MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brbtwn2 Structured version   Visualization version   GIF version

Theorem brbtwn2 26697
Description: Alternate characterization of betweenness, with no existential quantifiers. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
brbtwn2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝐶,𝑖,𝑗

Proof of Theorem brbtwn2
Dummy variables 𝑘 𝑝 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brbtwn 26691 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘)))))
2 fveere 26693 . . . . . . . . . 10 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
323ad2antl2 1183 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
4 fveere 26693 . . . . . . . . . 10 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
543ad2antl3 1184 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
63, 5jca 515 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ))
7 resubcl 10939 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℝ)
873adant3 1129 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℝ)
98recnd 10658 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℂ)
109sqvald 13503 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (𝐶𝑖))↑2) = (((𝐵𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))))
1110oveq2d 7156 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) = ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖)))))
12 elicc01 12844 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
1312simp1bi 1142 . . . . . . . . . . . . . 14 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℝ)
1413recnd 10658 . . . . . . . . . . . . 13 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℂ)
15143ad2ant3 1132 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℂ)
16 1re 10630 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
17 resubcl 10939 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
1816, 13, 17sylancr 590 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0[,]1) → (1 − 𝑡) ∈ ℝ)
19183ad2ant3 1132 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℝ)
2019recnd 10658 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℂ)
2120negcld 10973 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → -(1 − 𝑡) ∈ ℂ)
2215, 9, 21, 9mul4d 10841 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · ((𝐵𝑖) − (𝐶𝑖))) · (-(1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖)))) = ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖)))))
23 recn 10616 . . . . . . . . . . . . . . 15 ((𝐵𝑖) ∈ ℝ → (𝐵𝑖) ∈ ℂ)
24233ad2ant1 1130 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝐵𝑖) ∈ ℂ)
25 recn 10616 . . . . . . . . . . . . . . 15 ((𝐶𝑖) ∈ ℝ → (𝐶𝑖) ∈ ℂ)
26253ad2ant2 1131 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝐶𝑖) ∈ ℂ)
2715, 24, 26subdid 11085 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · ((𝐵𝑖) − (𝐶𝑖))) = ((𝑡 · (𝐵𝑖)) − (𝑡 · (𝐶𝑖))))
28 ax-1cn 10584 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
29 subdir 11063 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (1 − 𝑡) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))))
3028, 20, 24, 29mp3an2i 1463 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))))
31 nncan 10904 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ) → (1 − (1 − 𝑡)) = 𝑡)
3228, 15, 31sylancr 590 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 − (1 − 𝑡)) = 𝑡)
3332oveq1d 7155 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = (𝑡 · (𝐵𝑖)))
3424mulid2d 10648 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 · (𝐵𝑖)) = (𝐵𝑖))
3534oveq1d 7155 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))) = ((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))))
3630, 33, 353eqtr3d 2865 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (𝐵𝑖)) = ((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))))
3736oveq1d 7155 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · (𝐵𝑖)) − (𝑡 · (𝐶𝑖))) = (((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))))
38 simp1 1133 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝐵𝑖) ∈ ℝ)
3919, 38remulcld 10660 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · (𝐵𝑖)) ∈ ℝ)
4039recnd 10658 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · (𝐵𝑖)) ∈ ℂ)
41133ad2ant3 1132 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℝ)
42 simp2 1134 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝐶𝑖) ∈ ℝ)
4341, 42remulcld 10660 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (𝐶𝑖)) ∈ ℝ)
4443recnd 10658 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (𝐶𝑖)) ∈ ℂ)
4524, 40, 44subsub4d 11017 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4627, 37, 453eqtrd 2861 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · ((𝐵𝑖) − (𝐶𝑖))) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4720, 9mulneg1d 11082 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (-(1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = -((1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))))
4820, 24, 26subdid 11085 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) − ((1 − 𝑡) · (𝐶𝑖))))
49 subdir 11063 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑖)) = ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))))
5028, 15, 26, 49mp3an2i 1463 . . . . . . . . . . . . . . . . 17 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · (𝐶𝑖)) = ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))))
5126mulid2d 10648 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 · (𝐶𝑖)) = (𝐶𝑖))
5251oveq1d 7155 . . . . . . . . . . . . . . . . 17 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))) = ((𝐶𝑖) − (𝑡 · (𝐶𝑖))))
5350, 52eqtrd 2857 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · (𝐶𝑖)) = ((𝐶𝑖) − (𝑡 · (𝐶𝑖))))
5453oveq2d 7156 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((1 − 𝑡) · (𝐵𝑖)) − ((1 − 𝑡) · (𝐶𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) − ((𝐶𝑖) − (𝑡 · (𝐶𝑖)))))
5540, 26, 44subsub3d 11016 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((1 − 𝑡) · (𝐵𝑖)) − ((𝐶𝑖) − (𝑡 · (𝐶𝑖)))) = ((((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) − (𝐶𝑖)))
5648, 54, 553eqtrd 2861 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = ((((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) − (𝐶𝑖)))
5756negeqd 10869 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → -((1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = -((((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) − (𝐶𝑖)))
5839, 43readdcld 10659 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∈ ℝ)
5958recnd 10658 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∈ ℂ)
6059, 26negsubdi2d 11002 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → -((((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) − (𝐶𝑖)) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
