Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  brbtwn2 Structured version   Visualization version   GIF version

Theorem brbtwn2 26697
 Description: Alternate characterization of betweenness, with no existential quantifiers. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
brbtwn2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝐶,𝑖,𝑗

Proof of Theorem brbtwn2
Dummy variables 𝑘 𝑝 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brbtwn 26691 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘)))))
2 fveere 26693 . . . . . . . . . 10 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
323ad2antl2 1183 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
4 fveere 26693 . . . . . . . . . 10 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
543ad2antl3 1184 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
63, 5jca 515 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ))
7 resubcl 10939 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℝ)
873adant3 1129 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℝ)
98recnd 10658 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℂ)
109sqvald 13503 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (𝐶𝑖))↑2) = (((𝐵𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))))
1110oveq2d 7156 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) = ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖)))))
12 elicc01 12844 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
1312simp1bi 1142 . . . . . . . . . . . . . 14 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℝ)
1413recnd 10658 . . . . . . . . . . . . 13 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℂ)
15143ad2ant3 1132 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℂ)
16 1re 10630 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
17 resubcl 10939 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
1816, 13, 17sylancr 590 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0[,]1) → (1 − 𝑡) ∈ ℝ)
19183ad2ant3 1132 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℝ)
2019recnd 10658 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℂ)
2120negcld 10973 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → -(1 − 𝑡) ∈ ℂ)
2215, 9, 21, 9mul4d 10841 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · ((𝐵𝑖) − (𝐶𝑖))) · (-(1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖)))) = ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖)))))
23 recn 10616 . . . . . . . . . . . . . . 15 ((𝐵𝑖) ∈ ℝ → (𝐵𝑖) ∈ ℂ)
24233ad2ant1 1130 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝐵𝑖) ∈ ℂ)
25 recn 10616 . . . . . . . . . . . . . . 15 ((𝐶𝑖) ∈ ℝ → (𝐶𝑖) ∈ ℂ)
26253ad2ant2 1131 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝐶𝑖) ∈ ℂ)
2715, 24, 26subdid 11085 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · ((𝐵𝑖) − (𝐶𝑖))) = ((𝑡 · (𝐵𝑖)) − (𝑡 · (𝐶𝑖))))
28 ax-1cn 10584 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
29 subdir 11063 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (1 − 𝑡) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))))
3028, 20, 24, 29mp3an2i 1463 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))))
31 nncan 10904 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ) → (1 − (1 − 𝑡)) = 𝑡)
3228, 15, 31sylancr 590 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 − (1 − 𝑡)) = 𝑡)
3332oveq1d 7155 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = (𝑡 · (𝐵𝑖)))
3424mulid2d 10648 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 · (𝐵𝑖)) = (𝐵𝑖))
3534oveq1d 7155 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))) = ((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))))
3630, 33, 353eqtr3d 2865 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (𝐵𝑖)) = ((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))))
3736oveq1d 7155 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · (𝐵𝑖)) − (𝑡 · (𝐶𝑖))) = (((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))))
38 simp1 1133 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝐵𝑖) ∈ ℝ)
3919, 38remulcld 10660 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · (𝐵𝑖)) ∈ ℝ)
4039recnd 10658 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · (𝐵𝑖)) ∈ ℂ)
41133ad2ant3 1132 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℝ)
42 simp2 1134 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝐶𝑖) ∈ ℝ)
4341, 42remulcld 10660 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (𝐶𝑖)) ∈ ℝ)
4443recnd 10658 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (𝐶𝑖)) ∈ ℂ)
4524, 40, 44subsub4d 11017 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4627, 37, 453eqtrd 2861 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · ((𝐵𝑖) − (𝐶𝑖))) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4720, 9mulneg1d 11082 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (-(1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = -((1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))))
4820, 24, 26subdid 11085 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) − ((1 − 𝑡) · (𝐶𝑖))))
49 subdir 11063 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑖)) = ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))))
5028, 15, 26, 49mp3an2i 1463 . . . . . . . . . . . . . . . . 17 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · (𝐶𝑖)) = ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))))
5126mulid2d 10648 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 · (𝐶𝑖)) = (𝐶𝑖))
5251oveq1d 7155 . . . . . . . . . . . . . . . . 17 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))) = ((𝐶𝑖) − (𝑡 · (𝐶𝑖))))
5350, 52eqtrd 2857 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · (𝐶𝑖)) = ((𝐶𝑖) − (𝑡 · (𝐶𝑖))))
5453oveq2d 7156 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((1 − 𝑡) · (𝐵𝑖)) − ((1 − 𝑡) · (𝐶𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) − ((𝐶𝑖) − (𝑡 · (𝐶𝑖)))))
5540, 26, 44subsub3d 11016 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((1 − 𝑡) · (𝐵𝑖)) − ((𝐶𝑖) − (𝑡 · (𝐶𝑖)))) = ((((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) − (𝐶𝑖)))
5648, 54, 553eqtrd 2861 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = ((((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) − (𝐶𝑖)))
5756negeqd 10869 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → -((1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = -((((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) − (𝐶𝑖)))
5839, 43readdcld 10659 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∈ ℝ)
5958recnd 10658 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∈ ℂ)
6059, 26negsubdi2d 11002 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → -((((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) − (𝐶𝑖)) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
