MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brbtwn2 Structured version   Visualization version   GIF version

Theorem brbtwn2 28938
Description: Alternate characterization of betweenness, with no existential quantifiers. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
brbtwn2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝐶,𝑖,𝑗

Proof of Theorem brbtwn2
Dummy variables 𝑘 𝑝 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brbtwn 28932 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘)))))
2 fveere 28934 . . . . . . . . . 10 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
323ad2antl2 1186 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
4 fveere 28934 . . . . . . . . . 10 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
543ad2antl3 1187 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
63, 5jca 511 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ))
7 resubcl 11600 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℝ)
873adant3 1132 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℝ)
98recnd 11318 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℂ)
109sqvald 14193 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (𝐶𝑖))↑2) = (((𝐵𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))))
1110oveq2d 7464 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) = ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖)))))
12 elicc01 13526 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
1312simp1bi 1145 . . . . . . . . . . . . . 14 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℝ)
1413recnd 11318 . . . . . . . . . . . . 13 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℂ)
15143ad2ant3 1135 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℂ)
16 1re 11290 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
17 resubcl 11600 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
1816, 13, 17sylancr 586 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0[,]1) → (1 − 𝑡) ∈ ℝ)
19183ad2ant3 1135 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℝ)
2019recnd 11318 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℂ)
2120negcld 11634 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → -(1 − 𝑡) ∈ ℂ)
2215, 9, 21, 9mul4d 11502 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · ((𝐵𝑖) − (𝐶𝑖))) · (-(1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖)))) = ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖)))))
23 recn 11274 . . . . . . . . . . . . . . 15 ((𝐵𝑖) ∈ ℝ → (𝐵𝑖) ∈ ℂ)
24233ad2ant1 1133 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝐵𝑖) ∈ ℂ)
25 recn 11274 . . . . . . . . . . . . . . 15 ((𝐶𝑖) ∈ ℝ → (𝐶𝑖) ∈ ℂ)
26253ad2ant2 1134 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝐶𝑖) ∈ ℂ)
2715, 24, 26subdid 11746 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · ((𝐵𝑖) − (𝐶𝑖))) = ((𝑡 · (𝐵𝑖)) − (𝑡 · (𝐶𝑖))))
28 ax-1cn 11242 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
29 subdir 11724 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (1 − 𝑡) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))))
3028, 20, 24, 29mp3an2i 1466 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))))
31 nncan 11565 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ) → (1 − (1 − 𝑡)) = 𝑡)
3228, 15, 31sylancr 586 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 − (1 − 𝑡)) = 𝑡)
3332oveq1d 7463 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = (𝑡 · (𝐵𝑖)))
3424mullidd 11308 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 · (𝐵𝑖)) = (𝐵𝑖))
3534oveq1d 7463 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))) = ((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))))
3630, 33, 353eqtr3d 2788 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (𝐵𝑖)) = ((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))))
3736oveq1d 7463 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · (𝐵𝑖)) − (𝑡 · (𝐶𝑖))) = (((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))))
38 simp1 1136 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝐵𝑖) ∈ ℝ)
3919, 38remulcld 11320 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · (𝐵𝑖)) ∈ ℝ)
4039recnd 11318 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · (𝐵𝑖)) ∈ ℂ)