6147, 57, 603eqtrd 2861 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (-(1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
6246, 61oveq12d 7158 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · ((𝐵𝑖) − (𝐶𝑖))) · (-(1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖)))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
6311, 22, 623eqtr2rd 2864 . . . . . . . . . 10 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) = ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
6415, 20mulneg2d 11083 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · -(1 − 𝑡)) = -(𝑡 · (1 − 𝑡)))
6564oveq1d 7155 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) = (-(𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
6641, 19remulcld 10660 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (1 − 𝑡)) ∈ ℝ)
6766recnd 10658 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (1 − 𝑡)) ∈ ℂ)
688resqcld 13607 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (𝐶𝑖))↑2) ∈ ℝ)
6968recnd 10658 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (𝐶𝑖))↑2) ∈ ℂ)
7067, 69mulneg1d 11082 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (-(𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) = -((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
7165, 70eqtrd 2857 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) = -((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
7212simp2bi 1143 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0[,]1) → 0 ≤ 𝑡)
7312simp3bi 1144 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0[,]1) → 𝑡 ≤ 1)
74 subge0 11142 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (0 ≤ (1 − 𝑡) ↔ 𝑡 ≤ 1))
7516, 13, 74sylancr 590 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0[,]1) → (0 ≤ (1 − 𝑡) ↔ 𝑡 ≤ 1))
7673, 75mpbird 260 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0[,]1) → 0 ≤ (1 − 𝑡))
7713, 18, 72, 76mulge0d 11206 . . . . . . . . . . . . . 14 (𝑡 ∈ (0[,]1) → 0 ≤ (𝑡 · (1 − 𝑡)))
78773ad2ant3 1132 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ (𝑡 · (1 − 𝑡)))
798sqge0d 13608 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ (((𝐵𝑖) − (𝐶𝑖))↑2))
8066, 68, 78, 79mulge0d 11206 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
8166, 68remulcld 10660 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ∈ ℝ)
8281le0neg2d 11201 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (0 ≤ ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ↔ -((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ≤ 0))
8380, 82mpbid 235 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → -((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ≤ 0)
8471, 83eqbrtrd 5064 . . . . . . . . . 10 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ≤ 0)
8563, 84eqbrtrd 5064 . . . . . . . . 9 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
86853expa 1115 . . . . . . . 8 ((((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
876, 86sylan 583 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
8887an32s 651 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
8988ralrimiva 3174 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) → ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
90 fveecn 26694 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
91 fveecn 26694 . . . . . . . . . . . 12 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
9290, 91anim12i 615 . . . . . . . . . . 11 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁))) → ((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ))
9392anandirs 678 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ))
94 fveecn 26694 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) ∈ ℂ)
95 fveecn 26694 . . . . . . . . . . . 12 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
9694, 95anim12i 615 . . . . . . . . . . 11 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁))) → ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ))
9796anandirs 678 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ))
9893, 97anim12dan 621 . . . . . . . . 9 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)))
99983adantl1 1163 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)))
100 subcl 10874 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℂ)
1011003ad2ant1 1130 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℂ)
102 subcl 10874 . . . . . . . . . . . . . . 15 (((𝐶𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ) → ((𝐶𝑗) − (𝐵𝑗)) ∈ ℂ)
103102ancoms 462 . . . . . . . . . . . . . 14 (((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((𝐶𝑗) − (𝐵𝑗)) ∈ ℂ)
1041033ad2ant2 1131 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐶𝑗) − (𝐵𝑗)) ∈ ℂ)
105101, 104mulcomd 10651 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐵𝑖) − (𝐶𝑖))))
106 simp2r 1197 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝐶𝑗) ∈ ℂ)
107 simp2l 1196 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝐵𝑗) ∈ ℂ)
108 simp1l 1194 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝐵𝑖) ∈ ℂ)
109 simp1r 1195 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝐶𝑖) ∈ ℂ)
110 mulsub2 11073 . . . . . . . . . . . . 13 ((((𝐶𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ) ∧ ((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ)) → (((𝐶𝑗) − (𝐵𝑗)) · ((𝐵𝑖) − (𝐶𝑖))) = (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖))))
111106, 107, 108, 109, 110syl22anc 837 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑗) − (𝐵𝑗)) · ((𝐵𝑖) − (𝐶𝑖))) = (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖))))
112105, 111eqtrd 2857 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗))) = (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖))))
113112oveq2d 7156 . . . . . . . . . 10 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗)))) = ((𝑡 · (1 − 𝑡)) · (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖)))))
114 simp3 1135 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → 𝑡 ∈ ℂ)
115 subcl 10874 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ) → (1 − 𝑡) ∈ ℂ)
11628, 115mpan 689 . . . . . . . . . . . . 13 (𝑡 ∈ ℂ → (1 − 𝑡) ∈ ℂ)
1171163ad2ant3 1132 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 − 𝑡) ∈ ℂ)
118114, 117, 101, 104mul4d 10841 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗)))) = ((𝑡 · ((𝐵𝑖) − (𝐶𝑖))) · ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗)))))
119114, 108, 109subdid 11085 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · ((𝐵𝑖) − (𝐶𝑖))) = ((𝑡 · (𝐵𝑖)) − (𝑡 · (𝐶𝑖))))
12028, 117, 108, 29mp3an2i 1463 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))))
12128, 31mpan 689 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ℂ → (1 − (1 − 𝑡)) = 𝑡)
1221213ad2ant3 1132 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 − (1 − 𝑡)) = 𝑡)