6147, 57, 603eqtrd 2861 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (-(1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
6246, 61oveq12d 7158 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · ((𝐵𝑖) − (𝐶𝑖))) · (-(1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖)))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
6311, 22, 623eqtr2rd 2864 . . . . . . . . . 10 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) = ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
6415, 20mulneg2d 11083 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · -(1 − 𝑡)) = -(𝑡 · (1 − 𝑡)))
6564oveq1d 7155 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) = (-(𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
6641, 19remulcld 10660 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (1 − 𝑡)) ∈ ℝ)
6766recnd 10658 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (1 − 𝑡)) ∈ ℂ)
688resqcld 13607 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (𝐶𝑖))↑2) ∈ ℝ)
6968recnd 10658 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (𝐶𝑖))↑2) ∈ ℂ)
7067, 69mulneg1d 11082 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (-(𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) = -((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
7165, 70eqtrd 2857 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) = -((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
7212simp2bi 1143 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0[,]1) → 0 ≤ 𝑡)
7312simp3bi 1144 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0[,]1) → 𝑡 ≤ 1)
74 subge0 11142 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (0 ≤ (1 − 𝑡) ↔ 𝑡 ≤ 1))
7516, 13, 74sylancr 590 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0[,]1) → (0 ≤ (1 − 𝑡) ↔ 𝑡 ≤ 1))
7673, 75mpbird 260 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0[,]1) → 0 ≤ (1 − 𝑡))
7713, 18, 72, 76mulge0d 11206 . . . . . . . . . . . . . 14 (𝑡 ∈ (0[,]1) → 0 ≤ (𝑡 · (1 − 𝑡)))
78773ad2ant3 1132 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ (𝑡 · (1 − 𝑡)))
798sqge0d 13608 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ (((𝐵𝑖) − (𝐶𝑖))↑2))
8066, 68, 78, 79mulge0d 11206 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
8166, 68remulcld 10660 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ∈ ℝ)
8281le0neg2d 11201 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (0 ≤ ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ↔ -((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ≤ 0))
8380, 82mpbid 235 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → -((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ≤ 0)
8471, 83eqbrtrd 5064 . . . . . . . . . 10 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ≤ 0)
8563, 84eqbrtrd 5064 . . . . . . . . 9 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
86853expa 1115 . . . . . . . 8 ((((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
876, 86sylan 583 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
8887an32s 651 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
8988ralrimiva 3174 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) → ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
90 fveecn 26694 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
91 fveecn 26694 . . . . . . . . . . . 12 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
9290, 91anim12i 615 . . . . . . . . . . 11 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁))) → ((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ))
9392anandirs 678 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ))
94 fveecn 26694 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) ∈ ℂ)
95 fveecn 26694 . . . . . . . . . . . 12 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
9694, 95anim12i 615 . . . . . . . . . . 11 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁))) → ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ))
9796anandirs 678 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ))
9893, 97anim12dan 621 . . . . . . . . 9 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)))
99983adantl1 1163 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)))
100 subcl 10874 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℂ)
1011003ad2ant1 1130 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℂ)
102 subcl 10874 . . . . . . . . . . . . . . 15 (((𝐶𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ) → ((𝐶𝑗) − (𝐵𝑗)) ∈ ℂ)
103102ancoms 462 . . . . . . . . . . . . . 14 (((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((𝐶𝑗) − (𝐵𝑗)) ∈ ℂ)
1041033ad2ant2 1131 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐶𝑗) − (𝐵𝑗)) ∈ ℂ)
105101, 104mulcomd 10651 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐵𝑖) − (𝐶𝑖))))
106 simp2r 1197 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝐶𝑗) ∈ ℂ)
107 simp2l 1196 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝐵𝑗) ∈ ℂ)
108 simp1l 1194 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝐵𝑖) ∈ ℂ)
109 simp1r 1195 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝐶𝑖) ∈ ℂ)
110 mulsub2 11073 . . . . . . . . . . . . 13 ((((𝐶𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ) ∧ ((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ)) → (((𝐶𝑗) − (𝐵𝑗)) · ((𝐵𝑖) − (𝐶𝑖))) = (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖))))
111106, 107, 108, 109, 110syl22anc 837 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑗) − (𝐵𝑗)) · ((𝐵𝑖) − (𝐶𝑖))) = (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖))))
112105, 111eqtrd 2857 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗))) = (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖))))
113112oveq2d 7156 . . . . . . . . . 10 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗)))) = ((𝑡 · (1 − 𝑡)) · (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖)))))
114 simp3 1135 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → 𝑡 ∈ ℂ)
115 subcl 10874 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ) → (1 − 𝑡) ∈ ℂ)
11628, 115mpan 689 . . . . . . . . . . . . 13 (𝑡 ∈ ℂ → (1 − 𝑡) ∈ ℂ)
1171163ad2ant3 1132 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 − 𝑡) ∈ ℂ)
118114, 117, 101, 104mul4d 10841 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗)))) = ((𝑡 · ((𝐵𝑖) − (𝐶𝑖))) · ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗)))))
119114, 108, 109subdid 11085 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · ((𝐵𝑖) − (𝐶𝑖))) = ((𝑡 · (𝐵𝑖)) − (𝑡 · (𝐶𝑖))))
12028, 117, 108, 29mp3an2i 1463 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))))
12128, 31mpan 689 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ℂ → (1 − (1 − 𝑡)) = 𝑡)
1221213ad2ant3 1132 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 − (1 − 𝑡)) = 𝑡)