41133ad2ant3 1135 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℝ)
42 simp2 1137 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝐶𝑖) ∈ ℝ)
4341, 42remulcld 11320 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (𝐶𝑖)) ∈ ℝ)
4443recnd 11318 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (𝐶𝑖)) ∈ ℂ)
4524, 40, 44subsub4d 11678 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4627, 37, 453eqtrd 2784 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · ((𝐵𝑖) − (𝐶𝑖))) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
4720, 9mulneg1d 11743 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (-(1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = -((1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))))
4820, 24, 26subdid 11746 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) − ((1 − 𝑡) · (𝐶𝑖))))
49 subdir 11724 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑖)) = ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))))
5028, 15, 26, 49mp3an2i 1466 . . . . . . . . . . . . . . . . 17 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · (𝐶𝑖)) = ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))))
5126mullidd 11308 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (1 · (𝐶𝑖)) = (𝐶𝑖))
5251oveq1d 7463 . . . . . . . . . . . . . . . . 17 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))) = ((𝐶𝑖) − (𝑡 · (𝐶𝑖))))
5350, 52eqtrd 2780 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · (𝐶𝑖)) = ((𝐶𝑖) − (𝑡 · (𝐶𝑖))))
5453oveq2d 7464 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((1 − 𝑡) · (𝐵𝑖)) − ((1 − 𝑡) · (𝐶𝑖))) = (((1 − 𝑡) · (𝐵𝑖)) − ((𝐶𝑖) − (𝑡 · (𝐶𝑖)))))
5540, 26, 44subsub3d 11677 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((1 − 𝑡) · (𝐵𝑖)) − ((𝐶𝑖) − (𝑡 · (𝐶𝑖)))) = ((((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) − (𝐶𝑖)))
5648, 54, 553eqtrd 2784 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = ((((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) − (𝐶𝑖)))
5756negeqd 11530 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → -((1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = -((((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) − (𝐶𝑖)))
5839, 43readdcld 11319 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∈ ℝ)
5958recnd 11318 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∈ ℂ)
6059, 26negsubdi2d 11663 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → -((((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) − (𝐶𝑖)) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
6147, 57, 603eqtrd 2784 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (-(1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖))) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
6246, 61oveq12d 7466 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · ((𝐵𝑖) − (𝐶𝑖))) · (-(1 − 𝑡) · ((𝐵𝑖) − (𝐶𝑖)))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
6311, 22, 623eqtr2rd 2787 . . . . . . . . . 10 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) = ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
6415, 20mulneg2d 11744 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · -(1 − 𝑡)) = -(𝑡 · (1 − 𝑡)))
6564oveq1d 7463 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) = (-(𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
6641, 19remulcld 11320 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (1 − 𝑡)) ∈ ℝ)
6766recnd 11318 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (𝑡 · (1 − 𝑡)) ∈ ℂ)
688resqcld 14175 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (𝐶𝑖))↑2) ∈ ℝ)
6968recnd 11318 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (𝐶𝑖))↑2) ∈ ℂ)
7067, 69mulneg1d 11743 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (-(𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) = -((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
7165, 70eqtrd 2780 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) = -((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
7212simp2bi 1146 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0[,]1) → 0 ≤ 𝑡)
7312simp3bi 1147 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0[,]1) → 𝑡 ≤ 1)
74 subge0 11803 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (0 ≤ (1 − 𝑡) ↔ 𝑡 ≤ 1))