123122oveq1d 7155 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = (𝑡 · (𝐵𝑖)))
124108mulid2d 10648 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 · (𝐵𝑖)) = (𝐵𝑖))
125124oveq1d 7155 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))) = ((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))))
126120, 123, 1253eqtr3d 2865 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · (𝐵𝑖)) = ((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))))
127126oveq1d 7155 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (𝐵𝑖)) − (𝑡 · (𝐶𝑖))) = (((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))))
128117, 108mulcld 10650 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐵𝑖)) ∈ ℂ)
129114, 109mulcld 10650 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · (𝐶𝑖)) ∈ ℂ)
130108, 128, 129subsub4d 11017 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
131119, 127, 1303eqtrd 2861 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · ((𝐵𝑖) − (𝐶𝑖))) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
132117, 106, 107subdid 11085 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗))) = (((1 − 𝑡) · (𝐶𝑗)) − ((1 − 𝑡) · (𝐵𝑗))))
133 subdir 11063 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑗)) = ((1 · (𝐶𝑗)) − (𝑡 · (𝐶𝑗))))
13428, 114, 106, 133mp3an2i 1463 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑗)) = ((1 · (𝐶𝑗)) − (𝑡 · (𝐶𝑗))))
135106mulid2d 10648 . . . . . . . . . . . . . . . . 17 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 · (𝐶𝑗)) = (𝐶𝑗))
136135oveq1d 7155 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 · (𝐶𝑗)) − (𝑡 · (𝐶𝑗))) = ((𝐶𝑗) − (𝑡 · (𝐶𝑗))))
137134, 136eqtrd 2857 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑗)) = ((𝐶𝑗) − (𝑡 · (𝐶𝑗))))
138137oveq1d 7155 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((1 − 𝑡) · (𝐶𝑗)) − ((1 − 𝑡) · (𝐵𝑗))) = (((𝐶𝑗) − (𝑡 · (𝐶𝑗))) − ((1 − 𝑡) · (𝐵𝑗))))
139132, 138eqtrd 2857 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝑡 · (𝐶𝑗))) − ((1 − 𝑡) · (𝐵𝑗))))
140114, 106mulcld 10650 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · (𝐶𝑗)) ∈ ℂ)
141117, 107mulcld 10650 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐵𝑗)) ∈ ℂ)
142106, 140, 141sub32d 11018 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑗) − (𝑡 · (𝐶𝑗))) − ((1 − 𝑡) · (𝐵𝑗))) = (((𝐶𝑗) − ((1 − 𝑡) · (𝐵𝑗))) − (𝑡 · (𝐶𝑗))))
143106, 141, 140subsub4d 11017 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑗) − ((1 − 𝑡) · (𝐵𝑗))) − (𝑡 · (𝐶𝑗))) = ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
144139, 142, 1433eqtrd 2861 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗))) = ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
145131, 144oveq12d 7158 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · ((𝐵𝑖) − (𝐶𝑖))) · ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗)))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))))
146118, 145eqtrd 2857 . . . . . . . . . 10 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗)))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))))
147 subcl 10874 . . . . . . . . . . . . 13 (((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((𝐵𝑗) − (𝐶𝑗)) ∈ ℂ)
1481473ad2ant2 1131 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐵𝑗) − (𝐶𝑗)) ∈ ℂ)
149 subcl 10874 . . . . . . . . . . . . . 14 (((𝐶𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → ((𝐶𝑖) − (𝐵𝑖)) ∈ ℂ)
150149ancoms 462 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((𝐶𝑖) − (𝐵𝑖)) ∈ ℂ)
1511503ad2ant1 1130 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐶𝑖) − (𝐵𝑖)) ∈ ℂ)
152114, 117, 148, 151mul4d 10841 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖)))) = ((𝑡 · ((𝐵𝑗) − (𝐶𝑗))) · ((1 − 𝑡) · ((𝐶𝑖) − (𝐵𝑖)))))
153114, 107, 106subdid 11085 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · ((𝐵𝑗) − (𝐶𝑗))) = ((𝑡 · (𝐵𝑗)) − (𝑡 · (𝐶𝑗))))
154 subdir 11063 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (1 − 𝑡) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑗)) = ((1 · (𝐵𝑗)) − ((1 − 𝑡) · (𝐵𝑗))))
15528, 117, 107, 154mp3an2i 1463 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑗)) = ((1 · (𝐵𝑗)) − ((1 − 𝑡) · (𝐵𝑗))))
156122oveq1d 7155 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑗)) = (𝑡 · (𝐵𝑗)))
157107mulid2d 10648 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 · (𝐵𝑗)) = (𝐵𝑗))
158157oveq1d 7155 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 · (𝐵𝑗)) − ((1 − 𝑡) · (𝐵𝑗))) = ((𝐵𝑗) − ((1 − 𝑡) · (𝐵𝑗))))
159155, 156, 1583eqtr3rd 2866 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐵𝑗) − ((1 − 𝑡) · (𝐵𝑗))) = (𝑡 · (𝐵𝑗)))
160159oveq1d 7155 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑗) − ((1 − 𝑡) · (𝐵𝑗))) − (𝑡 · (𝐶𝑗))) = ((𝑡 · (𝐵𝑗)) − (𝑡 · (𝐶𝑗))))
161107, 141, 140subsub4d 11017 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑗) − ((1 − 𝑡) · (𝐵𝑗))) − (𝑡 · (𝐶𝑗))) = ((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
162153, 160, 1613eqtr2d 2863 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · ((𝐵𝑗) − (𝐶𝑗))) = ((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
163117, 109, 108subdid 11085 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑖) − (𝐵𝑖))) = (((1 − 𝑡) · (𝐶𝑖)) − ((1 − 𝑡) · (𝐵𝑖))))
16428, 114, 109, 49mp3an2i 1463 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑖)) = ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))))
165109mulid2d 10648 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 · (𝐶𝑖)) = (𝐶𝑖))
166165oveq1d 7155 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))) = ((𝐶𝑖) − (𝑡 · (𝐶𝑖))))
167164, 166eqtrd 2857 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑖)) = ((𝐶𝑖) − (𝑡 · (𝐶𝑖))))
168167oveq1d 7155 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((1 − 𝑡) · (𝐶𝑖)) − ((1 − 𝑡) · (𝐵𝑖))) = (((𝐶𝑖) − (𝑡 · (𝐶𝑖))) − ((1 − 𝑡) · (𝐵𝑖))))
169109, 129, 128sub32d 11018 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑖) − (𝑡 · (𝐶𝑖))) − ((1 − 𝑡) · (𝐵𝑖))) = (((𝐶𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))))
170109, 128, 129subsub4d 11017 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
171169, 170eqtrd 2857 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑖) − (𝑡 · (𝐶𝑖))) − ((1 − 𝑡) · (𝐵𝑖))) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
172163, 168, 1713eqtrd 2861 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑖) − (𝐵𝑖))) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
173162, 172oveq12d 7158 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · ((𝐵𝑗) − (𝐶𝑗))) · ((1 − 𝑡) · ((𝐶𝑖) − (𝐵𝑖)))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
174152, 173eqtrd 2857 . . . . . . . . . 10 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖)))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
175113, 146, 1743eqtr3d 2865 . . . . . . . . 9 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
