MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brbtwn2 Structured version   Visualization version   GIF version

Theorem brbtwn2 27273
Description: Alternate characterization of betweenness, with no existential quantifiers. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
brbtwn2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝐶,𝑖,𝑗

Proof of Theorem brbtwn2
Dummy variables 𝑘 𝑝 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brbtwn 27267 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘)))))
2 fveere 27269 . . . . . . . . . 10 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
323ad2antl2 1185 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
4 fveere 27269 . . . . . . . . . 10 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
543ad2antl3 1186 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
63, 5jca 512 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ))
7 resubcl 11285 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℝ)
873adant3 1131 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℝ)
98recnd 11003 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℂ)
109sqvald 13861 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (𝐶𝑖))↑2) = (((𝐵𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))))
1110oveq2d 7291 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) = ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖)))))
12 elicc01 13198 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
1312simp1bi 1144 . . . . . . . . . . . . . 14 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℝ)
1413recnd 11003 . . . . . . . . . . . . 13 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℂ)
15143ad2ant3 1134 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℂ)
16 1re 10975 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
17 resubcl 11285 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
1816, 13, 17sylancr 587 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0[,]1) → (1 − 𝑡) ∈ ℝ)
19183ad2ant3 1134 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℝ)
2019recnd 11003 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℂ)
2120negcld 11319 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → -(1 − 𝑡) ∈ ℂ)
2215, 9, 21, 9mul4d 11187 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · ((𝐵𝑖) − (𝐶𝑖))) · (-(1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖)))) = ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖)))))
23 recn 10961 . . . . . . . . . . . . . . 15 ((𝐵𝑖) ∈ ℝ → (𝐵𝑖) ∈ ℂ)
24233ad2ant1 1132 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝐵𝑖) ∈ ℂ)
25 recn 10961 . . . . . . . . . . . . . . 15 ((𝐶𝑖) ∈ ℝ → (𝐶𝑖) ∈ ℂ)
26253ad2ant2 1133 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝐶𝑖) ∈ ℂ)
2715, 24, 26subdid 11431 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · ((𝐵𝑖) − (𝐶𝑖))) = ((𝑡 · (𝐵𝑖)) − (𝑡 · (𝐶𝑖))))
28 ax-1cn 10929 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
29 subdir 11409 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (1 − 𝑡) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))))
3028, 20, 24, 29mp3an2i 1465 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))))
31 nncan 11250 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ) → (1 − (1 − 𝑡)) = 𝑡)
3228, 15, 31sylancr 587 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 − (1 − 𝑡)) = 𝑡)
3332oveq1d 7290 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = (𝑡 · (𝐵𝑖)))
3424mulid2d 10993 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 · (𝐵𝑖)) = (𝐵𝑖))
3534oveq1d 7290 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))) = ((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))))
3630, 33, 353eqtr3d 2786 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (𝐵𝑖)) = ((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))))
3736oveq1d 7290 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · (𝐵𝑖)) − (𝑡 · (𝐶𝑖))) = (((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))))
38 simp1 1135 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝐵𝑖) ∈ ℝ)
3919, 38remulcld 11005 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · (𝐵𝑖)) ∈ ℝ)
4039recnd 11003 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · (𝐵𝑖)) ∈ ℂ)
41133ad2ant3 1134 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℝ)
42 simp2 1136 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝐶𝑖) ∈ ℝ)
4341, 42remulcld 11005 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (𝐶𝑖)) ∈ ℝ)
4443recnd 11003 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (𝐶𝑖)) ∈ ℂ)
4524, 40, 44subsub4d 11363 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4627, 37, 453eqtrd 2782 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · ((𝐵𝑖) − (𝐶𝑖))) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4720, 9mulneg1d 11428 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (-(1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = -((1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))))
4820, 24, 26subdid 11431 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) − ((1 − 𝑡) · (𝐶𝑖))))
49 subdir 11409 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑖)) = ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))))
5028, 15, 26, 49mp3an2i 1465 . . . . . . . . . . . . . . . . 17 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · (𝐶𝑖)) = ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))))
5126mulid2d 10993 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 · (𝐶𝑖)) = (𝐶𝑖))
5251oveq1d 7290 . . . . . . . . . . . . . . . . 17 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))) = ((𝐶𝑖) − (𝑡 · (𝐶𝑖))))
5350, 52eqtrd 2778 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · (𝐶𝑖)) = ((𝐶𝑖) − (𝑡 · (𝐶𝑖))))
5453oveq2d 7291 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((1 − 𝑡) · (𝐵𝑖)) − ((1 − 𝑡) · (𝐶𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) − ((𝐶𝑖) − (𝑡 · (𝐶𝑖)))))
5540, 26, 44subsub3d 11362 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((1 − 𝑡) · (𝐵𝑖)) − ((𝐶𝑖) − (𝑡 · (𝐶𝑖)))) = ((((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) − (𝐶𝑖)))
5648, 54, 553eqtrd 2782 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = ((((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) − (𝐶𝑖)))
5756negeqd 11215 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → -((1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = -((((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) − (𝐶𝑖)))
5839, 43readdcld 11004 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∈ ℝ)
5958recnd 11003 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∈ ℂ)
6059, 26negsubdi2d 11348 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → -((((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) − (𝐶𝑖)) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