123122oveq1d 7155 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = (𝑡 · (𝐵𝑖)))
124108mulid2d 10648 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 · (𝐵𝑖)) = (𝐵𝑖))
125124oveq1d 7155 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))) = ((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))))
126120, 123, 1253eqtr3d 2865 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · (𝐵𝑖)) = ((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))))
127126oveq1d 7155 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (𝐵𝑖)) − (𝑡 · (𝐶𝑖))) = (((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))))
128117, 108mulcld 10650 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐵𝑖)) ∈ ℂ)
129114, 109mulcld 10650 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · (𝐶𝑖)) ∈ ℂ)
130108, 128, 129subsub4d 11017 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
131119, 127, 1303eqtrd 2861 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · ((𝐵𝑖) − (𝐶𝑖))) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
132117, 106, 107subdid 11085 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗))) = (((1 − 𝑡) · (𝐶𝑗)) − ((1 − 𝑡) · (𝐵𝑗))))
133 subdir 11063 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑗)) = ((1 · (𝐶𝑗)) − (𝑡 · (𝐶𝑗))))
13428, 114, 106, 133mp3an2i 1463 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑗)) = ((1 · (𝐶𝑗)) − (𝑡 · (𝐶𝑗))))
135106mulid2d 10648 . . . . . . . . . . . . . . . . 17 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 · (𝐶𝑗)) = (𝐶𝑗))
136135oveq1d 7155 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 · (𝐶𝑗)) − (𝑡 · (𝐶𝑗))) = ((𝐶𝑗) − (𝑡 · (𝐶𝑗))))
137134, 136eqtrd 2857 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑗)) = ((𝐶𝑗) − (𝑡 · (𝐶𝑗))))
138137oveq1d 7155 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((1 − 𝑡) · (𝐶𝑗)) − ((1 − 𝑡) · (𝐵𝑗))) = (((𝐶𝑗) − (𝑡 · (𝐶𝑗))) − ((1 − 𝑡) · (𝐵𝑗))))
139132, 138eqtrd 2857 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝑡 · (𝐶𝑗))) − ((1 − 𝑡) · (𝐵𝑗))))
140114, 106mulcld 10650 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · (𝐶𝑗)) ∈ ℂ)
141117, 107mulcld 10650 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐵𝑗)) ∈ ℂ)
142106, 140, 141sub32d 11018 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑗) − (𝑡 · (𝐶𝑗))) − ((1 − 𝑡) · (𝐵𝑗))) = (((𝐶𝑗) − ((1 − 𝑡) · (𝐵𝑗))) − (𝑡 · (𝐶𝑗))))
143106, 141, 140subsub4d 11017 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑗) − ((1 − 𝑡) · (𝐵𝑗))) − (𝑡 · (𝐶𝑗))) = ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
144139, 142, 1433eqtrd 2861 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗))) = ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
145131, 144oveq12d 7158 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · ((𝐵𝑖) − (𝐶𝑖))) · ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗)))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))))
146118, 145eqtrd 2857 . . . . . . . . . 10 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗)))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))))
147 subcl 10874 . . . . . . . . . . . . 13 (((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((𝐵𝑗) − (𝐶𝑗)) ∈ ℂ)
1481473ad2ant2 1131 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐵𝑗) − (𝐶𝑗)) ∈ ℂ)
149 subcl 10874 . . . . . . . . . . . . . 14 (((𝐶𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → ((𝐶𝑖) − (𝐵𝑖)) ∈ ℂ)
150149ancoms 462 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((𝐶𝑖) − (𝐵𝑖)) ∈ ℂ)
1511503ad2ant1 1130 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐶𝑖) − (𝐵𝑖)) ∈ ℂ)
152114, 117, 148, 151mul4d 10841 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖)))) = ((𝑡 · ((𝐵𝑗) − (𝐶𝑗))) · ((1 − 𝑡) · ((𝐶𝑖) − (𝐵𝑖)))))
153114, 107, 106subdid 11085 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · ((𝐵𝑗) − (𝐶𝑗))) = ((𝑡 · (𝐵𝑗)) − (𝑡 · (𝐶𝑗))))
154 subdir 11063 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (1 − 𝑡) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑗)) = ((1 · (𝐵𝑗)) − ((1 − 𝑡) · (𝐵𝑗))))
15528, 117, 107, 154mp3an2i 1463 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑗)) = ((1 · (𝐵𝑗)) − ((1 − 𝑡) · (𝐵𝑗))))
156122oveq1d 7155 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑗)) = (𝑡 · (𝐵𝑗)))
157107mulid2d 10648 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 · (𝐵𝑗)) = (𝐵𝑗))
158157oveq1d 7155 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 · (𝐵𝑗)) − ((1 − 𝑡) · (𝐵𝑗))) = ((𝐵𝑗) − ((1 − 𝑡) · (𝐵𝑗))))
159155, 156, 1583eqtr3rd 2866 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐵𝑗) − ((1 − 𝑡) · (𝐵𝑗))) = (𝑡 · (𝐵𝑗)))
160159oveq1d 7155 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑗) − ((1 − 𝑡) · (𝐵𝑗))) − (𝑡 · (𝐶𝑗))) = ((𝑡 · (𝐵𝑗)) − (𝑡 · (𝐶𝑗))))
161107, 141, 140subsub4d 11017 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑗) − ((1 − 𝑡) · (𝐵𝑗))) − (𝑡 · (𝐶𝑗))) = ((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
162153, 160, 1613eqtr2d 2863 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · ((𝐵𝑗) − (𝐶𝑗))) = ((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
163117, 109, 108subdid 11085 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑖) − (𝐵𝑖))) = (((1 − 𝑡) · (𝐶𝑖)) − ((1 − 𝑡) · (𝐵𝑖))))
16428, 114, 109, 49mp3an2i 1463 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑖)) = ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))))
165109mulid2d 10648 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 · (𝐶𝑖)) = (𝐶𝑖))
166165oveq1d 7155 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))) = ((𝐶𝑖) − (𝑡 · (𝐶𝑖))))
167164, 166eqtrd 2857 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑖)) = ((𝐶𝑖) − (𝑡 · (𝐶𝑖))))
168167oveq1d 7155 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((1 − 𝑡) · (𝐶𝑖)) − ((1 − 𝑡) · (𝐵𝑖))) = (((𝐶𝑖) − (𝑡 · (𝐶𝑖))) − ((1 − 𝑡) · (𝐵𝑖))))
169109, 129, 128sub32d 11018 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑖) − (𝑡 · (𝐶𝑖))) − ((1 − 𝑡) · (𝐵𝑖))) = (((𝐶𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))))
170109, 128, 129subsub4d 11017 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
171169, 170eqtrd 2857 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑖) − (𝑡 · (𝐶𝑖))) − ((1 − 𝑡) · (𝐵𝑖))) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
172163, 168, 1713eqtrd 2861 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑖) − (𝐵𝑖))) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
173162, 172oveq12d 7158 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · ((𝐵𝑗) − (𝐶𝑗))) · ((1 − 𝑡) · ((𝐶𝑖) − (𝐵𝑖)))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
174152, 173eqtrd 2857 . . . . . . . . . 10 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖)))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
175113, 146, 1743eqtr3d 2865 . . . . . . . . 9 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