1761753expa 1115 . . . . . . . 8 (((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
17799, 14, 176syl2an 598 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
178177an32s 651 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
179178ralrimivva 3181 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) → ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
180 fveq2 6652 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝐴𝑘) = (𝐴𝑖))
181 fveq2 6652 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
182181oveq2d 7156 . . . . . . . . . . . 12 (𝑘 = 𝑖 → ((1 − 𝑡) · (𝐵𝑘)) = ((1 − 𝑡) · (𝐵𝑖)))
183 fveq2 6652 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝐶𝑘) = (𝐶𝑖))
184183oveq2d 7156 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝑡 · (𝐶𝑘)) = (𝑡 · (𝐶𝑖)))
185182, 184oveq12d 7158 . . . . . . . . . . 11 (𝑘 = 𝑖 → (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))
186180, 185eqeq12d 2838 . . . . . . . . . 10 (𝑘 = 𝑖 → ((𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
187186rspccva 3597 . . . . . . . . 9 ((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))
188 oveq2 7148 . . . . . . . . . . 11 ((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ((𝐵𝑖) − (𝐴𝑖)) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
189 oveq2 7148 . . . . . . . . . . 11 ((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ((𝐶𝑖) − (𝐴𝑖)) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
190188, 189oveq12d 7158 . . . . . . . . . 10 ((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
191190breq1d 5052 . . . . . . . . 9 ((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0))
192187, 191syl 17 . . . . . . . 8 ((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0))
193192ralbidva 3186 . . . . . . 7 (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0))
194 fveq2 6652 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
195 fveq2 6652 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
196195oveq2d 7156 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((1 − 𝑡) · (𝐵𝑘)) = ((1 − 𝑡) · (𝐵𝑗)))
197 fveq2 6652 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝐶𝑘) = (𝐶𝑗))
198197oveq2d 7156 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑡 · (𝐶𝑘)) = (𝑡 · (𝐶𝑗)))
199196, 198oveq12d 7158 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))
200194, 199eqeq12d 2838 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
201200rspccva 3597 . . . . . . . . . 10 ((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))
202 oveq2 7148 . . . . . . . . . . . 12 ((𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))) → ((𝐶𝑗) − (𝐴𝑗)) = ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
203188, 202oveqan12d 7159 . . . . . . . . . . 11 (((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) → (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))))
204 oveq2 7148 . . . . . . . . . . . 12 ((𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))) → ((𝐵𝑗) − (𝐴𝑗)) = ((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
205204, 189oveqan12rd 7160 . . . . . . . . . . 11 (((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) → (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
206203, 205eqeq12d 2838 . . . . . . . . . 10 (((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
207187, 201, 206syl2an 598 . . . . . . . . 9 (((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑖 ∈ (1...𝑁)) ∧ (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑗 ∈ (1...𝑁))) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
208207anandis 677 . . . . . . . 8 ((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
2092082ralbidva 3188 . . . . . . 7 (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
210193, 209anbi12d 633 . . . . . 6 (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))))
211210biimprcd 253 . . . . 5 ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))) → (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
21289, 179, 211syl2anc 587 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) → (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
213212rexlimdva 3270 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
214 fveere 26693 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
2152143ad2antl1 1182 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
216 mulsuble0b 11501 . . . . . . 7 (((𝐵𝑖) ∈ ℝ ∧ (𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
2173, 215, 5, 216syl3anc 1368 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
218217ralbidva 3186 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
219218anbi1d 632 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
220 simpl2 1189 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → 𝐵 ∈ (𝔼‘𝑁))
221 simpl1 1188 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → 𝐴 ∈ (𝔼‘𝑁))
222 eqeefv 26695 . . . . . . . . . . 11 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐴 ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (𝐴𝑖)))
223220, 221, 222syl2anc 587 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → (𝐵 = 𝐴 ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (𝐴𝑖)))
2243adantlr 714 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
225215adantlr 714 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
226224, 225letri3d 10771 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) = (𝐴𝑖) ↔ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))))
227 pm4.25 903 . . . . . . . . . . . . 13 (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ∨ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))))
228 fveq1 6651 . . . . . . . . . . . . . . . . 17 (𝐵 = 𝐶 → (𝐵𝑖) = (𝐶𝑖))
229228breq2d 5054 . . . . . . . . . . . . . . . 16 (𝐵 = 𝐶 → ((𝐴𝑖) ≤ (𝐵𝑖) ↔ (𝐴𝑖) ≤ (𝐶𝑖)))
230229anbi2d 631 . . . . . . . . . . . . . . 15 (𝐵 = 𝐶 → (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖))))
231228breq1d 5052 . . . . . . . . . . . . . . . 16 (𝐵 = 𝐶 → ((𝐵𝑖) ≤ (𝐴𝑖) ↔ (𝐶𝑖) ≤ (𝐴𝑖)))
232231anbi1d 632 . . . . . . . . . . . . . . 15 (𝐵 = 𝐶 → (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))))
233230, 232orbi12d 916 . . . . . . . . . . . . . 14 (𝐵 = 𝐶 → ((((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ∨ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
234233ad2antlr 726 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ∨ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
235227, 234syl5bb 286 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
236226, 235bitrd 282 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) = (𝐴𝑖) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
237236ralbidva 3186 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (𝐴𝑖) ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
