐴𝑘)) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
430428, 429eqtr3d 2779 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
431430oveq2d 7358 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + ((((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘)))))
432418, 424, 425addsubassd 11458 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + ((((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘)))))
433431, 432eqtr4d 2780 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
434413, 404, 419subdid 11537 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
435434oveq1d 7357 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
436426, 433, 4353eqtr4d 2787 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
437436oveq1d 7357 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
438423, 437eqtrd 2777 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = (((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
439 simpr 486 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))))
440439oveq1d 7357 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = ((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
441440oveq1d 7357 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) = (((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
442400, 419subcld 11438 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ℂ)
443442, 399mulcomd 11102 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑘) − (𝐴𝑘))))
444443oveq1d 7357 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = ((((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
445399, 442, 419adddid 11105 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) · (((𝐵𝑘) − (𝐴𝑘)) + (𝐴𝑘))) = ((((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
446400, 419npcand 11442 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑘) − (𝐴𝑘)) + (𝐴𝑘)) = (𝐵𝑘))
447446oveq2d 7358 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) · (((𝐵𝑘) − (𝐴𝑘)) + (𝐴𝑘))) = (((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)))
448444, 445, 4473eqtr2d 2783 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = (((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)))
449448oveq1d 7357 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
450438, 441, 4493eqtrd 2781 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
451401, 405addcld 11100 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) ∈ ℂ)
452451, 406, 419, 408divmuld 11879 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) / ((𝐶𝑝) − (𝐵𝑝))) = (𝐴𝑘) ↔ (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)))))
453450, 452mpbird 257 . . . . . . . . . . . . . . . 16 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) / ((𝐶𝑝) − (𝐵𝑝))) = (𝐴𝑘))
454399, 400, 406, 408div23d 11894 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) = ((((𝐶𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐵𝑘)))
455406, 403, 406, 408divsubdird 11896 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐵𝑝)) − ((𝐴𝑝) − (𝐵𝑝))) / ((𝐶𝑝) − (𝐵𝑝))) = ((((𝐶𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))))
456397, 398, 402nnncan2d 11473 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) − ((𝐴𝑝) − (𝐵𝑝))) = ((𝐶𝑝) − (𝐴𝑝)))
457456oveq1d 7357 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐵𝑝)) − ((𝐴𝑝) − (𝐵𝑝))) / ((𝐶𝑝) − (𝐵𝑝))) = (((𝐶𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐵𝑝))))
458406, 408dividd 11855 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) = 1)
459458oveq1d 7357 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) = (1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))))
460455, 457, 4593eqtr3d 2785 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) = (1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))))
461460oveq1d 7357 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐵𝑘)) = ((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)))
462454, 461eqtrd 2777 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) = ((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)))
463403, 404, 406, 408div23d 11894 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) = ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))
464462, 463oveq12d 7360 . . . . . . . . . . . . . . . 16 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) + ((((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)) / ((𝐶𝑝) − (𝐵𝑝)))) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))
465409, 453, 4643eqtr3d 2785 . . . . . . . . . . . . . . 15 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))
466465ex 414 . . . . . . . . . . . . . 14 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
467387, 389, 391, 392, 393, 394, 396, 466syl331anc 1395 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
468385, 467syld 47 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
4694683expia 1121 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝑘 ∈ (1...𝑁) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))))
470469com23 86 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (𝑘 ∈ (1...𝑁) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))))
471470ralrimdv 3146 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
472368, 471anim12d 610 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1) ∧ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))))
473 oveq2 7350 . . . . . . . . . . . . 13 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → (1 − 𝑡) = (1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))))
474473oveq1d 7357 . . . . . . . . . . . 12 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → ((1 − 𝑡) · (𝐵𝑘)) = ((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)))
475 oveq1 7349 . . . . . . . . . . . 12 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → (𝑡 · (𝐶𝑘)) = ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))
476474, 475oveq12d 7360 . . . . . . . . . . 11 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))
477476eqeq2d 2748 . . . . . . . . . 10 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → ((𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
478477ralbidv 3171 . . . . . . . . 9 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
479478rspcev 3574 . . . . . . . 8 (((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1) ∧ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))
480472, 479syl6 35 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘)))))
481480rexlimdvaa 3150 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∃𝑝 ∈ (1...𝑁)(𝐵𝑝) ≠ (𝐶𝑝) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))))
482283, 481sylbid 239 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵𝐶 → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))))
483275, 482pm2.61dne 3029 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘)))))
484219, 483sylbid 239 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘)))))
485213, 484impbid 211 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
4861, 485bitrd 279 1 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2941  wral 3062  wrex 3071  cop 4584   class class class wbr 5097  cfv 6484  (class class class)co 7342  cc 10975  cr 10976  0cc0 10977  1c1 10978   + caddc 10980   · cmul 10982   < clt 11115  cle 11116  cmin 11311  -cneg 11312   / cdiv 11738  2c2 12134  [,]cicc 13188  ...cfz 13345  cexp 13888  𝔼cee 27545   Btwn cbtwn 27546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-er 8574  df-map 8693  df-en 8810  df-dom 8811  df-sdom 8812  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-nn 12080  df-2 12142  df-n0 12340  df-z 12426  df-uz 12689  df-icc 13192  df-fz 13346  df-seq 13828  df-exp 13889  df-ee 27548  df-btwn 27549
This theorem is referenced by:  colinearalg  27567
  Copyright terms: Public domain W3C validator