1761753expa 1115 . . . . . . . 8 (((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
17799, 14, 176syl2an 598 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
178177an32s 651 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
179178ralrimivva 3181 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) → ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
180 fveq2 6652 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝐴𝑘) = (𝐴𝑖))
181 fveq2 6652 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
182181oveq2d 7156 . . . . . . . . . . . 12 (𝑘 = 𝑖 → ((1 − 𝑡) · (𝐵𝑘)) = ((1 − 𝑡) · (𝐵𝑖)))
183 fveq2 6652 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝐶𝑘) = (𝐶𝑖))
184183oveq2d 7156 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝑡 · (𝐶𝑘)) = (𝑡 · (𝐶𝑖)))
185182, 184oveq12d 7158 . . . . . . . . . . 11 (𝑘 = 𝑖 → (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))
186180, 185eqeq12d 2838 . . . . . . . . . 10 (𝑘 = 𝑖 → ((𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
187186rspccva 3597 . . . . . . . . 9 ((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))
188 oveq2 7148 . . . . . . . . . . 11 ((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ((𝐵𝑖) − (𝐴𝑖)) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
189 oveq2 7148 . . . . . . . . . . 11 ((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ((𝐶𝑖) − (𝐴𝑖)) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
190188, 189oveq12d 7158 . . . . . . . . . 10 ((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
191190breq1d 5052 . . . . . . . . 9 ((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0))
192187, 191syl 17 . . . . . . . 8 ((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0))
193192ralbidva 3186 . . . . . . 7 (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0))
194 fveq2 6652 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
195 fveq2 6652 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
196195oveq2d 7156 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((1 − 𝑡) · (𝐵𝑘)) = ((1 − 𝑡) · (𝐵𝑗)))
197 fveq2 6652 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝐶𝑘) = (𝐶𝑗))
198197oveq2d 7156 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑡 · (𝐶𝑘)) = (𝑡 · (𝐶𝑗)))
199196, 198oveq12d 7158 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))
200194, 199eqeq12d 2838 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
201200rspccva 3597 . . . . . . . . . 10 ((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))
202 oveq2 7148 . . . . . . . . . . . 12 ((𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))) → ((𝐶𝑗) − (𝐴𝑗)) = ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
203188, 202oveqan12d 7159 . . . . . . . . . . 11 (((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) → (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))))
204 oveq2 7148 . . . . . . . . . . . 12 ((𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))) → ((𝐵𝑗) − (𝐴𝑗)) = ((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
205204, 189oveqan12rd 7160 . . . . . . . . . . 11 (((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) → (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
206203, 205eqeq12d 2838 . . . . . . . . . 10 (((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
207187, 201, 206syl2an 598 . . . . . . . . 9 (((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑖 ∈ (1...𝑁)) ∧ (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑗 ∈ (1...𝑁))) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
208207anandis 677 . . . . . . . 8 ((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
2092082ralbidva 3188 . . . . . . 7 (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
210193, 209anbi12d 633 . . . . . 6 (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))))
211210biimprcd 253 . . . . 5 ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))) → (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
21289, 179, 211syl2anc 587 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) → (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
213212rexlimdva 3270 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
214 fveere 26693 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
2152143ad2antl1 1182 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
216 mulsuble0b 11501 . . . . . . 7 (((𝐵𝑖) ∈ ℝ ∧ (𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
2173, 215, 5, 216syl3anc 1368 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
218217ralbidva 3186 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
219218anbi1d 632 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
220 simpl2 1189 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → 𝐵 ∈ (𝔼‘𝑁))
221 simpl1 1188 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → 𝐴 ∈ (𝔼‘𝑁))
222 eqeefv 26695 . . . . . . . . . . 11 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐴 ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (𝐴𝑖)))
223220, 221, 222syl2anc 587 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → (𝐵 = 𝐴 ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (𝐴𝑖)))
2243adantlr 714 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
225215adantlr 714 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
226224, 225letri3d 10771 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) = (𝐴𝑖) ↔ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))))
227 pm4.25 903 . . . . . . . . . . . . 13 (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ∨ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))))
228 fveq1 6651 . . . . . . . . . . . . . . . . 17 (𝐵 = 𝐶 → (𝐵𝑖) = (𝐶𝑖))
229228breq2d 5054 . . . . . . . . . . . . . . . 16 (𝐵 = 𝐶 → ((𝐴𝑖) ≤ (𝐵𝑖) ↔ (𝐴𝑖) ≤ (𝐶𝑖)))
230229anbi2d 631 . . . . . . . . . . . . . . 15 (𝐵 = 𝐶 → (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖))))
231228breq1d 5052 . . . . . . . . . . . . . . . 16 (𝐵 = 𝐶 → ((𝐵𝑖) ≤ (𝐴𝑖) ↔ (𝐶𝑖) ≤ (𝐴𝑖)))
232231anbi1d 632 . . . . . . . . . . . . . . 15 (𝐵 = 𝐶 → (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))))
233230, 232orbi12d 916 . . . . . . . . . . . . . 14 (𝐵 = 𝐶 → ((((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ∨ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
234233ad2antlr 726 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ∨ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
235227, 234syl5bb 286 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
236226, 235bitrd 282 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) = (𝐴𝑖) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
237236ralbidva 3186 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (𝐴𝑖) ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