238223, 237bitrd 282 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → (𝐵 = 𝐴 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
239238biimprd 251 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) → 𝐵 = 𝐴))
240239adantrd 495 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → 𝐵 = 𝐴))
241240ex 416 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → 𝐵 = 𝐴)))
242 0elunit 12847 . . . . . . . 8 0 ∈ (0[,]1)
243 fveecn 26694 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
2442433ad2antl1 1182 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
245 fveecn 26694 . . . . . . . . . . . . 13 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℂ)
2462453ad2antl2 1183 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℂ)
247 fveecn 26694 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℂ)
2482473ad2antl3 1184 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℂ)
249244, 246, 2483jca 1125 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ))
250 mulid2 10629 . . . . . . . . . . . . . . . 16 ((𝐵𝑘) ∈ ℂ → (1 · (𝐵𝑘)) = (𝐵𝑘))
251 mul02 10807 . . . . . . . . . . . . . . . 16 ((𝐶𝑘) ∈ ℂ → (0 · (𝐶𝑘)) = 0)
252250, 251oveqan12d 7159 . . . . . . . . . . . . . . 15 (((𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) → ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))) = ((𝐵𝑘) + 0))
253 addid1 10809 . . . . . . . . . . . . . . . 16 ((𝐵𝑘) ∈ ℂ → ((𝐵𝑘) + 0) = (𝐵𝑘))
254253adantr 484 . . . . . . . . . . . . . . 15 (((𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) → ((𝐵𝑘) + 0) = (𝐵𝑘))
255252, 254eqtrd 2857 . . . . . . . . . . . . . 14 (((𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) → ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))) = (𝐵𝑘))
2562553adant1 1127 . . . . . . . . . . . . 13 (((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) → ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))) = (𝐵𝑘))
257256adantr 484 . . . . . . . . . . . 12 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))) = (𝐵𝑘))
258 fveq1 6651 . . . . . . . . . . . . 13 (𝐵 = 𝐴 → (𝐵𝑘) = (𝐴𝑘))
259258ad2antll 728 . . . . . . . . . . . 12 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → (𝐵𝑘) = (𝐴𝑘))
260257, 259eqtr2d 2858 . . . . . . . . . . 11 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → (𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
261249, 260sylan 583 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → (𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
262261an32s 651 . . . . . . . . 9 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
263262ralrimiva 3174 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
264 oveq2 7148 . . . . . . . . . . . . . 14 (𝑡 = 0 → (1 − 𝑡) = (1 − 0))
265 1m0e1 11746 . . . . . . . . . . . . . 14 (1 − 0) = 1
266264, 265syl6eq 2873 . . . . . . . . . . . . 13 (𝑡 = 0 → (1 − 𝑡) = 1)
267266oveq1d 7155 . . . . . . . . . . . 12 (𝑡 = 0 → ((1 − 𝑡) · (𝐵𝑘)) = (1 · (𝐵𝑘)))
268 oveq1 7147 . . . . . . . . . . . 12 (𝑡 = 0 → (𝑡 · (𝐶𝑘)) = (0 · (𝐶𝑘)))
269267, 268oveq12d 7158 . . . . . . . . . . 11 (𝑡 = 0 → (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
270269eqeq2d 2833 . . . . . . . . . 10 (𝑡 = 0 → ((𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘)))))
271270ralbidv 3187 . . . . . . . . 9 (𝑡 = 0 → (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘)))))
272271rspcev 3598 . . . . . . . 8 ((0 ∈ (0[,]1) ∧ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))
273242, 263, 272sylancr 590 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))
274273exp32 424 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 → (𝐵 = 𝐴 → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))))
275241, 274syldd 72 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))))
276 eqeefv 26695 . . . . . . . . 9 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 ↔ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝)))
2772763adant1 1127 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 ↔ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝)))
278277necon3abid 3047 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵𝐶 ↔ ¬ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝)))
279 df-ne 3012 . . . . . . . . 9 ((𝐵𝑝) ≠ (𝐶𝑝) ↔ ¬ (𝐵𝑝) = (𝐶𝑝))
280279rexbii 3235 . . . . . . . 8 (∃𝑝 ∈ (1...𝑁)(𝐵𝑝) ≠ (𝐶𝑝) ↔ ∃𝑝 ∈ (1...𝑁) ¬ (𝐵𝑝) = (𝐶𝑝))
281 rexnal 3226 . . . . . . . 8 (∃𝑝 ∈ (1...𝑁) ¬ (𝐵𝑝) = (𝐶𝑝) ↔ ¬ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝))
282280, 281bitri 278 . . . . . . 7 (∃𝑝 ∈ (1...𝑁)(𝐵𝑝) ≠ (𝐶𝑝) ↔ ¬ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝))
283278, 282syl6bbr 292 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵𝐶 ↔ ∃𝑝 ∈ (1...𝑁)(𝐵𝑝) ≠ (𝐶𝑝)))
284 fveq2 6652 . . . . . . . . . . . . . . 15 (𝑖 = 𝑝 → (𝐵𝑖) = (𝐵𝑝))
285 fveq2 6652 . . . . . . . . . . . . . . 15 (𝑖 = 𝑝 → (𝐴𝑖) = (𝐴𝑝))
286284, 285breq12d 5055 . . . . . . . . . . . . . 14 (𝑖 = 𝑝 → ((𝐵𝑖) ≤ (𝐴𝑖) ↔ (𝐵𝑝) ≤ (𝐴𝑝)))
287 fveq2 6652 . . . . . . . . . . . . . . 15 (𝑖 = 𝑝 → (𝐶𝑖) = (𝐶𝑝))
288285, 287breq12d 5055 . . . . . . . . . . . . . 14 (𝑖 = 𝑝 → ((𝐴𝑖) ≤ (𝐶𝑖) ↔ (𝐴𝑝) ≤ (𝐶𝑝)))
289286, 288anbi12d 633 . . . . . . . . . . . . 13 (𝑖 = 𝑝 → (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ↔ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))))
290287, 285breq12d 5055 . . . . . . . . . . . . . 14 (𝑖 = 𝑝 → ((𝐶𝑖) ≤ (𝐴𝑖) ↔ (𝐶𝑝) ≤ (𝐴𝑝)))
291285, 284breq12d 5055 . . . . . . . . . . . . . 14 (𝑖 = 𝑝 → ((𝐴𝑖) ≤ (𝐵𝑖) ↔ (𝐴𝑝) ≤ (𝐵𝑝)))
292290, 291anbi12d 633 . . . . . . . . . . . . 13 (𝑖 = 𝑝 → (((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))))
293289, 292orbi12d 916 . . . . . . . . . . . 12 (𝑖 = 𝑝 → ((((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ↔ (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)))))
294293rspcv 3593 . . . . . . . . . . 11 (𝑝 ∈ (1...𝑁) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) → (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)))))
295294ad2antrl 727 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) → (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)))))
296 simprr 772 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐴𝑝) ≤ (𝐶𝑝))
297 simp1 1133 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
298 simpl 486 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) → 𝑝 ∈ (1...𝑁))
299 fveere 26693 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐴𝑝) ∈ ℝ)
300297, 298, 299syl2an 598 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐴𝑝) ∈ ℝ)
301 simp3 1135 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
302 fveere 26693 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐶𝑝) ∈ ℝ)
303301, 298, 302syl2an 598 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐶𝑝) ∈ ℝ)
304 simpl2 1189 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → 𝐵 ∈ (𝔼‘𝑁))
305 simprl 770 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → 𝑝 ∈ (1...𝑁))