6147, 57, 603eqtrd 2782 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (-(1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
6246, 61oveq12d 7293 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · ((𝐵𝑖) − (𝐶𝑖))) · (-(1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖)))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
6311, 22, 623eqtr2rd 2785 . . . . . . . . . 10 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) = ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
6415, 20mulneg2d 11429 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · -(1 − 𝑡)) = -(𝑡 · (1 − 𝑡)))
6564oveq1d 7290 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) = (-(𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
6641, 19remulcld 11005 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (1 − 𝑡)) ∈ ℝ)
6766recnd 11003 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (1 − 𝑡)) ∈ ℂ)
688resqcld 13965 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (𝐶𝑖))↑2) ∈ ℝ)
6968recnd 11003 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (𝐶𝑖))↑2) ∈ ℂ)
7067, 69mulneg1d 11428 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (-(𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) = -((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
7165, 70eqtrd 2778 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) = -((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
7212simp2bi 1145 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0[,]1) → 0 ≤ 𝑡)
7312simp3bi 1146 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0[,]1) → 𝑡 ≤ 1)
74 subge0 11488 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (0 ≤ (1 − 𝑡) ↔ 𝑡 ≤ 1))
7516, 13, 74sylancr 587 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0[,]1) → (0 ≤ (1 − 𝑡) ↔ 𝑡 ≤ 1))
7673, 75mpbird 256 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0[,]1) → 0 ≤ (1 − 𝑡))
7713, 18, 72, 76mulge0d 11552 . . . . . . . . . . . . . 14 (𝑡 ∈ (0[,]1) → 0 ≤ (𝑡 · (1 − 𝑡)))
78773ad2ant3 1134 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ (𝑡 · (1 − 𝑡)))
798sqge0d 13966 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ (((𝐵𝑖) − (𝐶𝑖))↑2))
8066, 68, 78, 79mulge0d 11552 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
8166, 68remulcld 11005 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ∈ ℝ)
8281le0neg2d 11547 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (0 ≤ ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ↔ -((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ≤ 0))
8380, 82mpbid 231 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → -((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ≤ 0)
8471, 83eqbrtrd 5096 . . . . . . . . . 10 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ≤ 0)
8563, 84eqbrtrd 5096 . . . . . . . . 9 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
86853expa 1117 . . . . . . . 8 ((((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
876, 86sylan 580 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
8887an32s 649 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
8988ralrimiva 3103 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) → ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
90 fveecn 27270 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
91 fveecn 27270 . . . . . . . . . . . 12 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
9290, 91anim12i 613 . . . . . . . . . . 11 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁))) → ((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ))
9392anandirs 676 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ))
94 fveecn 27270 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) ∈ ℂ)
95 fveecn 27270 . . . . . . . . . . . 12 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
9694, 95anim12i 613 . . . . . . . . . . 11 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁))) → ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ))
9796anandirs 676 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ))
9893, 97anim12dan 619 . . . . . . . . 9 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)))
99983adantl1 1165 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)))
100 subcl 11220 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℂ)
1011003ad2ant1 1132 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℂ)
102 subcl 11220 . . . . . . . . . . . . . . 15 (((𝐶𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ) → ((𝐶𝑗) − (𝐵𝑗)) ∈ ℂ)
103102ancoms 459 . . . . . . . . . . . . . 14 (((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((𝐶𝑗) − (𝐵𝑗)) ∈ ℂ)
1041033ad2ant2 1133 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐶𝑗) − (𝐵𝑗)) ∈ ℂ)
105101, 104mulcomd 10996 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐵𝑖) − (𝐶𝑖))))
106 simp2r 1199 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝐶𝑗) ∈ ℂ)
107 simp2l 1198 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝐵𝑗) ∈ ℂ)
108 simp1l 1196 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝐵𝑖) ∈ ℂ)
109 simp1r 1197 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝐶𝑖) ∈ ℂ)
110 mulsub2 11419 . . . . . . . . . . . . 13 ((((𝐶𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ) ∧ ((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ)) → (((𝐶𝑗) − (𝐵𝑗)) · ((𝐵𝑖) − (𝐶𝑖))) = (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖))))
111106, 107, 108, 109, 110syl22anc 836 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑗) − (𝐵𝑗)) · ((𝐵𝑖) − (𝐶𝑖))) = (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖))))
112105, 111eqtrd 2778 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗))) = (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖))))
113112oveq2d 7291 . . . . . . . . . 10 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗)))) = ((𝑡 · (1 − 𝑡)) · (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖)))))
114 simp3 1137 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → 𝑡 ∈ ℂ)
115 subcl 11220 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ) → (1 − 𝑡) ∈ ℂ)
11628, 115mpan 687 . . . . . . . . . . . . 13 (𝑡 ∈ ℂ → (1 − 𝑡) ∈ ℂ)
1171163ad2ant3 1134 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 − 𝑡) ∈ ℂ)
118114, 117, 101, 104mul4d 11187 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗)))) = ((𝑡 · ((𝐵𝑖) − (𝐶𝑖))) · ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗)))))
119114, 108, 109subdid 11431 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · ((𝐵𝑖) − (𝐶𝑖))) = ((𝑡 · (𝐵𝑖)) − (𝑡 · (𝐶𝑖))))
12028, 117, 108, 29mp3an2i 1465 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))))
12128, 31mpan 687 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ℂ → (1 − (1 − 𝑡)) = 𝑡)