238223, 237bitrd 282 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → (𝐵 = 𝐴 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
239238biimprd 251 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) → 𝐵 = 𝐴))
240239adantrd 495 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → 𝐵 = 𝐴))
241240ex 416 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → 𝐵 = 𝐴)))
242 0elunit 12847 . . . . . . . 8 0 ∈ (0[,]1)
243 fveecn 26694 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
2442433ad2antl1 1182 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
245 fveecn 26694 . . . . . . . . . . . . 13 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℂ)
2462453ad2antl2 1183 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℂ)
247 fveecn 26694 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℂ)
2482473ad2antl3 1184 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℂ)
249244, 246, 2483jca 1125 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ))
250 mulid2 10629 . . . . . . . . . . . . . . . 16 ((𝐵𝑘) ∈ ℂ → (1 · (𝐵𝑘)) = (𝐵𝑘))
251 mul02 10807 . . . . . . . . . . . . . . . 16 ((𝐶𝑘) ∈ ℂ → (0 · (𝐶𝑘)) = 0)
252250, 251oveqan12d 7159 . . . . . . . . . . . . . . 15 (((𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) → ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))) = ((𝐵𝑘) + 0))
253 addid1 10809 . . . . . . . . . . . . . . . 16 ((𝐵𝑘) ∈ ℂ → ((𝐵𝑘) + 0) = (𝐵𝑘))
254253adantr 484 . . . . . . . . . . . . . . 15 (((𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) → ((𝐵𝑘) + 0) = (𝐵𝑘))
255252, 254eqtrd 2857 . . . . . . . . . . . . . 14 (((𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) → ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))) = (𝐵𝑘))
2562553adant1 1127 . . . . . . . . . . . . 13 (((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) → ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))) = (𝐵𝑘))
257256adantr 484 . . . . . . . . . . . 12 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))) = (𝐵𝑘))
258 fveq1 6651 . . . . . . . . . . . . 13 (𝐵 = 𝐴 → (𝐵𝑘) = (𝐴𝑘))
259258ad2antll 728 . . . . . . . . . . . 12 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → (𝐵𝑘) = (𝐴𝑘))
260257, 259eqtr2d 2858 . . . . . . . . . . 11 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → (𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
261249, 260sylan 583 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → (𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
262261an32s 651 . . . . . . . . 9 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
263262ralrimiva 3174 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
264 oveq2 7148 . . . . . . . . . . . . . 14 (𝑡 = 0 → (1 − 𝑡) = (1 − 0))
265 1m0e1 11746 . . . . . . . . . . . . . 14 (1 − 0) = 1
266264, 265syl6eq 2873 . . . . . . . . . . . . 13 (𝑡 = 0 → (1 − 𝑡) = 1)
267266oveq1d 7155 . . . . . . . . . . . 12 (𝑡 = 0 → ((1 − 𝑡) · (𝐵𝑘)) = (1 · (𝐵𝑘)))
268 oveq1 7147 . . . . . . . . . . . 12 (𝑡 = 0 → (𝑡 · (𝐶𝑘)) = (0 · (𝐶𝑘)))
269267, 268oveq12d 7158 . . . . . . . . . . 11 (𝑡 = 0 → (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
270269eqeq2d 2833 . . . . . . . . . 10 (𝑡 = 0 → ((𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘)))))
271270ralbidv 3187 . . . . . . . . 9 (𝑡 = 0 → (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘)))))
272271rspcev 3598 . . . . . . . 8 ((0 ∈ (0[,]1) ∧ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))
273242, 263, 272sylancr 590 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))
274273exp32 424 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 → (𝐵 = 𝐴 → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))))
275241, 274syldd 72 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))))
276 eqeefv 26695 . . . . . . . . 9 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 ↔ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝)))
2772763adant1 1127 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 ↔ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝)))
278277necon3abid 3047 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵𝐶 ↔ ¬ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝)))
279 df-ne 3012 . . . . . . . . 9 ((𝐵𝑝) ≠ (𝐶𝑝) ↔ ¬ (𝐵𝑝) = (𝐶𝑝))
280279rexbii 3235 . . . . . . . 8 (∃𝑝 ∈ (1...𝑁)(𝐵𝑝) ≠ (𝐶𝑝) ↔ ∃𝑝 ∈ (1...𝑁) ¬ (𝐵𝑝) = (𝐶𝑝))
281 rexnal 3226 . . . . . . . 8 (∃𝑝 ∈ (1...𝑁) ¬ (𝐵𝑝) = (𝐶𝑝) ↔ ¬ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝))
282280, 281bitri 278 . . . . . . 7 (∃𝑝 ∈ (1...𝑁)(𝐵𝑝) ≠ (𝐶𝑝) ↔ ¬ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝))
283278, 282syl6bbr 292 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵𝐶 ↔ ∃𝑝 ∈ (1...𝑁)(𝐵𝑝) ≠ (𝐶𝑝)))
284 fveq2 6652 . . . . . . . . . . . . . . 15 (𝑖 = 𝑝 → (𝐵𝑖) = (𝐵𝑝))
285 fveq2 6652 . . . . . . . . . . . . . . 15 (𝑖 = 𝑝 → (𝐴𝑖) = (𝐴𝑝))
286284, 285breq12d 5055 . . . . . . . . . . . . . 14 (𝑖 = 𝑝 → ((𝐵𝑖) ≤ (𝐴𝑖) ↔ (𝐵𝑝) ≤ (𝐴𝑝)))
287 fveq2 6652 . . . . . . . . . . . . . . 15 (𝑖 = 𝑝 → (𝐶𝑖) = (𝐶𝑝))
288285, 287breq12d 5055 . . . . . . . . . . . . . 14 (𝑖 = 𝑝 → ((𝐴𝑖) ≤ (𝐶𝑖) ↔ (𝐴𝑝) ≤ (𝐶𝑝)))
289286, 288anbi12d 633 . . . . . . . . . . . . 13 (𝑖 = 𝑝 → (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ↔ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))))
290287, 285breq12d 5055 . . . . . . . . . . . . . 14 (𝑖 = 𝑝 → ((𝐶𝑖) ≤ (𝐴𝑖) ↔ (𝐶𝑝) ≤ (𝐴𝑝)))
291285, 284breq12d 5055 . . . . . . . . . . . . . 14 (𝑖 = 𝑝 → ((𝐴𝑖) ≤ (𝐵𝑖) ↔ (𝐴𝑝) ≤ (𝐵𝑝)))
292290, 291anbi12d 633 . . . . . . . . . . . . 13 (𝑖 = 𝑝 → (((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))))
293289, 292orbi12d 916 . . . . . . . . . . . 12 (𝑖 = 𝑝 → ((((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ↔ (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)))))
294293rspcv 3593 . . . . . . . . . . 11 (𝑝 ∈ (1...𝑁) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) → (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)))))
295294ad2antrl 727 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) → (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)))))
296 simprr 772 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐴𝑝) ≤ (𝐶𝑝))
297 simp1 1133 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
298 simpl 486 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) → 𝑝 ∈ (1...𝑁))
299 fveere 26693 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐴𝑝) ∈ ℝ)
300297, 298, 299syl2an 598 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐴𝑝) ∈ ℝ)
301 simp3 1135 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
302 fveere 26693 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐶𝑝) ∈ ℝ)
303301, 298, 302syl2an 598 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐶𝑝) ∈ ℝ)
304 simpl2 1189 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → 𝐵 ∈ (𝔼‘𝑁))
305 simprl 770 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → 𝑝 ∈ (1...𝑁))