306 fveere 26693 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐵𝑝) ∈ ℝ)
307304, 305, 306syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐵𝑝) ∈ ℝ)
308300, 303, 307lesub1d 11236 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐴𝑝) ≤ (𝐶𝑝) ↔ ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝))))
309308adantr 484 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐴𝑝) ≤ (𝐶𝑝) ↔ ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝))))
310296, 309mpbid 235 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝)))
311300, 307resubcld 11057 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐴𝑝) − (𝐵𝑝)) ∈ ℝ)
312311adantr 484 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐴𝑝) − (𝐵𝑝)) ∈ ℝ)
313 simprl 770 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐵𝑝) ≤ (𝐴𝑝))
314300, 307subge0d 11219 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (0 ≤ ((𝐴𝑝) − (𝐵𝑝)) ↔ (𝐵𝑝) ≤ (𝐴𝑝)))
315314adantr 484 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (0 ≤ ((𝐴𝑝) − (𝐵𝑝)) ↔ (𝐵𝑝) ≤ (𝐴𝑝)))
316313, 315mpbird 260 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → 0 ≤ ((𝐴𝑝) − (𝐵𝑝)))
317303, 307resubcld 11057 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐶𝑝) − (𝐵𝑝)) ∈ ℝ)
318317adantr 484 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐶𝑝) − (𝐵𝑝)) ∈ ℝ)
319 letr 10723 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑝) ∈ ℝ ∧ (𝐴𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) → (𝐵𝑝) ≤ (𝐶𝑝)))
320307, 300, 303, 319syl3anc 1368 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) → (𝐵𝑝) ≤ (𝐶𝑝)))
321320imp 410 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐵𝑝) ≤ (𝐶𝑝))
322 simplrr 777 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐵𝑝) ≠ (𝐶𝑝))
323322necomd 3066 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐶𝑝) ≠ (𝐵𝑝))
324307, 303ltlend 10774 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐵𝑝) < (𝐶𝑝) ↔ ((𝐵𝑝) ≤ (𝐶𝑝) ∧ (𝐶𝑝) ≠ (𝐵𝑝))))
325324adantr 484 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐵𝑝) < (𝐶𝑝) ↔ ((𝐵𝑝) ≤ (𝐶𝑝) ∧ (𝐶𝑝) ≠ (𝐵𝑝))))
326321, 323, 325mpbir2and 712 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐵𝑝) < (𝐶𝑝))
327307, 303posdifd 11216 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐵𝑝) < (𝐶𝑝) ↔ 0 < ((𝐶𝑝) − (𝐵𝑝))))
328327adantr 484 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐵𝑝) < (𝐶𝑝) ↔ 0 < ((𝐶𝑝) − (𝐵𝑝))))
329326, 328mpbid 235 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → 0 < ((𝐶𝑝) − (𝐵𝑝)))
330 divelunit 12872 . . . . . . . . . . . . . 14 (((((𝐴𝑝) − (𝐵𝑝)) ∈ ℝ ∧ 0 ≤ ((𝐴𝑝) − (𝐵𝑝))) ∧ (((𝐶𝑝) − (𝐵𝑝)) ∈ ℝ ∧ 0 < ((𝐶𝑝) − (𝐵𝑝)))) → ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1) ↔ ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝))))
331312, 316, 318, 329, 330syl22anc 837 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1) ↔ ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝))))
332310, 331mpbird 260 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1))
333300recnd 10658 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐴𝑝) ∈ ℂ)
334307recnd 10658 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐵𝑝) ∈ ℂ)
335303recnd 10658 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐶𝑝) ∈ ℂ)
336 simprr 772 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐵𝑝) ≠ (𝐶𝑝))
337336necomd 3066 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐶𝑝) ≠ (𝐵𝑝))
338333, 334, 335, 334, 337div2subd 11455 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))))
339338adantr 484 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))))
340 simprl 770 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐶𝑝) ≤ (𝐴𝑝))
341303, 300, 307lesub2d 11237 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐶𝑝) ≤ (𝐴𝑝) ↔ ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝))))
342341adantr 484 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐶𝑝) ≤ (𝐴𝑝) ↔ ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝))))
343340, 342mpbid 235 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝)))
344307, 300resubcld 11057 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐵𝑝) − (𝐴𝑝)) ∈ ℝ)
345344adantr 484 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐵𝑝) − (𝐴𝑝)) ∈ ℝ)
346 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐴𝑝) ≤ (𝐵𝑝))
347307, 300subge0d 11219 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (0 ≤ ((𝐵𝑝) − (𝐴𝑝)) ↔ (𝐴𝑝) ≤ (𝐵𝑝)))
348347adantr 484 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (0 ≤ ((𝐵𝑝) − (𝐴𝑝)) ↔ (𝐴𝑝) ≤ (𝐵𝑝)))
349346, 348mpbird 260 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → 0 ≤ ((𝐵𝑝) − (𝐴𝑝)))
350307, 303resubcld 11057 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐵𝑝) − (𝐶𝑝)) ∈ ℝ)
351350adantr 484 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐵𝑝) − (𝐶𝑝)) ∈ ℝ)
352 letr 10723 . . . . . . . . . . . . . . . . . . 19 (((𝐶𝑝) ∈ ℝ ∧ (𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ) → (((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)) → (𝐶𝑝) ≤ (𝐵𝑝)))
353303, 300, 307, 352syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)) → (𝐶𝑝) ≤ (𝐵𝑝)))
354353imp 410 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐶𝑝) ≤ (𝐵𝑝))
355 simplrr 777 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐵𝑝) ≠ (𝐶𝑝))
356303, 307ltlend 10774 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐶𝑝) < (𝐵𝑝) ↔ ((𝐶𝑝) ≤ (𝐵𝑝) ∧ (𝐵𝑝) ≠ (𝐶𝑝))))
357356adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐶𝑝) < (𝐵𝑝) ↔ ((𝐶𝑝) ≤ (𝐵𝑝) ∧ (𝐵𝑝) ≠ (𝐶𝑝))))
358354, 355, 357mpbir2and 712 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐶𝑝) < (𝐵𝑝))
359303, 307posdifd 11216 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐶𝑝) < (𝐵𝑝) ↔ 0 < ((𝐵𝑝) − (𝐶𝑝))))
360359adantr 484 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐶𝑝) < (𝐵𝑝) ↔ 0 < ((𝐵𝑝) − (𝐶𝑝))))
361358, 360mpbid 235 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → 0 < ((𝐵𝑝) − (𝐶𝑝)))
362 divelunit 12872 . . . . . . . . . . . . . . 15 (((((𝐵𝑝) − (𝐴𝑝)) ∈ ℝ ∧ 0 ≤ ((𝐵𝑝) − (𝐴𝑝))) ∧ (((𝐵𝑝) − (𝐶𝑝)) ∈ ℝ ∧ 0 < ((𝐵𝑝) − (𝐶𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))) ∈ (0[,]1) ↔ ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝))))
363345, 349, 351, 361, 362syl22anc 837 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))) ∈ (0[,]1) ↔ ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝))))
364343, 363mpbird 260 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))) ∈ (0[,]1))
365339, 364eqeltrd 2914 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1))
366332, 365jaodan 955 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1))
367366ex 416 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1)))
368295, 367syld 47 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1)))
369 simp2l 1196 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝑝 ∈ (1...𝑁))