1221213ad2ant3 1134 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 − (1 − 𝑡)) = 𝑡)
123122oveq1d 7290 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = (𝑡 · (𝐵𝑖)))
124108mulid2d 10993 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 · (𝐵𝑖)) = (𝐵𝑖))
125124oveq1d 7290 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))) = ((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))))
126120, 123, 1253eqtr3d 2786 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · (𝐵𝑖)) = ((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))))
127126oveq1d 7290 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (𝐵𝑖)) − (𝑡 · (𝐶𝑖))) = (((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))))
128117, 108mulcld 10995 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐵𝑖)) ∈ ℂ)
129114, 109mulcld 10995 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · (𝐶𝑖)) ∈ ℂ)
130108, 128, 129subsub4d 11363 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
131119, 127, 1303eqtrd 2782 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · ((𝐵𝑖) − (𝐶𝑖))) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
132117, 106, 107subdid 11431 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗))) = (((1 − 𝑡) · (𝐶𝑗)) − ((1 − 𝑡) · (𝐵𝑗))))
133 subdir 11409 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑗)) = ((1 · (𝐶𝑗)) − (𝑡 · (𝐶𝑗))))
13428, 114, 106, 133mp3an2i 1465 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑗)) = ((1 · (𝐶𝑗)) − (𝑡 · (𝐶𝑗))))
135106mulid2d 10993 . . . . . . . . . . . . . . . . 17 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 · (𝐶𝑗)) = (𝐶𝑗))
136135oveq1d 7290 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 · (𝐶𝑗)) − (𝑡 · (𝐶𝑗))) = ((𝐶𝑗) − (𝑡 · (𝐶𝑗))))
137134, 136eqtrd 2778 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑗)) = ((𝐶𝑗) − (𝑡 · (𝐶𝑗))))
138137oveq1d 7290 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((1 − 𝑡) · (𝐶𝑗)) − ((1 − 𝑡) · (𝐵𝑗))) = (((𝐶𝑗) − (𝑡 · (𝐶𝑗))) − ((1 − 𝑡) · (𝐵𝑗))))
139132, 138eqtrd 2778 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝑡 · (𝐶𝑗))) − ((1 − 𝑡) · (𝐵𝑗))))
140114, 106mulcld 10995 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · (𝐶𝑗)) ∈ ℂ)
141117, 107mulcld 10995 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐵𝑗)) ∈ ℂ)
142106, 140, 141sub32d 11364 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑗) − (𝑡 · (𝐶𝑗))) − ((1 − 𝑡) · (𝐵𝑗))) = (((𝐶𝑗) − ((1 − 𝑡) · (𝐵𝑗))) − (𝑡 · (𝐶𝑗))))
143106, 141, 140subsub4d 11363 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑗) − ((1 − 𝑡) · (𝐵𝑗))) − (𝑡 · (𝐶𝑗))) = ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
144139, 142, 1433eqtrd 2782 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗))) = ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
145131, 144oveq12d 7293 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · ((𝐵𝑖) − (𝐶𝑖))) · ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗)))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))))
146118, 145eqtrd 2778 . . . . . . . . . 10 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗)))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))))
147 subcl 11220 . . . . . . . . . . . . 13 (((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((𝐵𝑗) − (𝐶𝑗)) ∈ ℂ)
1481473ad2ant2 1133 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐵𝑗) − (𝐶𝑗)) ∈ ℂ)
149 subcl 11220 . . . . . . . . . . . . . 14 (((𝐶𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → ((𝐶𝑖) − (𝐵𝑖)) ∈ ℂ)
150149ancoms 459 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((𝐶𝑖) − (𝐵𝑖)) ∈ ℂ)
1511503ad2ant1 1132 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐶𝑖) − (𝐵𝑖)) ∈ ℂ)
152114, 117, 148, 151mul4d 11187 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖)))) = ((𝑡 · ((𝐵𝑗) − (𝐶𝑗))) · ((1 − 𝑡) · ((𝐶𝑖) − (𝐵𝑖)))))
153114, 107, 106subdid 11431 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · ((𝐵𝑗) − (𝐶𝑗))) = ((𝑡 · (𝐵𝑗)) − (𝑡 · (𝐶𝑗))))
154 subdir 11409 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (1 − 𝑡) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑗)) = ((1 · (𝐵𝑗)) − ((1 − 𝑡) · (𝐵𝑗))))
15528, 117, 107, 154mp3an2i 1465 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑗)) = ((1 · (𝐵𝑗)) − ((1 − 𝑡) · (𝐵𝑗))))
156122oveq1d 7290 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑗)) = (𝑡 · (𝐵𝑗)))
157107mulid2d 10993 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 · (𝐵𝑗)) = (𝐵𝑗))
158157oveq1d 7290 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 · (𝐵𝑗)) − ((1 − 𝑡) · (𝐵𝑗))) = ((𝐵𝑗) − ((1 − 𝑡) · (𝐵𝑗))))
159155, 156, 1583eqtr3rd 2787 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐵𝑗) − ((1 − 𝑡) · (𝐵𝑗))) = (𝑡 · (𝐵𝑗)))
160159oveq1d 7290 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑗) − ((1 − 𝑡) · (𝐵𝑗))) − (𝑡 · (𝐶𝑗))) = ((𝑡 · (𝐵𝑗)) − (𝑡 · (𝐶𝑗))))
161107, 141, 140subsub4d 11363 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑗) − ((1 − 𝑡) · (𝐵𝑗))) − (𝑡 · (𝐶𝑗))) = ((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
162153, 160, 1613eqtr2d 2784 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · ((𝐵𝑗) − (𝐶𝑗))) = ((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
163117, 109, 108subdid 11431 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑖) − (𝐵𝑖))) = (((1 − 𝑡) · (𝐶𝑖)) − ((1 − 𝑡) · (𝐵𝑖))))
16428, 114, 109, 49mp3an2i 1465 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑖)) = ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))))
165109mulid2d 10993 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 · (𝐶𝑖)) = (𝐶𝑖))
166165oveq1d 7290 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))) = ((𝐶𝑖) − (𝑡 · (𝐶𝑖))))
167164, 166eqtrd 2778 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑖)) = ((𝐶𝑖) − (𝑡 · (𝐶𝑖))))
168167oveq1d 7290 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((1 − 𝑡) · (𝐶𝑖)) − ((1 − 𝑡) · (𝐵𝑖))) = (((𝐶𝑖) − (𝑡 · (𝐶𝑖))) − ((1 − 𝑡) · (𝐵𝑖))))
169109, 129, 128sub32d 11364 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑖) − (𝑡 · (𝐶𝑖))) − ((1 − 𝑡) · (𝐵𝑖))) = (((𝐶𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))))
170109, 128, 129subsub4d 11363 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
171169, 170eqtrd 2778 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑖) − (𝑡 · (𝐶𝑖))) − ((1 − 𝑡) · (𝐵𝑖))) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
172163, 168, 1713eqtrd 2782 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑖) − (𝐵𝑖))) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
173162, 172oveq12d 7293 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · ((𝐵𝑗) − (𝐶𝑗))) · ((1 − 𝑡) · ((𝐶𝑖) − (𝐵𝑖)))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
174152, 173eqtrd 2778 . . . . . . . . . 10 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖)))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