306 fveere 26693 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐵𝑝) ∈ ℝ)
307304, 305, 306syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐵𝑝) ∈ ℝ)
308300, 303, 307lesub1d 11236 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐴𝑝) ≤ (𝐶𝑝) ↔ ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝))))
309308adantr 484 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐴𝑝) ≤ (𝐶𝑝) ↔ ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝))))
310296, 309mpbid 235 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝)))
311300, 307resubcld 11057 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐴𝑝) − (𝐵𝑝)) ∈ ℝ)
312311adantr 484 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐴𝑝) − (𝐵𝑝)) ∈ ℝ)
313 simprl 770 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐵𝑝) ≤ (𝐴𝑝))
314300, 307subge0d 11219 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (0 ≤ ((𝐴𝑝) − (𝐵𝑝)) ↔ (𝐵𝑝) ≤ (𝐴𝑝)))
315314adantr 484 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (0 ≤ ((𝐴𝑝) − (𝐵𝑝)) ↔ (𝐵𝑝) ≤ (𝐴𝑝)))
316313, 315mpbird 260 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → 0 ≤ ((𝐴𝑝) − (𝐵𝑝)))
317303, 307resubcld 11057 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐶𝑝) − (𝐵𝑝)) ∈ ℝ)
318317adantr 484 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐶𝑝) − (𝐵𝑝)) ∈ ℝ)
319 letr 10723 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑝) ∈ ℝ ∧ (𝐴𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) → (𝐵𝑝) ≤ (𝐶𝑝)))
320307, 300, 303, 319syl3anc 1368 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) → (𝐵𝑝) ≤ (𝐶𝑝)))
321320imp 410 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐵𝑝) ≤ (𝐶𝑝))
322 simplrr 777 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐵𝑝) ≠ (𝐶𝑝))
323322necomd 3066 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐶𝑝) ≠ (𝐵𝑝))
324307, 303ltlend 10774 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐵𝑝) < (𝐶𝑝) ↔ ((𝐵𝑝) ≤ (𝐶𝑝) ∧ (𝐶𝑝) ≠ (𝐵𝑝))))
325324adantr 484 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐵𝑝) < (𝐶𝑝) ↔ ((𝐵𝑝) ≤ (𝐶𝑝) ∧ (𝐶𝑝) ≠ (𝐵𝑝))))
326321, 323, 325mpbir2and 712 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐵𝑝) < (𝐶𝑝))
327307, 303posdifd 11216 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐵𝑝) < (𝐶𝑝) ↔ 0 < ((𝐶𝑝) − (𝐵𝑝))))
328327adantr 484 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐵𝑝) < (𝐶𝑝) ↔ 0 < ((𝐶𝑝) − (𝐵𝑝))))
329326, 328mpbid 235 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → 0 < ((𝐶𝑝) − (𝐵𝑝)))
330 divelunit 12872 . . . . . . . . . . . . . 14 (((((𝐴𝑝) − (𝐵𝑝)) ∈ ℝ ∧ 0 ≤ ((𝐴𝑝) − (𝐵𝑝))) ∧ (((𝐶𝑝) − (𝐵𝑝)) ∈ ℝ ∧ 0 < ((𝐶𝑝) − (𝐵𝑝)))) → ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1) ↔ ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝))))
331312, 316, 318, 329, 330syl22anc 837 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1) ↔ ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝))))
332310, 331mpbird 260 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1))
333300recnd 10658 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐴𝑝) ∈ ℂ)
334307recnd 10658 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐵𝑝) ∈ ℂ)
335303recnd 10658 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐶𝑝) ∈ ℂ)
336 simprr 772 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐵𝑝) ≠ (𝐶𝑝))
337336necomd 3066 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐶𝑝) ≠ (𝐵𝑝))
338333, 334, 335, 334, 337div2subd 11455 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))))
339338adantr 484 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))))
340 simprl 770 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐶𝑝) ≤ (𝐴𝑝))
341303, 300, 307lesub2d 11237 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐶𝑝) ≤ (𝐴𝑝) ↔ ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝))))
342341adantr 484 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐶𝑝) ≤ (𝐴𝑝) ↔ ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝))))
343340, 342mpbid 235 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝)))
344307, 300resubcld 11057 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐵𝑝) − (𝐴𝑝)) ∈ ℝ)
345344adantr 484 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐵𝑝) − (𝐴𝑝)) ∈ ℝ)
346 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐴𝑝) ≤ (𝐵𝑝))
347307, 300subge0d 11219 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (0 ≤ ((𝐵𝑝) − (𝐴𝑝)) ↔ (𝐴𝑝) ≤ (𝐵𝑝)))
348347adantr 484 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (0 ≤ ((𝐵𝑝) − (𝐴𝑝)) ↔ (𝐴𝑝) ≤ (𝐵𝑝)))
349346, 348mpbird 260 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → 0 ≤ ((𝐵𝑝) − (𝐴𝑝)))
350307, 303resubcld 11057 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐵𝑝) − (𝐶𝑝)) ∈ ℝ)
351350adantr 484 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐵𝑝) − (𝐶𝑝)) ∈ ℝ)
352 letr 10723 . . . . . . . . . . . . . . . . . . 19 (((𝐶𝑝) ∈ ℝ ∧ (𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ) → (((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)) → (𝐶𝑝) ≤ (𝐵𝑝)))
353303, 300, 307, 352syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)) → (𝐶𝑝) ≤ (𝐵𝑝)))
354353imp 410 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐶𝑝) ≤ (𝐵𝑝))
355 simplrr 777 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐵𝑝) ≠ (𝐶𝑝))
356303, 307ltlend 10774 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐶𝑝) < (𝐵𝑝) ↔ ((𝐶𝑝) ≤ (𝐵𝑝) ∧ (𝐵𝑝) ≠ (𝐶𝑝))))
357356adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐶𝑝) < (𝐵𝑝) ↔ ((𝐶𝑝) ≤ (𝐵𝑝) ∧ (𝐵𝑝) ≠ (𝐶𝑝))))
358354, 355, 357mpbir2and 712 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐶𝑝) < (𝐵𝑝))
359303, 307posdifd 11216 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐶𝑝) < (𝐵𝑝) ↔ 0 < ((𝐵𝑝) − (𝐶𝑝))))
360359adantr 484 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐶𝑝) < (𝐵𝑝) ↔ 0 < ((𝐵𝑝) − (𝐶𝑝))))
361358, 360mpbid 235 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → 0 < ((𝐵𝑝) − (𝐶𝑝)))
362 divelunit 12872 . . . . . . . . . . . . . . 15 (((((𝐵𝑝) − (𝐴𝑝)) ∈ ℝ ∧ 0 ≤ ((𝐵𝑝) − (𝐴𝑝))) ∧ (((𝐵𝑝) − (𝐶𝑝)) ∈ ℝ ∧ 0 < ((𝐵𝑝) − (𝐶𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))) ∈ (0[,]1) ↔ ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝))))
363345, 349, 351, 361, 362syl22anc 837 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))) ∈ (0[,]1) ↔ ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝))))
364343, 363mpbird 260 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))) ∈ (0[,]1))
365339, 364eqeltrd 2914 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1))
366332, 365jaodan 955 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1))
367366ex 416 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1)))
368295, 367syld 47 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1)))
369 simp2l 1196 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝑝 ∈ (1...𝑁))