370 simp3 1135 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ (1...𝑁))
371284, 285oveq12d 7158 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑝 → ((𝐵𝑖) − (𝐴𝑖)) = ((𝐵𝑝) − (𝐴𝑝)))
372371oveq1d 7155 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑝 → (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑗) − (𝐴𝑗))))
373287, 285oveq12d 7158 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑝 → ((𝐶𝑖) − (𝐴𝑖)) = ((𝐶𝑝) − (𝐴𝑝)))
374373oveq2d 7156 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑝 → (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑝) − (𝐴𝑝))))
375372, 374eqeq12d 2838 . . . . . . . . . . . . . . 15 (𝑖 = 𝑝 → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑝) − (𝐴𝑝)))))
376 fveq2 6652 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → (𝐶𝑗) = (𝐶𝑘))
377 fveq2 6652 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
378376, 377oveq12d 7158 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → ((𝐶𝑗) − (𝐴𝑗)) = ((𝐶𝑘) − (𝐴𝑘)))
379378oveq2d 7156 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))))
380 fveq2 6652 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
381380, 377oveq12d 7158 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → ((𝐵𝑗) − (𝐴𝑗)) = ((𝐵𝑘) − (𝐴𝑘)))
382381oveq1d 7155 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))))
383379, 382eqeq12d 2838 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑝) − (𝐴𝑝))) ↔ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))))
384375, 383rspc2v 3608 . . . . . . . . . . . . . 14 ((𝑝 ∈ (1...𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))))
385369, 370, 384syl2anc 587 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))))
386 simp11 1200 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
387386, 370, 243syl2anc 587 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
388 simp12 1201 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
389388, 370, 245syl2anc 587 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℂ)
390 simp13 1202 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
391390, 370, 247syl2anc 587 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℂ)
3923333adant3 1129 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑝) ∈ ℂ)
3933343adant3 1129 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑝) ∈ ℂ)
3943353adant3 1129 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑝) ∈ ℂ)
395 simp2r 1197 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑝) ≠ (𝐶𝑝))
396395necomd 3066 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑝) ≠ (𝐵𝑝))
397 simpl23 1250 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐶𝑝) ∈ ℂ)
398 simpl21 1248 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐴𝑝) ∈ ℂ)
399397, 398subcld 10986 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐶𝑝) − (𝐴𝑝)) ∈ ℂ)
400 simpl12 1246 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐵𝑘) ∈ ℂ)
401399, 400mulcld 10650 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) ∈ ℂ)
402 simpl22 1249 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐵𝑝) ∈ ℂ)
403398, 402subcld 10986 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐴𝑝) − (𝐵𝑝)) ∈ ℂ)
404 simpl13 1247 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐶𝑘) ∈ ℂ)
405403, 404mulcld 10650 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)) ∈ ℂ)
406397, 402subcld 10986 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐶𝑝) − (𝐵𝑝)) ∈ ℂ)
407 simpl3 1190 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐶𝑝) ≠ (𝐵𝑝))
408397, 402, 407subne0d 10995 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐶𝑝) − (𝐵𝑝)) ≠ 0)
409401, 405, 406, 408divdird 11443 . . . . . . . . . . . . . . . 16 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) / ((𝐶𝑝) − (𝐵𝑝))) = (((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) + ((((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)) / ((𝐶𝑝) − (𝐵𝑝)))))
410 npncan2 10902 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐵𝑝) ∈ ℂ ∧ (𝐴𝑝) ∈ ℂ) → (((𝐵𝑝) − (𝐴𝑝)) + ((𝐴𝑝) − (𝐵𝑝))) = 0)
411402, 398, 410syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) + ((𝐴𝑝) − (𝐵𝑝))) = 0)
412411oveq1d 7155 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) + ((𝐴𝑝) − (𝐵𝑝))) · (𝐶𝑘)) = (0 · (𝐶𝑘)))
413402, 398subcld 10986 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐵𝑝) − (𝐴𝑝)) ∈ ℂ)
414413, 403, 404adddird 10655 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) + ((𝐴𝑝) − (𝐵𝑝))) · (𝐶𝑘)) = ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
415404mul02d 10827 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (0 · (𝐶𝑘)) = 0)
416412, 414, 4153eqtr3d 2865 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) = 0)
417416oveq1d 7155 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = (0 + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))))
418413, 404mulcld 10650 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) ∈ ℂ)
419 simpl11 1245 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐴𝑘) ∈ ℂ)
420406, 419mulcld 10650 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) ∈ ℂ)
421418, 405, 420add32d 10856 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
422420addid2d 10830 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (0 + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)))
423417, 421, 4223eqtr3rd 2866 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
424399, 419mulcld 10650 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) ∈ ℂ)
425413, 419mulcld 10650 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘)) ∈ ℂ)
426418, 424, 425addsubd 11007 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
427397, 402, 398nnncan2d 11021 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) − ((𝐵𝑝) − (𝐴𝑝))) = ((𝐶𝑝) − (𝐵𝑝)))
428427oveq1d 7155 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) − ((𝐵𝑝) − (𝐴𝑝))) · (𝐴𝑘)) = (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)))
429399, 413, 419subdird 11086 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) − ((𝐵𝑝) − (𝐴𝑝))) · (𝐴𝑘)) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
430428, 429eqtr3d 2859 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
431430oveq2d 7156 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + ((((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘)))))
432418, 424, 425addsubassd 11006 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + ((((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘)))))
433431, 432eqtr4d 2860 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
434413, 404, 419subdid 11085 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
435434oveq1d 7155 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
436426, 433, 4353eqtr4d 2867 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