175113, 146, 1743eqtr3d 2786 . . . . . . . . 9 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
1761753expa 1117 . . . . . . . 8 (((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
17799, 14, 176syl2an 596 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
178177an32s 649 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
179178ralrimivva 3123 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) → ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
180 fveq2 6774 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝐴𝑘) = (𝐴𝑖))
181 fveq2 6774 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
182181oveq2d 7291 . . . . . . . . . . . 12 (𝑘 = 𝑖 → ((1 − 𝑡) · (𝐵𝑘)) = ((1 − 𝑡) · (𝐵𝑖)))
183 fveq2 6774 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝐶𝑘) = (𝐶𝑖))
184183oveq2d 7291 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝑡 · (𝐶𝑘)) = (𝑡 · (𝐶𝑖)))
185182, 184oveq12d 7293 . . . . . . . . . . 11 (𝑘 = 𝑖 → (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))
186180, 185eqeq12d 2754 . . . . . . . . . 10 (𝑘 = 𝑖 → ((𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
187186rspccva 3560 . . . . . . . . 9 ((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))
188 oveq2 7283 . . . . . . . . . . 11 ((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ((𝐵𝑖) − (𝐴𝑖)) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
189 oveq2 7283 . . . . . . . . . . 11 ((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ((𝐶𝑖) − (𝐴𝑖)) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
190188, 189oveq12d 7293 . . . . . . . . . 10 ((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
191190breq1d 5084 . . . . . . . . 9 ((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0))
192187, 191syl 17 . . . . . . . 8 ((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0))
193192ralbidva 3111 . . . . . . 7 (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0))
194 fveq2 6774 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
195 fveq2 6774 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
196195oveq2d 7291 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((1 − 𝑡) · (𝐵𝑘)) = ((1 − 𝑡) · (𝐵𝑗)))
197 fveq2 6774 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝐶𝑘) = (𝐶𝑗))
198197oveq2d 7291 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑡 · (𝐶𝑘)) = (𝑡 · (𝐶𝑗)))
199196, 198oveq12d 7293 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))
200194, 199eqeq12d 2754 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
201200rspccva 3560 . . . . . . . . . 10 ((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))
202 oveq2 7283 . . . . . . . . . . . 12 ((𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))) → ((𝐶𝑗) − (𝐴𝑗)) = ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
203188, 202oveqan12d 7294 . . . . . . . . . . 11 (((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) → (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))))
204 oveq2 7283 . . . . . . . . . . . 12 ((𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))) → ((𝐵𝑗) − (𝐴𝑗)) = ((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
205204, 189oveqan12rd 7295 . . . . . . . . . . 11 (((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) → (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
206203, 205eqeq12d 2754 . . . . . . . . . 10 (((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
207187, 201, 206syl2an 596 . . . . . . . . 9 (((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑖 ∈ (1...𝑁)) ∧ (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑗 ∈ (1...𝑁))) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
208207anandis 675 . . . . . . . 8 ((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
2092082ralbidva 3128 . . . . . . 7 (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
210193, 209anbi12d 631 . . . . . 6 (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))))
211210biimprcd 249 . . . . 5 ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))) → (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
21289, 179, 211syl2anc 584 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) → (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
213212rexlimdva 3213 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
214 fveere 27269 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
2152143ad2antl1 1184 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
216 mulsuble0b 11847 . . . . . . 7 (((𝐵𝑖) ∈ ℝ ∧ (𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
2173, 215, 5, 216syl3anc 1370 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
218217ralbidva 3111 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
219218anbi1d 630 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
220 simpl2 1191 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → 𝐵 ∈ (𝔼‘𝑁))
221 simpl1 1190 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → 𝐴 ∈ (𝔼‘𝑁))
222 eqeefv 27271 . . . . . . . . . . 11 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐴 ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (𝐴𝑖)))
223220, 221, 222syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → (𝐵 = 𝐴 ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (𝐴𝑖)))
2243adantlr 712 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
225215adantlr 712 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
226224, 225letri3d 11117 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) = (𝐴𝑖) ↔ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))))
227 pm4.25 903 . . . . . . . . . . . . 13 (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ∨ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))))
228 fveq1 6773 . . . . . . . . . . . . . . . . 17 (𝐵 = 𝐶 → (𝐵𝑖) = (𝐶𝑖))
229228breq2d 5086 . . . . . . . . . . . . . . . 16 (𝐵 = 𝐶 → ((𝐴𝑖) ≤ (𝐵𝑖) ↔ (𝐴𝑖) ≤ (𝐶𝑖)))
230229anbi2d 629 . . . . . . . . . . . . . . 15 (𝐵 = 𝐶 → (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖))))
231228breq1d 5084 . . . . . . . . . . . . . . . 16 (𝐵 = 𝐶 → ((𝐵𝑖) ≤ (𝐴𝑖) ↔ (𝐶𝑖) ≤ (𝐴𝑖)))
232231anbi1d 630 . . . . . . . . . . . . . . 15 (𝐵 = 𝐶 → (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))))
233230, 232orbi12d 916 . . . . . . . . . . . . . 14 (𝐵 = 𝐶 → ((((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ∨ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
234233ad2antlr 724 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ∨ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
235227, 234bitrid 282 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
236226, 235bitrd 278 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) = (𝐴𝑖) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
237236ralbidva 3111 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (𝐴𝑖) ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