370 simp3 1135 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ (1...𝑁))
371284, 285oveq12d 7158 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑝 → ((𝐵𝑖) − (𝐴𝑖)) = ((𝐵𝑝) − (𝐴𝑝)))
372371oveq1d 7155 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑝 → (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑗) − (𝐴𝑗))))
373287, 285oveq12d 7158 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑝 → ((𝐶𝑖) − (𝐴𝑖)) = ((𝐶𝑝) − (𝐴𝑝)))
374373oveq2d 7156 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑝 → (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑝) − (𝐴𝑝))))
375372, 374eqeq12d 2838 . . . . . . . . . . . . . . 15 (𝑖 = 𝑝 → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑝) − (𝐴𝑝)))))
376 fveq2 6652 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → (𝐶𝑗) = (𝐶𝑘))
377 fveq2 6652 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
378376, 377oveq12d 7158 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → ((𝐶𝑗) − (𝐴𝑗)) = ((𝐶𝑘) − (𝐴𝑘)))
379378oveq2d 7156 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))))
380 fveq2 6652 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
381380, 377oveq12d 7158 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → ((𝐵𝑗) − (𝐴𝑗)) = ((𝐵𝑘) − (𝐴𝑘)))
382381oveq1d 7155 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))))
383379, 382eqeq12d 2838 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑝) − (𝐴𝑝))) ↔ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))))
384375, 383rspc2v 3608 . . . . . . . . . . . . . 14 ((𝑝 ∈ (1...𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))))
385369, 370, 384syl2anc 587 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))))
386 simp11 1200 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
387386, 370, 243syl2anc 587 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
388 simp12 1201 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
389388, 370, 245syl2anc 587 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℂ)
390 simp13 1202 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
391390, 370, 247syl2anc 587 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℂ)
3923333adant3 1129 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑝) ∈ ℂ)
3933343adant3 1129 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑝) ∈ ℂ)
3943353adant3 1129 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑝) ∈ ℂ)
395 simp2r 1197 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑝) ≠ (𝐶𝑝))
396395necomd 3066 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑝) ≠ (𝐵𝑝))
397 simpl23 1250 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐶𝑝) ∈ ℂ)
398 simpl21 1248 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐴𝑝) ∈ ℂ)
399397, 398subcld 10986 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐶𝑝) − (𝐴𝑝)) ∈ ℂ)
400 simpl12 1246 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐵𝑘) ∈ ℂ)
401399, 400mulcld 10650 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) ∈ ℂ)
402 simpl22 1249 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐵𝑝) ∈ ℂ)
403398, 402subcld 10986 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐴𝑝) − (𝐵𝑝)) ∈ ℂ)
404 simpl13 1247 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐶𝑘) ∈ ℂ)
405403, 404mulcld 10650 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)) ∈ ℂ)
406397, 402subcld 10986 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐶𝑝) − (𝐵𝑝)) ∈ ℂ)
407 simpl3 1190 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐶𝑝) ≠ (𝐵𝑝))
408397, 402, 407subne0d 10995 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐶𝑝) − (𝐵𝑝)) ≠ 0)
409401, 405, 406, 408divdird 11443 . . . . . . . . . . . . . . . 16 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) / ((𝐶𝑝) − (𝐵𝑝))) = (((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) + ((((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)) / ((𝐶𝑝) − (𝐵𝑝)))))
410 npncan2 10902 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐵𝑝) ∈ ℂ ∧ (𝐴𝑝) ∈ ℂ) → (((𝐵𝑝) − (𝐴𝑝)) + ((𝐴𝑝) − (𝐵𝑝))) = 0)
411402, 398, 410syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) + ((𝐴𝑝) − (𝐵𝑝))) = 0)
412411oveq1d 7155 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) + ((𝐴𝑝) − (𝐵𝑝))) · (𝐶𝑘)) = (0 · (𝐶𝑘)))
413402, 398subcld 10986 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐵𝑝) − (𝐴𝑝)) ∈ ℂ)
414413, 403, 404adddird 10655 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) + ((𝐴𝑝) − (𝐵𝑝))) · (𝐶𝑘)) = ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
415404mul02d 10827 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (0 · (𝐶𝑘)) = 0)
416412, 414, 4153eqtr3d 2865 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) = 0)
417416oveq1d 7155 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = (0 + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))))
418413, 404mulcld 10650 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) ∈ ℂ)
419 simpl11 1245 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐴𝑘) ∈ ℂ)
420406, 419mulcld 10650 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) ∈ ℂ)
421418, 405, 420add32d 10856 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
422420addid2d 10830 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (0 + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)))
423417, 421, 4223eqtr3rd 2866 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
424399, 419mulcld 10650 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) ∈ ℂ)
425413, 419mulcld 10650 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘)) ∈ ℂ)
426418, 424, 425addsubd 11007 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
427397, 402, 398nnncan2d 11021 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) − ((𝐵𝑝) − (𝐴𝑝))) = ((𝐶𝑝) − (𝐵𝑝)))
428427oveq1d 7155 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) − ((𝐵𝑝) − (𝐴𝑝))) · (𝐴𝑘)) = (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)))
429399, 413, 419subdird 11086 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) − ((𝐵𝑝) − (𝐴𝑝))) · (𝐴𝑘)) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
430428, 429eqtr3d 2859 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
431430oveq2d 7156 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + ((((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘)))))
432418, 424, 425addsubassd 11006 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + ((((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘)))))
433431, 432eqtr4d 2860 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
434413, 404, 419subdid 11085 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
435434oveq1d 7155 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
436426, 433, 4353eqtr4d 2867 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
437436oveq1d 7155 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