437436oveq1d 7155 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
438423, 437eqtrd 2857 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = (((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
439 simpr 488 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))))
440439oveq1d 7155 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = ((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
441440oveq1d 7155 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) = (((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
442400, 419subcld 10986 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ℂ)
443442, 399mulcomd 10651 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑘) − (𝐴𝑘))))
444443oveq1d 7155 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = ((((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
445399, 442, 419adddid 10654 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) · (((𝐵𝑘) − (𝐴𝑘)) + (𝐴𝑘))) = ((((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
446400, 419npcand 10990 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑘) − (𝐴𝑘)) + (𝐴𝑘)) = (𝐵𝑘))
447446oveq2d 7156 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) · (((𝐵𝑘) − (𝐴𝑘)) + (𝐴𝑘))) = (((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)))
448444, 445, 4473eqtr2d 2863 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = (((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)))
449448oveq1d 7155 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
450438, 441, 4493eqtrd 2861 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
451401, 405addcld 10649 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) ∈ ℂ)
452451, 406, 419, 408divmuld 11427 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) / ((𝐶𝑝) − (𝐵𝑝))) = (𝐴𝑘) ↔ (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)))))
453450, 452mpbird 260 . . . . . . . . . . . . . . . 16 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) / ((𝐶𝑝) − (𝐵𝑝))) = (𝐴𝑘))
454399, 400, 406, 408div23d 11442 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) = ((((𝐶𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐵𝑘)))
455406, 403, 406, 408divsubdird 11444 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐵𝑝)) − ((𝐴𝑝) − (𝐵𝑝))) / ((𝐶𝑝) − (𝐵𝑝))) = ((((𝐶𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))))
456397, 398, 402nnncan2d 11021 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) − ((𝐴𝑝) − (𝐵𝑝))) = ((𝐶𝑝) − (𝐴𝑝)))
457456oveq1d 7155 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐵𝑝)) − ((𝐴𝑝) − (𝐵𝑝))) / ((𝐶𝑝) − (𝐵𝑝))) = (((𝐶𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐵𝑝))))
458406, 408dividd 11403 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) = 1)
459458oveq1d 7155 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) = (1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))))
460455, 457, 4593eqtr3d 2865 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) = (1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))))
461460oveq1d 7155 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐵𝑘)) = ((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)))
462454, 461eqtrd 2857 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) = ((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)))
463403, 404, 406, 408div23d 11442 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) = ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))
464462, 463oveq12d 7158 . . . . . . . . . . . . . . . 16 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) + ((((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)) / ((𝐶𝑝) − (𝐵𝑝)))) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))
465409, 453, 4643eqtr3d 2865 . . . . . . . . . . . . . . 15 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))
466465ex 416 . . . . . . . . . . . . . 14 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
467387, 389, 391, 392, 393, 394, 396, 466syl331anc 1392 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
468385, 467syld 47 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
4694683expia 1118 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝑘 ∈ (1...𝑁) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))))
470469com23 86 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (𝑘 ∈ (1...𝑁) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))))
471470ralrimdv 3178 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
472368, 471anim12d 611 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1) ∧ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))))
473 oveq2 7148 . . . . . . . . . . . . 13 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → (1 − 𝑡) = (1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))))
474473oveq1d 7155 . . . . . . . . . . . 12 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → ((1 − 𝑡) · (𝐵𝑘)) = ((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)))
475 oveq1 7147 . . . . . . . . . . . 12 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → (𝑡 · (𝐶𝑘)) = ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))
476474, 475oveq12d 7158 . . . . . . . . . . 11 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))
477476eqeq2d 2833 . . . . . . . . . 10 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → ((𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
478477ralbidv 3187 . . . . . . . . 9 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
479478rspcev 3598 . . . . . . . 8 (((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1) ∧ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))
480472, 479syl6 35 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘)))))
481480rexlimdvaa 3271 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∃𝑝 ∈ (1...𝑁)(𝐵𝑝) ≠ (𝐶𝑝) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))))
482283, 481sylbid 243 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵𝐶 → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))))
483275, 482pm2.61dne 3097 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘)))))
484219, 483sylbid 243 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘)))))
485213, 484impbid 215 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
4861, 485bitrd 282 1 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2114  wne 3011  wral 3130  wrex 3131  cop 4545   class class class wbr 5042  cfv 6334  (class class class)co 7140  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  2c2 11680  [,]cicc 12729  ...cfz 12885  cexp 13425  𝔼cee 26680   Btwn cbtwn 26681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-icc 12733  df-fz 12886  df-seq 13365  df-exp 13426  df-ee 26683  df-btwn 26684
This theorem is referenced by:  colinearalg  26702
  Copyright terms: Public domain W3C validator