7516, 13, 74sylancr 586 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0[,]1) → (0 ≤ (1 − 𝑡) ↔ 𝑡 ≤ 1))
7673, 75mpbird 257 . . . . . . . . . . . . . . 15 (𝑡 ∈ (0[,]1) → 0 ≤ (1 − 𝑡))
7713, 18, 72, 76mulge0d 11867 . . . . . . . . . . . . . 14 (𝑡 ∈ (0[,]1) → 0 ≤ (𝑡 · (1 − 𝑡)))
78773ad2ant3 1135 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ (𝑡 · (1 − 𝑡)))
798sqge0d 14187 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ (((𝐵𝑖) − (𝐶𝑖))↑2))
8066, 68, 78, 79mulge0d 11867 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → 0 ≤ ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)))
8166, 68remulcld 11320 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ∈ ℝ)
8281le0neg2d 11862 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (0 ≤ ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ↔ -((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ≤ 0))
8380, 82mpbid 232 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → -((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ≤ 0)
8471, 83eqbrtrd 5188 . . . . . . . . . 10 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · -(1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖))↑2)) ≤ 0)
8563, 84eqbrtrd 5188 . . . . . . . . 9 (((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
86853expa 1118 . . . . . . . 8 ((((𝐵𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
876, 86sylan 579 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
8887an32s 651 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
8988ralrimiva 3152 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) → ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0)
90 fveecn 28935 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
91 fveecn 28935 . . . . . . . . . . . 12 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
9290, 91anim12i 612 . . . . . . . . . . 11 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁))) → ((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ))
9392anandirs 678 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ))
94 fveecn 28935 . . . . . . . . . . . 12 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) ∈ ℂ)
95 fveecn 28935 . . . . . . . . . . . 12 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
9694, 95anim12i 612 . . . . . . . . . . 11 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁))) → ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ))
9796anandirs 678 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑗 ∈ (1...𝑁)) → ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ))
9893, 97anim12dan 618 . . . . . . . . 9 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)))
99983adantl1 1166 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)))
100 subcl 11535 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℂ)
1011003ad2ant1 1133 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℂ)
102 subcl 11535 . . . . . . . . . . . . . . 15 (((𝐶𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ) → ((𝐶𝑗) − (𝐵𝑗)) ∈ ℂ)
103102ancoms 458 . . . . . . . . . . . . . 14 (((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((𝐶𝑗) − (𝐵𝑗)) ∈ ℂ)
1041033ad2ant2 1134 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐶𝑗) − (𝐵𝑗)) ∈ ℂ)
105101, 104mulcomd 11311 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐵𝑖) − (𝐶𝑖))))
106 simp2r 1200 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝐶𝑗) ∈ ℂ)
107 simp2l 1199 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝐵𝑗) ∈ ℂ)
108 simp1l 1197 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝐵𝑖) ∈ ℂ)
109 simp1r 1198 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝐶𝑖) ∈ ℂ)
110 mulsub2 11734 . . . . . . . . . . . . 13 ((((𝐶𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ) ∧ ((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ)) → (((𝐶𝑗) − (𝐵𝑗)) · ((𝐵𝑖) − (𝐶𝑖))) = (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖))))
111106, 107, 108, 109, 110syl22anc 838 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑗) − (𝐵𝑗)) · ((𝐵𝑖) − (𝐶𝑖))) = (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖))))
112105, 111eqtrd 2780 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗))) = (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖))))