438423, 437eqtrd 2857 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = (((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
439 simpr 488 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))))
440439oveq1d 7155 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = ((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
441440oveq1d 7155 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) = (((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
442400, 419subcld 10986 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ℂ)
443442, 399mulcomd 10651 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑘) − (𝐴𝑘))))
444443oveq1d 7155 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = ((((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
445399, 442, 419adddid 10654 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) · (((𝐵𝑘) − (𝐴𝑘)) + (𝐴𝑘))) = ((((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
446400, 419npcand 10990 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑘) − (𝐴𝑘)) + (𝐴𝑘)) = (𝐵𝑘))
447446oveq2d 7156 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) · (((𝐵𝑘) − (𝐴𝑘)) + (𝐴𝑘))) = (((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)))
448444, 445, 4473eqtr2d 2863 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = (((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)))
449448oveq1d 7155 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
450438, 441, 4493eqtrd 2861 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
451401, 405addcld 10649 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) ∈ ℂ)
452451, 406, 419, 408divmuld 11427 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) / ((𝐶𝑝) − (𝐵𝑝))) = (𝐴𝑘) ↔ (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)))))
453450, 452mpbird 260 . . . . . . . . . . . . . . . 16 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) / ((𝐶𝑝) − (𝐵𝑝))) = (𝐴𝑘))
454399, 400, 406, 408div23d 11442 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) = ((((𝐶𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐵𝑘)))
455406, 403, 406, 408divsubdird 11444 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐵𝑝)) − ((𝐴𝑝) − (𝐵𝑝))) / ((𝐶𝑝) − (𝐵𝑝))) = ((((𝐶𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))))
456397, 398, 402nnncan2d 11021 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) − ((𝐴𝑝) − (𝐵𝑝))) = ((𝐶𝑝) − (𝐴𝑝)))
457456oveq1d 7155 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐵𝑝)) − ((𝐴𝑝) − (𝐵𝑝))) / ((𝐶𝑝) − (𝐵𝑝))) = (((𝐶𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐵𝑝))))
458406, 408dividd 11403 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) = 1)
459458oveq1d 7155 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) = (1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))))
460455, 457, 4593eqtr3d 2865 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) = (1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))))
461460oveq1d 7155 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐵𝑘)) = ((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)))
462454, 461eqtrd 2857 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) = ((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)))
463403, 404, 406, 408div23d 11442 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) = ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))
464462, 463oveq12d 7158 . . . . . . . . . . . . . . . 16 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) + ((((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)) / ((𝐶𝑝) − (𝐵𝑝)))) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))
465409, 453, 4643eqtr3d 2865 . . . . . . . . . . . . . . 15 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))
466465ex 416 . . . . . . . . . . . . . 14 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
467387, 389, 391, 392, 393, 394, 396, 466syl331anc 1392 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
468385, 467syld 47 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
4694683expia 1118 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝑘 ∈ (1...𝑁) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))))
470469com23 86 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (𝑘 ∈ (1...𝑁) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))))
471470ralrimdv 3178 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
472368, 471anim12d 611 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1) ∧ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))))
473 oveq2 7148 . . . . . . . . . . . . 13 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → (1 − 𝑡) = (1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))))
474473oveq1d 7155 . . . . . . . . . . . 12 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → ((1 − 𝑡) · (𝐵𝑘)) = ((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)))
475 oveq1 7147 . . . . . . . . . . . 12 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → (𝑡 · (𝐶𝑘)) = ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))
476474, 475oveq12d 7158 . . . . . . . . . . 11 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))
477476eqeq2d 2833 . . . . . . . . . 10 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → ((𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
478477ralbidv 3187 . . . . . . . . 9 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
479478rspcev 3598 . . . . . . . 8 (((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1) ∧ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))
480472, 479syl6 35 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘)))))
481480rexlimdvaa 3271 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∃𝑝 ∈ (1...𝑁)(𝐵𝑝) ≠ (𝐶𝑝) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))))
482283, 481sylbid 243 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵𝐶 → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))))
483275, 482pm2.61dne 3097 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘)))))
484219, 483sylbid 243 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘)))))
485213, 484impbid 215 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
4861, 485bitrd 282 1 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2114   ≠ wne 3011  ∀wral 3130  ∃wrex 3131  ⟨cop 4545   class class class wbr 5042  ‘cfv 6334  (class class class)co 7140  ℂcc 10524  ℝcr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664   ≤ cle 10665   − cmin 10859  -cneg 10860   / cdiv 11286  2c2 11680  [,]cicc 12729  ...cfz 12885  ↑cexp 13425  𝔼cee 26680   Btwn cbtwn 26681 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-icc 12733  df-fz 12886  df-seq 13365  df-exp 13426  df-ee 26683  df-btwn 26684 This theorem is referenced by:  colinearalg  26702
 Copyright terms: Public domain W3C validator