238223, 237bitrd 278 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → (𝐵 = 𝐴 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
239238biimprd 247 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) → 𝐵 = 𝐴))
240239adantrd 492 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → 𝐵 = 𝐴))
241240ex 413 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → 𝐵 = 𝐴)))
242 0elunit 13201 . . . . . . . 8 0 ∈ (0[,]1)
243 fveecn 27270 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
2442433ad2antl1 1184 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
245 fveecn 27270 . . . . . . . . . . . . 13 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℂ)
2462453ad2antl2 1185 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℂ)
247 fveecn 27270 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℂ)
2482473ad2antl3 1186 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℂ)
249244, 246, 2483jca 1127 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ))
250 mulid2 10974 . . . . . . . . . . . . . . . 16 ((𝐵𝑘) ∈ ℂ → (1 · (𝐵𝑘)) = (𝐵𝑘))
251 mul02 11153 . . . . . . . . . . . . . . . 16 ((𝐶𝑘) ∈ ℂ → (0 · (𝐶𝑘)) = 0)
252250, 251oveqan12d 7294 . . . . . . . . . . . . . . 15 (((𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) → ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))) = ((𝐵𝑘) + 0))
253 addid1 11155 . . . . . . . . . . . . . . . 16 ((𝐵𝑘) ∈ ℂ → ((𝐵𝑘) + 0) = (𝐵𝑘))
254253adantr 481 . . . . . . . . . . . . . . 15 (((𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) → ((𝐵𝑘) + 0) = (𝐵𝑘))
255252, 254eqtrd 2778 . . . . . . . . . . . . . 14 (((𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) → ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))) = (𝐵𝑘))
2562553adant1 1129 . . . . . . . . . . . . 13 (((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) → ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))) = (𝐵𝑘))
257256adantr 481 . . . . . . . . . . . 12 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))) = (𝐵𝑘))
258 fveq1 6773 . . . . . . . . . . . . 13 (𝐵 = 𝐴 → (𝐵𝑘) = (𝐴𝑘))
259258ad2antll 726 . . . . . . . . . . . 12 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → (𝐵𝑘) = (𝐴𝑘))
260257, 259eqtr2d 2779 . . . . . . . . . . 11 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → (𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
261249, 260sylan 580 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → (𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
262261an32s 649 . . . . . . . . 9 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
263262ralrimiva 3103 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
264 oveq2 7283 . . . . . . . . . . . . . 14 (𝑡 = 0 → (1 − 𝑡) = (1 − 0))
265 1m0e1 12094 . . . . . . . . . . . . . 14 (1 − 0) = 1
266264, 265eqtrdi 2794 . . . . . . . . . . . . 13 (𝑡 = 0 → (1 − 𝑡) = 1)
267266oveq1d 7290 . . . . . . . . . . . 12 (𝑡 = 0 → ((1 − 𝑡) · (𝐵𝑘)) = (1 · (𝐵𝑘)))
268 oveq1 7282 . . . . . . . . . . . 12 (𝑡 = 0 → (𝑡 · (𝐶𝑘)) = (0 · (𝐶𝑘)))
269267, 268oveq12d 7293 . . . . . . . . . . 11 (𝑡 = 0 → (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
270269eqeq2d 2749 . . . . . . . . . 10 (𝑡 = 0 → ((𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘)))))
271270ralbidv 3112 . . . . . . . . 9 (𝑡 = 0 → (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘)))))
272271rspcev 3561 . . . . . . . 8 ((0 ∈ (0[,]1) ∧ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))
273242, 263, 272sylancr 587 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))
274273exp32 421 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 → (𝐵 = 𝐴 → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))))
275241, 274syldd 72 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))))
276 eqeefv 27271 . . . . . . . . 9 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 ↔ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝)))
2772763adant1 1129 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 ↔ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝)))
278277necon3abid 2980 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵𝐶 ↔ ¬ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝)))
279 df-ne 2944 . . . . . . . . 9 ((𝐵𝑝) ≠ (𝐶𝑝) ↔ ¬ (𝐵𝑝) = (𝐶𝑝))
280279rexbii 3181 . . . . . . . 8 (∃𝑝 ∈ (1...𝑁)(𝐵𝑝) ≠ (𝐶𝑝) ↔ ∃𝑝 ∈ (1...𝑁) ¬ (𝐵𝑝) = (𝐶𝑝))
281 rexnal 3169 . . . . . . . 8 (∃𝑝 ∈ (1...𝑁) ¬ (𝐵𝑝) = (𝐶𝑝) ↔ ¬ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝))
282280, 281bitri 274 . . . . . . 7 (∃𝑝 ∈ (1...𝑁)(𝐵𝑝) ≠ (𝐶𝑝) ↔ ¬ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝))
283278, 282bitr4di 289 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵𝐶 ↔ ∃𝑝 ∈ (1...𝑁)(𝐵𝑝) ≠ (𝐶𝑝)))
284 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑖 = 𝑝 → (𝐵𝑖) = (𝐵𝑝))
285 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑖 = 𝑝 → (𝐴𝑖) = (𝐴𝑝))
286284, 285breq12d 5087 . . . . . . . . . . . . . 14 (𝑖 = 𝑝 → ((𝐵𝑖) ≤ (𝐴𝑖) ↔ (𝐵𝑝) ≤ (𝐴𝑝)))
287 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑖 = 𝑝 → (𝐶𝑖) = (𝐶𝑝))
288285, 287breq12d 5087 . . . . . . . . . . . . . 14 (𝑖 = 𝑝 → ((𝐴𝑖) ≤ (𝐶𝑖) ↔ (𝐴𝑝) ≤ (𝐶𝑝)))
289286, 288anbi12d 631 . . . . . . . . . . . . 13 (𝑖 = 𝑝 → (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ↔ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))))
290287, 285breq12d 5087 . . . . . . . . . . . . . 14 (𝑖 = 𝑝 → ((𝐶𝑖) ≤ (𝐴𝑖) ↔ (𝐶𝑝) ≤ (𝐴𝑝)))
291285, 284breq12d 5087 . . . . . . . . . . . . . 14 (𝑖 = 𝑝 → ((𝐴𝑖) ≤ (𝐵𝑖) ↔ (𝐴𝑝) ≤ (𝐵𝑝)))
292290, 291anbi12d 631 . . . . . . . . . . . . 13 (𝑖 = 𝑝 → (((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))))
293289, 292orbi12d 916 . . . . . . . . . . . 12 (𝑖 = 𝑝 → ((((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ↔ (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)))))
294293rspcv 3557 . . . . . . . . . . 11 (𝑝 ∈ (1...𝑁) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) → (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)))))
295294ad2antrl 725 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) → (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)))))
296 simprr 770 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐴𝑝) ≤ (𝐶𝑝))
297 simp1 1135 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
298 simpl 483 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) → 𝑝 ∈ (1...𝑁))
299 fveere 27269 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐴𝑝) ∈ ℝ)
300297, 298, 299syl2an 596 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐴𝑝) ∈ ℝ)
301 simp3 1137 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
302 fveere 27269 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐶𝑝) ∈ ℝ)
303301, 298, 302syl2an 596 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐶𝑝) ∈ ℝ)