113112oveq2d 7464 . . . . . . . . . 10 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗)))) = ((𝑡 · (1 − 𝑡)) · (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖)))))
114 simp3 1138 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → 𝑡 ∈ ℂ)
115 subcl 11535 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ) → (1 − 𝑡) ∈ ℂ)
11628, 115mpan 689 . . . . . . . . . . . . 13 (𝑡 ∈ ℂ → (1 − 𝑡) ∈ ℂ)
1171163ad2ant3 1135 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 − 𝑡) ∈ ℂ)
118114, 117, 101, 104mul4d 11502 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗)))) = ((𝑡 · ((𝐵𝑖) − (𝐶𝑖))) · ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗)))))
119114, 108, 109subdid 11746 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · ((𝐵𝑖) − (𝐶𝑖))) = ((𝑡 · (𝐵𝑖)) − (𝑡 · (𝐶𝑖))))
12028, 117, 108, 29mp3an2i 1466 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))))
12128, 31mpan 689 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ℂ → (1 − (1 − 𝑡)) = 𝑡)
1221213ad2ant3 1135 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 − (1 − 𝑡)) = 𝑡)
123122oveq1d 7463 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑖)) = (𝑡 · (𝐵𝑖)))
124108mullidd 11308 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 · (𝐵𝑖)) = (𝐵𝑖))
125124oveq1d 7463 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 · (𝐵𝑖)) − ((1 − 𝑡) · (𝐵𝑖))) = ((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))))
126120, 123, 1253eqtr3d 2788 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · (𝐵𝑖)) = ((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))))
127126oveq1d 7463 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (𝐵𝑖)) − (𝑡 · (𝐶𝑖))) = (((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))))
128117, 108mulcld 11310 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐵𝑖)) ∈ ℂ)
129114, 109mulcld 11310 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · (𝐶𝑖)) ∈ ℂ)
130108, 128, 129subsub4d 11678 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
131119, 127, 1303eqtrd 2784 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · ((𝐵𝑖) − (𝐶𝑖))) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
132117, 106, 107subdid 11746 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗))) = (((1 − 𝑡) · (𝐶𝑗)) − ((1 − 𝑡) · (𝐵𝑗))))
133 subdir 11724 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑗)) = ((1 · (𝐶𝑗)) − (𝑡 · (𝐶𝑗))))
13428, 114, 106, 133mp3an2i 1466 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑗)) = ((1 · (𝐶𝑗)) − (𝑡 · (𝐶𝑗))))
135106mullidd 11308 . . . . . . . . . . . . . . . . 17 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 · (𝐶𝑗)) = (𝐶𝑗))
136135oveq1d 7463 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 · (𝐶𝑗)) − (𝑡 · (𝐶𝑗))) = ((𝐶𝑗) − (𝑡 · (𝐶𝑗))))
137134, 136eqtrd 2780 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑗)) = ((𝐶𝑗) − (𝑡 · (𝐶𝑗))))
138137oveq1d 7463 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((1 − 𝑡) · (𝐶𝑗)) − ((1 − 𝑡) · (𝐵𝑗))) = (((𝐶𝑗) − (𝑡 · (𝐶𝑗))) − ((1 − 𝑡) · (𝐵𝑗))))
139132, 138eqtrd 2780 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝑡 · (𝐶𝑗))) − ((1 − 𝑡) · (𝐵𝑗))))
140114, 106mulcld 11310 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · (𝐶𝑗)) ∈ ℂ)
141117, 107mulcld 11310 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐵𝑗)) ∈ ℂ)
142106, 140, 141sub32d 11679 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑗) − (𝑡 · (𝐶𝑗))) − ((1 − 𝑡) · (𝐵𝑗))) = (((𝐶𝑗) − ((1 − 𝑡) · (𝐵𝑗))) − (𝑡 · (𝐶𝑗))))
143106, 141, 140subsub4d 11678 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑗) − ((1 − 𝑡) · (𝐵𝑗))) − (𝑡 · (𝐶𝑗))) = ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
144139, 142, 1433eqtrd 2784 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗))) = ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
145131, 144oveq12d 7466 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · ((𝐵𝑖) − (𝐶𝑖))) · ((1 − 𝑡) · ((𝐶𝑗) − (𝐵𝑗)))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))))
146118, 145eqtrd 2780 . . . . . . . . . 10 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑗) − (𝐵𝑗)))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))))
147 subcl 11535 . . . . . . . . . . . . 13 (((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((𝐵𝑗) − (𝐶𝑗)) ∈ ℂ)
1481473ad2ant2 1134 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐵𝑗) − (𝐶𝑗)) ∈ ℂ)
149 subcl 11535 . . . . . . . . . . . . . 14 (((𝐶𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ) → ((𝐶𝑖) − (𝐵𝑖)) ∈ ℂ)
150149ancoms 458 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((𝐶𝑖) − (𝐵𝑖)) ∈ ℂ)
1511503ad2ant1 1133 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐶𝑖) − (𝐵𝑖)) ∈ ℂ)
152114, 117, 148, 151mul4d 11502 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖)))) = ((𝑡 · ((𝐵𝑗) − (𝐶𝑗))) · ((1 − 𝑡) · ((𝐶𝑖) − (𝐵𝑖)))))
153114, 107, 106subdid 11746 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · ((𝐵𝑗) − (𝐶𝑗))) = ((𝑡 · (𝐵𝑗)) − (𝑡 · (𝐶𝑗))))
154 subdir 11724 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (1 − 𝑡) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑗)) = ((1 · (𝐵𝑗)) − ((1 − 𝑡) · (𝐵𝑗))))
15528, 117, 107, 154mp3an2i 1466 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑗)) = ((1 · (𝐵𝑗)) − ((1 − 𝑡) · (𝐵𝑗))))
156122oveq1d 7463 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − (1 − 𝑡)) · (𝐵𝑗)) = (𝑡 · (𝐵𝑗)))
157107mullidd 11308 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 · (𝐵𝑗)) = (𝐵𝑗))
158157oveq1d 7463 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 · (𝐵𝑗)) − ((1 − 𝑡) · (𝐵𝑗))) = ((𝐵𝑗) − ((1 − 𝑡) · (𝐵𝑗))))
159155, 156, 1583eqtr3rd 2789 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝐵𝑗) − ((1 − 𝑡) · (𝐵𝑗))) = (𝑡 · (𝐵𝑗)))
160159oveq1d 7463 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑗) − ((1 − 𝑡) · (𝐵𝑗))) − (𝑡 · (𝐶𝑗))) = ((𝑡 · (𝐵𝑗)) − (𝑡 · (𝐶𝑗))))
161107, 141, 140subsub4d 11678 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑗) − ((1 − 𝑡) · (𝐵𝑗))) − (𝑡 · (𝐶𝑗))) = ((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
162153, 160, 1613eqtr2d 2786 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (𝑡 · ((𝐵𝑗) − (𝐶𝑗))) = ((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
163117, 109, 108subdid 11746 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑖) − (𝐵𝑖))) = (((1 − 𝑡) · (𝐶𝑖)) − ((1 − 𝑡) · (𝐵𝑖))))
16428, 114, 109, 49mp3an2i 1466 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑖)) = ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))))
165109mullidd 11308 . . . . . . . . . . . . . . . 16 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (1 · (𝐶𝑖)) = (𝐶𝑖))
166165oveq1d 7463 . . . . . . . . . . . . . . 15 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 · (𝐶𝑖)) − (𝑡 · (𝐶𝑖))) = ((𝐶𝑖) − (𝑡 · (𝐶𝑖))))
167164, 166eqtrd 2780 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · (𝐶𝑖)) = ((𝐶𝑖) − (𝑡 · (𝐶𝑖))))
168167oveq1d 7463 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((1 − 𝑡) · (𝐶𝑖)) − ((1 − 𝑡) · (𝐵𝑖))) = (((𝐶𝑖) − (𝑡 · (𝐶𝑖))) − ((1 − 𝑡) · (𝐵𝑖))))
169109, 129, 128sub32d 11679 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑖) − (𝑡 · (𝐶𝑖))) − ((1 − 𝑡) · (𝐵𝑖))) = (((𝐶𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))))
170109, 128, 129subsub4d 11678 . . . . . . . . . . . . . 14 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑖) − ((1 − 𝑡) · (𝐵𝑖))) − (𝑡 · (𝐶𝑖))) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
171169, 170eqtrd 2780 . . . . . . . . . . . . 13 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐶𝑖) − (𝑡 · (𝐶𝑖))) − ((1 − 𝑡) · (𝐵𝑖))) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
172163, 168, 1713eqtrd 2784 . . . . . . . . . . . 12 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) · ((𝐶𝑖) − (𝐵𝑖))) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
173162, 172oveq12d 7466 . . . . . . . . . . 11 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · ((𝐵𝑗) − (𝐶𝑗))) · ((1 − 𝑡) · ((𝐶𝑖) − (𝐵𝑖)))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
174152, 173eqtrd 2780 . . . . . . . . . 10 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → ((𝑡 · (1 − 𝑡)) · (((𝐵𝑗) − (𝐶𝑗)) · ((𝐶𝑖) − (𝐵𝑖)))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
175113, 146, 1743eqtr3d 2788 . . . . . . . . 9 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
1761753expa 1118 . . . . . . . 8 (((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) ∧ 𝑡 ∈ ℂ) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
17799, 14, 176syl2an 595 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) ∧ 𝑡 ∈ (0[,]1)) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