304 simpl2 1191 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → 𝐵 ∈ (𝔼‘𝑁))
305 simprl 768 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → 𝑝 ∈ (1...𝑁))
306 fveere 27269 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐵𝑝) ∈ ℝ)
307304, 305, 306syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐵𝑝) ∈ ℝ)
308300, 303, 307lesub1d 11582 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐴𝑝) ≤ (𝐶𝑝) ↔ ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝))))
309308adantr 481 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐴𝑝) ≤ (𝐶𝑝) ↔ ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝))))
310296, 309mpbid 231 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝)))
311300, 307resubcld 11403 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐴𝑝) − (𝐵𝑝)) ∈ ℝ)
312311adantr 481 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐴𝑝) − (𝐵𝑝)) ∈ ℝ)
313 simprl 768 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐵𝑝) ≤ (𝐴𝑝))
314300, 307subge0d 11565 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (0 ≤ ((𝐴𝑝) − (𝐵𝑝)) ↔ (𝐵𝑝) ≤ (𝐴𝑝)))
315314adantr 481 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (0 ≤ ((𝐴𝑝) − (𝐵𝑝)) ↔ (𝐵𝑝) ≤ (𝐴𝑝)))
316313, 315mpbird 256 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → 0 ≤ ((𝐴𝑝) − (𝐵𝑝)))
317303, 307resubcld 11403 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐶𝑝) − (𝐵𝑝)) ∈ ℝ)
318317adantr 481 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐶𝑝) − (𝐵𝑝)) ∈ ℝ)
319 letr 11069 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑝) ∈ ℝ ∧ (𝐴𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) → (𝐵𝑝) ≤ (𝐶𝑝)))
320307, 300, 303, 319syl3anc 1370 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) → (𝐵𝑝) ≤ (𝐶𝑝)))
321320imp 407 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐵𝑝) ≤ (𝐶𝑝))
322 simplrr 775 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐵𝑝) ≠ (𝐶𝑝))
323322necomd 2999 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐶𝑝) ≠ (𝐵𝑝))
324307, 303ltlend 11120 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐵𝑝) < (𝐶𝑝) ↔ ((𝐵𝑝) ≤ (𝐶𝑝) ∧ (𝐶𝑝) ≠ (𝐵𝑝))))
325324adantr 481 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐵𝑝) < (𝐶𝑝) ↔ ((𝐵𝑝) ≤ (𝐶𝑝) ∧ (𝐶𝑝) ≠ (𝐵𝑝))))
326321, 323, 325mpbir2and 710 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐵𝑝) < (𝐶𝑝))
327307, 303posdifd 11562 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐵𝑝) < (𝐶𝑝) ↔ 0 < ((𝐶𝑝) − (𝐵𝑝))))
328327adantr 481 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐵𝑝) < (𝐶𝑝) ↔ 0 < ((𝐶𝑝) − (𝐵𝑝))))
329326, 328mpbid 231 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → 0 < ((𝐶𝑝) − (𝐵𝑝)))
330 divelunit 13226 . . . . . . . . . . . . . 14 (((((𝐴𝑝) − (𝐵𝑝)) ∈ ℝ ∧ 0 ≤ ((𝐴𝑝) − (𝐵𝑝))) ∧ (((𝐶𝑝) − (𝐵𝑝)) ∈ ℝ ∧ 0 < ((𝐶𝑝) − (𝐵𝑝)))) → ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1) ↔ ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝))))
331312, 316, 318, 329, 330syl22anc 836 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1) ↔ ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝))))
332310, 331mpbird 256 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1))
333300recnd 11003 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐴𝑝) ∈ ℂ)
334307recnd 11003 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐵𝑝) ∈ ℂ)
335303recnd 11003 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐶𝑝) ∈ ℂ)
336 simprr 770 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐵𝑝) ≠ (𝐶𝑝))
337336necomd 2999 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐶𝑝) ≠ (𝐵𝑝))
338333, 334, 335, 334, 337div2subd 11801 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))))
339338adantr 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))))
340 simprl 768 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐶𝑝) ≤ (𝐴𝑝))
341303, 300, 307lesub2d 11583 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐶𝑝) ≤ (𝐴𝑝) ↔ ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝))))
342341adantr 481 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐶𝑝) ≤ (𝐴𝑝) ↔ ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝))))
343340, 342mpbid 231 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝)))
344307, 300resubcld 11403 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐵𝑝) − (𝐴𝑝)) ∈ ℝ)
345344adantr 481 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐵𝑝) − (𝐴𝑝)) ∈ ℝ)
346 simprr 770 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐴𝑝) ≤ (𝐵𝑝))
347307, 300subge0d 11565 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (0 ≤ ((𝐵𝑝) − (𝐴𝑝)) ↔ (𝐴𝑝) ≤ (𝐵𝑝)))
348347adantr 481 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (0 ≤ ((𝐵𝑝) − (𝐴𝑝)) ↔ (𝐴𝑝) ≤ (𝐵𝑝)))
349346, 348mpbird 256 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → 0 ≤ ((𝐵𝑝) − (𝐴𝑝)))
350307, 303resubcld 11403 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐵𝑝) − (𝐶𝑝)) ∈ ℝ)
351350adantr 481 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐵𝑝) − (𝐶𝑝)) ∈ ℝ)
352 letr 11069 . . . . . . . . . . . . . . . . . . 19 (((𝐶𝑝) ∈ ℝ ∧ (𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ) → (((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)) → (𝐶𝑝) ≤ (𝐵𝑝)))
353303, 300, 307, 352syl3anc 1370 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)) → (𝐶𝑝) ≤ (𝐵𝑝)))
354353imp 407 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐶𝑝) ≤ (𝐵𝑝))
355 simplrr 775 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐵𝑝) ≠ (𝐶𝑝))
356303, 307ltlend 11120 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐶𝑝) < (𝐵𝑝) ↔ ((𝐶𝑝) ≤ (𝐵𝑝) ∧ (𝐵𝑝) ≠ (𝐶𝑝))))
357356adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐶𝑝) < (𝐵𝑝) ↔ ((𝐶𝑝) ≤ (𝐵𝑝) ∧ (𝐵𝑝) ≠ (𝐶𝑝))))
358354, 355, 357mpbir2and 710 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐶𝑝) < (𝐵𝑝))
359303, 307posdifd 11562 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐶𝑝) < (𝐵𝑝) ↔ 0 < ((𝐵𝑝) − (𝐶𝑝))))
360359adantr 481 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐶𝑝) < (𝐵𝑝) ↔ 0 < ((𝐵𝑝) − (𝐶𝑝))))
361358, 360mpbid 231 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → 0 < ((𝐵𝑝) − (𝐶𝑝)))
362 divelunit 13226 . . . . . . . . . . . . . . 15 (((((𝐵𝑝) − (𝐴𝑝)) ∈ ℝ ∧ 0 ≤ ((𝐵𝑝) − (𝐴𝑝))) ∧ (((𝐵𝑝) − (𝐶𝑝)) ∈ ℝ ∧ 0 < ((𝐵𝑝) − (𝐶𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))) ∈ (0[,]1) ↔ ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝))))
363345, 349, 351, 361, 362syl22anc 836 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))) ∈ (0[,]1) ↔ ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝))))
364343, 363mpbird 256 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))) ∈ (0[,]1))
365339, 364eqeltrd 2839 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1))
366332, 365jaodan 955 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1))