178177an32s 651 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
179178ralrimivva 3208 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) → ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
180 fveq2 6920 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝐴𝑘) = (𝐴𝑖))
181 fveq2 6920 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
182181oveq2d 7464 . . . . . . . . . . . 12 (𝑘 = 𝑖 → ((1 − 𝑡) · (𝐵𝑘)) = ((1 − 𝑡) · (𝐵𝑖)))
183 fveq2 6920 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝐶𝑘) = (𝐶𝑖))
184183oveq2d 7464 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝑡 · (𝐶𝑘)) = (𝑡 · (𝐶𝑖)))
185182, 184oveq12d 7466 . . . . . . . . . . 11 (𝑘 = 𝑖 → (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))
186180, 185eqeq12d 2756 . . . . . . . . . 10 (𝑘 = 𝑖 → ((𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
187186rspccva 3634 . . . . . . . . 9 ((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))
188 oveq2 7456 . . . . . . . . . . 11 ((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ((𝐵𝑖) − (𝐴𝑖)) = ((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
189 oveq2 7456 . . . . . . . . . . 11 ((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ((𝐶𝑖) − (𝐴𝑖)) = ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))
190188, 189oveq12d 7466 . . . . . . . . . 10 ((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
191190breq1d 5176 . . . . . . . . 9 ((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0))
192187, 191syl 17 . . . . . . . 8 ((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0))
193192ralbidva 3182 . . . . . . 7 (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0))
194 fveq2 6920 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
195 fveq2 6920 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
196195oveq2d 7464 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((1 − 𝑡) · (𝐵𝑘)) = ((1 − 𝑡) · (𝐵𝑗)))
197 fveq2 6920 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝐶𝑘) = (𝐶𝑗))
198197oveq2d 7464 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑡 · (𝐶𝑘)) = (𝑡 · (𝐶𝑗)))
199196, 198oveq12d 7466 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))
200194, 199eqeq12d 2756 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
201200rspccva 3634 . . . . . . . . . 10 ((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))
202 oveq2 7456 . . . . . . . . . . . 12 ((𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))) → ((𝐶𝑗) − (𝐴𝑗)) = ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
203188, 202oveqan12d 7467 . . . . . . . . . . 11 (((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) → (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))))
204 oveq2 7456 . . . . . . . . . . . 12 ((𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))) → ((𝐵𝑗) − (𝐴𝑗)) = ((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))))
205204, 189oveqan12rd 7468 . . . . . . . . . . 11 (((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) → (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))
206203, 205eqeq12d 2756 . . . . . . . . . 10 (((𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐴𝑗) = (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
207187, 201, 206syl2an 595 . . . . . . . . 9 (((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑖 ∈ (1...𝑁)) ∧ (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ 𝑗 ∈ (1...𝑁))) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
208207anandis 677 . . . . . . . 8 ((∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
2092082ralbidva 3225 . . . . . . 7 (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))))
210193, 209anbi12d 631 . . . . . 6 (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))))))
211210biimprcd 250 . . . . 5 ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖))))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))) · ((𝐶𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗))))) = (((𝐵𝑗) − (((1 − 𝑡) · (𝐵𝑗)) + (𝑡 · (𝐶𝑗)))) · ((𝐶𝑖) − (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐶𝑖)))))) → (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