367366ex 413 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1)))
368295, 367syld 47 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1)))
369 simp2l 1198 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝑝 ∈ (1...𝑁))
370 simp3 1137 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ (1...𝑁))
371284, 285oveq12d 7293 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑝 → ((𝐵𝑖) − (𝐴𝑖)) = ((𝐵𝑝) − (𝐴𝑝)))
372371oveq1d 7290 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑝 → (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑗) − (𝐴𝑗))))
373287, 285oveq12d 7293 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑝 → ((𝐶𝑖) − (𝐴𝑖)) = ((𝐶𝑝) − (𝐴𝑝)))
374373oveq2d 7291 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑝 → (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑝) − (𝐴𝑝))))
375372, 374eqeq12d 2754 . . . . . . . . . . . . . . 15 (𝑖 = 𝑝 → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑝) − (𝐴𝑝)))))
376 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → (𝐶𝑗) = (𝐶𝑘))
377 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
378376, 377oveq12d 7293 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → ((𝐶𝑗) − (𝐴𝑗)) = ((𝐶𝑘) − (𝐴𝑘)))
379378oveq2d 7291 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))))
380 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
381380, 377oveq12d 7293 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → ((𝐵𝑗) − (𝐴𝑗)) = ((𝐵𝑘) − (𝐴𝑘)))
382381oveq1d 7290 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))))
383379, 382eqeq12d 2754 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑝) − (𝐴𝑝))) ↔ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))))
384375, 383rspc2v 3570 . . . . . . . . . . . . . 14 ((𝑝 ∈ (1...𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))))
385369, 370, 384syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))))
386 simp11 1202 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
387386, 370, 243syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
388 simp12 1203 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
389388, 370, 245syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℂ)
390 simp13 1204 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
391390, 370, 247syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℂ)
3923333adant3 1131 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑝) ∈ ℂ)
3933343adant3 1131 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑝) ∈ ℂ)
3943353adant3 1131 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑝) ∈ ℂ)
395 simp2r 1199 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑝) ≠ (𝐶𝑝))
396395necomd 2999 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑝) ≠ (𝐵𝑝))
397 simpl23 1252 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐶𝑝) ∈ ℂ)
398 simpl21 1250 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐴𝑝) ∈ ℂ)
399397, 398subcld 11332 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐶𝑝) − (𝐴𝑝)) ∈ ℂ)
400 simpl12 1248 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐵𝑘) ∈ ℂ)
401399, 400mulcld 10995 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) ∈ ℂ)
402 simpl22 1251 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐵𝑝) ∈ ℂ)
403398, 402subcld 11332 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐴𝑝) − (𝐵𝑝)) ∈ ℂ)
404 simpl13 1249 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐶𝑘) ∈ ℂ)
405403, 404mulcld 10995 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)) ∈ ℂ)
406397, 402subcld 11332 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐶𝑝) − (𝐵𝑝)) ∈ ℂ)
407 simpl3 1192 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐶𝑝) ≠ (𝐵𝑝))
408397, 402, 407subne0d 11341 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐶𝑝) − (𝐵𝑝)) ≠ 0)
409401, 405, 406, 408divdird 11789 . . . . . . . . . . . . . . . 16 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) / ((𝐶𝑝) − (𝐵𝑝))) = (((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) + ((((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)) / ((𝐶𝑝) − (𝐵𝑝)))))
410 npncan2 11248 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐵𝑝) ∈ ℂ ∧ (𝐴𝑝) ∈ ℂ) → (((𝐵𝑝) − (𝐴𝑝)) + ((𝐴𝑝) − (𝐵𝑝))) = 0)
411402, 398, 410syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) + ((𝐴𝑝) − (𝐵𝑝))) = 0)
412411oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) + ((𝐴𝑝) − (𝐵𝑝))) · (𝐶𝑘)) = (0 · (𝐶𝑘)))
413402, 398subcld 11332 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐵𝑝) − (𝐴𝑝)) ∈ ℂ)
414413, 403, 404adddird 11000 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) + ((𝐴𝑝) − (𝐵𝑝))) · (𝐶𝑘)) = ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
415404mul02d 11173 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (0 · (𝐶𝑘)) = 0)
416412, 414, 4153eqtr3d 2786 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) = 0)
417416oveq1d 7290 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = (0 + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))))
418413, 404mulcld 10995 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) ∈ ℂ)
419 simpl11 1247 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐴𝑘) ∈ ℂ)
420406, 419mulcld 10995 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) ∈ ℂ)
421418, 405, 420add32d 11202 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
422420addid2d 11176 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (0 + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)))
423417, 421, 4223eqtr3rd 2787 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
424399, 419mulcld 10995 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) ∈ ℂ)
425413, 419mulcld 10995 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘)) ∈ ℂ)
426418, 424, 425addsubd 11353 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
427397, 402, 398nnncan2d 11367 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) − ((𝐵𝑝) − (𝐴𝑝))) = ((𝐶𝑝) − (𝐵𝑝)))
428427oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) − ((𝐵𝑝) − (𝐴𝑝))) · (𝐴𝑘)) = (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)))
429399, 413, 419subdird 11432 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) − ((𝐵𝑝) − (𝐴𝑝))) · (𝐴𝑘)) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
430428, 429eqtr3d 2780 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
431430oveq2d 7291 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + ((((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘)))))
432418, 424, 425addsubassd 11352 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + ((((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘)))))
433431, 432eqtr4d 2781 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
434413, 404, 419subdid 11431 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
435434oveq1d 7290 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
436426, 433, 4353eqtr4d 2788 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
437436oveq1d 7290 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
438423, 437eqtrd 2778 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = (((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
439 simpr 485 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))))
440439oveq1d 7290 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = ((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
441440oveq1d 7290 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) = (((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
442400, 419subcld 11332 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ℂ)
443442, 399mulcomd 10996 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑘) − (𝐴𝑘))))
444443oveq1d 7290 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = ((((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
445399, 442, 419adddid 10999 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) · (((𝐵𝑘) − (𝐴𝑘)) + (𝐴𝑘))) = ((((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
446400, 419npcand 11336 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑘) − (𝐴𝑘)) + (𝐴𝑘)) = (𝐵𝑘))
447446oveq2d 7291 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) · (((𝐵𝑘) − (𝐴𝑘)) + (𝐴𝑘))) = (((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)))
448444, 445, 4473eqtr2d 2784 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = (((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)))
449448oveq1d 7290 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
450438, 441, 4493eqtrd 2782 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
451401, 405addcld 10994 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) ∈ ℂ)
452451, 406, 419, 408divmuld 11773 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) / ((𝐶𝑝) − (𝐵𝑝))) = (𝐴𝑘) ↔ (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)))))
453450, 452mpbird 256 . . . . . . . . . . . . . . . 16 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) / ((𝐶𝑝) − (𝐵𝑝))) = (𝐴𝑘))
454399, 400, 406, 408div23d 11788 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) = ((((𝐶𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐵𝑘)))
455406, 403, 406, 408divsubdird 11790 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐵𝑝)) − ((𝐴𝑝) − (𝐵𝑝))) / ((𝐶𝑝) − (𝐵𝑝))) = ((((𝐶𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))))
456397, 398, 402nnncan2d 11367 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) − ((𝐴𝑝) − (𝐵𝑝))) = ((𝐶𝑝) − (𝐴𝑝)))
457456oveq1d 7290 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐵𝑝)) − ((𝐴𝑝) − (𝐵𝑝))) / ((𝐶𝑝) − (𝐵𝑝))) = (((𝐶𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐵𝑝))))
458406, 408dividd 11749 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) = 1)
459458oveq1d 7290 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) = (1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))))
460455, 457, 4593eqtr3d 2786 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) = (1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))))
461460oveq1d 7290 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐵𝑘)) = ((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)))
462454, 461eqtrd 2778 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) = ((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)))
463403, 404, 406, 408div23d 11788 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) = ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))
464462, 463oveq12d 7293 . . . . . . . . . . . . . . . 16 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) + ((((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)) / ((𝐶𝑝) − (𝐵𝑝)))) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))
465409, 453, 4643eqtr3d 2786 . . . . . . . . . . . . . . 15 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))
466465ex 413 . . . . . . . . . . . . . 14 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
467387, 389, 391, 392, 393, 394, 396, 466syl331anc 1394 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
468385, 467syld 47 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
4694683expia 1120 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝑘 ∈ (1...𝑁) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))))
470469com23 86 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (𝑘 ∈ (1...𝑁) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))))
471470ralrimdv 3105 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
472368, 471anim12d 609 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1) ∧ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))))
473 oveq2 7283 . . . . . . . . . . . . 13 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → (1 − 𝑡) = (1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))))
474473oveq1d 7290 . . . . . . . . . . . 12 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → ((1 − 𝑡) · (𝐵𝑘)) = ((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)))
475 oveq1 7282 . . . . . . . . . . . 12 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → (𝑡 · (𝐶𝑘)) = ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))
476474, 475oveq12d 7293 . . . . . . . . . . 11 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))
477476eqeq2d 2749 . . . . . . . . . 10 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → ((𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
478477ralbidv 3112 . . . . . . . . 9 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
479478rspcev 3561 . . . . . . . 8 (((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1) ∧ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))
480472, 479syl6 35 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘)))))
481480rexlimdvaa 3214 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∃𝑝 ∈ (1...𝑁)(𝐵𝑝) ≠ (𝐶𝑝) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))))
482283, 481sylbid 239 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵𝐶 → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))))
483275, 482pm2.61dne 3031 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘)))))
484219, 483sylbid 239 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘)))))
485213, 484impbid 211 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
4861, 485bitrd 278 1 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cop 4567   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  [,]cicc 13082  ...cfz 13239  cexp 13782  𝔼cee 27256   Btwn cbtwn 27257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-icc 13086  df-fz 13240  df-seq 13722  df-exp 13783  df-ee 27259  df-btwn 27260
This theorem is referenced by:  colinearalg  27278
  Copyright terms: Public domain W3C validator