21289, 179, 211syl2anc 583 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) → (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
213212rexlimdva 3161 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
214 fveere 28934 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
2152143ad2antl1 1185 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
216 mulsuble0b 12167 . . . . . . 7 (((𝐵𝑖) ∈ ℝ ∧ (𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
2173, 215, 5, 216syl3anc 1371 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
218217ralbidva 3182 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
219218anbi1d 630 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
220 simpl2 1192 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → 𝐵 ∈ (𝔼‘𝑁))
221 simpl1 1191 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → 𝐴 ∈ (𝔼‘𝑁))
222 eqeefv 28936 . . . . . . . . . . 11 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐴 ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (𝐴𝑖)))
223220, 221, 222syl2anc 583 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → (𝐵 = 𝐴 ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (𝐴𝑖)))
2243adantlr 714 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
225215adantlr 714 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
226224, 225letri3d 11432 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) = (𝐴𝑖) ↔ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))))
227 pm4.25 904 . . . . . . . . . . . . 13 (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ∨ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))))
228 fveq1 6919 . . . . . . . . . . . . . . . . 17 (𝐵 = 𝐶 → (𝐵𝑖) = (𝐶𝑖))
229228breq2d 5178 . . . . . . . . . . . . . . . 16 (𝐵 = 𝐶 → ((𝐴𝑖) ≤ (𝐵𝑖) ↔ (𝐴𝑖) ≤ (𝐶𝑖)))
230229anbi2d 629 . . . . . . . . . . . . . . 15 (𝐵 = 𝐶 → (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖))))
231228breq1d 5176 . . . . . . . . . . . . . . . 16 (𝐵 = 𝐶 → ((𝐵𝑖) ≤ (𝐴𝑖) ↔ (𝐶𝑖) ≤ (𝐴𝑖)))
232231anbi1d 630 . . . . . . . . . . . . . . 15 (𝐵 = 𝐶 → (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))))
233230, 232orbi12d 917 . . . . . . . . . . . . . 14 (𝐵 = 𝐶 → ((((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ∨ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
234233ad2antlr 726 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ∨ ((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
235227, 234bitrid 283 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
236226, 235bitrd 279 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) = (𝐴𝑖) ↔ (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
237236ralbidva 3182 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (𝐴𝑖) ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
238223, 237bitrd 279 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → (𝐵 = 𝐴 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)))))
239238biimprd 248 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) → 𝐵 = 𝐴))
240239adantrd 491 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐵 = 𝐶) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → 𝐵 = 𝐴))
241240ex 412 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → 𝐵 = 𝐴)))
242 0elunit 13529 . . . . . . . 8 0 ∈ (0[,]1)
243 fveecn 28935 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
2442433ad2antl1 1185 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
245 fveecn 28935 . . . . . . . . . . . . 13 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℂ)
2462453ad2antl2 1186 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℂ)
247 fveecn 28935 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℂ)
2482473ad2antl3 1187 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℂ)
249244, 246, 2483jca 1128 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ))
250 mullid 11289 . . . . . . . . . . . . . . . 16 ((𝐵𝑘) ∈ ℂ → (1 · (𝐵𝑘)) = (𝐵𝑘))
251 mul02 11468 . . . . . . . . . . . . . . . 16 ((𝐶𝑘) ∈ ℂ → (0 · (𝐶𝑘)) = 0)
252250, 251oveqan12d 7467 . . . . . . . . . . . . . . 15 (((𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) → ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))) = ((𝐵𝑘) + 0))
253 addrid 11470 . . . . . . . . . . . . . . . 16 ((𝐵𝑘) ∈ ℂ → ((𝐵𝑘) + 0) = (𝐵𝑘))
254253adantr 480 . . . . . . . . . . . . . . 15 (((𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) → ((𝐵𝑘) + 0) = (𝐵𝑘))
255252, 254eqtrd 2780 . . . . . . . . . . . . . 14 (((𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) → ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))) = (𝐵𝑘))
2562553adant1 1130 . . . . . . . . . . . . 13 (((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) → ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))) = (𝐵𝑘))
257256adantr 480 . . . . . . . . . . . 12 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))) = (𝐵𝑘))
258 fveq1 6919 . . . . . . . . . . . . 13 (𝐵 = 𝐴 → (𝐵𝑘) = (𝐴𝑘))
259258ad2antll 728 . . . . . . . . . . . 12 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → (𝐵𝑘) = (𝐴𝑘))
260257, 259eqtr2d 2781 . . . . . . . . . . 11 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → (𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
261249, 260sylan 579 . . . . . . . . . 10 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑘 ∈ (1...𝑁)) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → (𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
262261an32s 651 . . . . . . . . 9 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
263262ralrimiva 3152 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
264 oveq2 7456 . . . . . . . . . . . . . 14 (𝑡 = 0 → (1 − 𝑡) = (1 − 0))
265 1m0e1 12414 . . . . . . . . . . . . . 14 (1 − 0) = 1
266264, 265eqtrdi 2796 . . . . . . . . . . . . 13 (𝑡 = 0 → (1 − 𝑡) = 1)
267266oveq1d 7463 . . . . . . . . . . . 12 (𝑡 = 0 → ((1 − 𝑡) · (𝐵𝑘)) = (1 · (𝐵𝑘)))
268 oveq1 7455 . . . . . . . . . . . 12 (𝑡 = 0 → (𝑡 · (𝐶𝑘)) = (0 · (𝐶𝑘)))
269267, 268oveq12d 7466 . . . . . . . . . . 11 (𝑡 = 0 → (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘))))
270269eqeq2d 2751 . . . . . . . . . 10 (𝑡 = 0 → ((𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘)))))
271270ralbidv 3184 . . . . . . . . 9 (𝑡 = 0 → (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘)))))
272271rspcev 3635 . . . . . . . 8 ((0 ∈ (0[,]1) ∧ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = ((1 · (𝐵𝑘)) + (0 · (𝐶𝑘)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))
273242, 263, 272sylancr 586 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 = 𝐶𝐵 = 𝐴)) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))
274273exp32 420 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 → (𝐵 = 𝐴 → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))))
275241, 274syldd 72 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))))
276 eqeefv 28936 . . . . . . . . 9 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 ↔ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝)))
2772763adant1 1130 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 = 𝐶 ↔ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝)))
278277necon3abid 2983 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵𝐶 ↔ ¬ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝)))
279 df-ne 2947 . . . . . . . . 9 ((𝐵𝑝) ≠ (𝐶𝑝) ↔ ¬ (𝐵𝑝) = (𝐶𝑝))
280279rexbii 3100 . . . . . . . 8 (∃𝑝 ∈ (1...𝑁)(𝐵𝑝) ≠ (𝐶𝑝) ↔ ∃𝑝 ∈ (1...𝑁) ¬ (𝐵𝑝) = (𝐶𝑝))
281 rexnal 3106 . . . . . . . 8 (∃𝑝 ∈ (1...𝑁) ¬ (𝐵𝑝) = (𝐶𝑝) ↔ ¬ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝))
282280, 281bitri 275 . . . . . . 7 (∃𝑝 ∈ (1...𝑁)(𝐵𝑝) ≠ (𝐶𝑝) ↔ ¬ ∀𝑝 ∈ (1...𝑁)(𝐵𝑝) = (𝐶𝑝))
283278, 282bitr4di 289 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵𝐶 ↔ ∃𝑝 ∈ (1...𝑁)(𝐵𝑝) ≠ (𝐶𝑝)))
284 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑖 = 𝑝 → (𝐵𝑖) = (𝐵𝑝))
285 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑖 = 𝑝 → (𝐴𝑖) = (𝐴𝑝))
286284, 285breq12d 5179 . . . . . . . . . . . . . 14 (𝑖 = 𝑝 → ((𝐵𝑖) ≤ (𝐴𝑖) ↔ (𝐵𝑝) ≤ (𝐴𝑝)))
287 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑖 = 𝑝 → (𝐶𝑖) = (𝐶𝑝))
288285, 287breq12d 5179 . . . . . . . . . . . . . 14 (𝑖 = 𝑝 → ((𝐴𝑖) ≤ (𝐶𝑖) ↔ (𝐴𝑝) ≤ (𝐶𝑝)))
289286, 288anbi12d 631 . . . . . . . . . . . . 13 (𝑖 = 𝑝 → (((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ↔ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))))
290287, 285breq12d 5179 . . . . . . . . . . . . . 14 (𝑖 = 𝑝 → ((𝐶𝑖) ≤ (𝐴𝑖) ↔ (𝐶𝑝) ≤ (𝐴𝑝)))
291285, 284breq12d 5179 . . . . . . . . . . . . . 14 (𝑖 = 𝑝 → ((𝐴𝑖) ≤ (𝐵𝑖) ↔ (𝐴𝑝) ≤ (𝐵𝑝)))
292290, 291anbi12d 631 . . . . . . . . . . . . 13 (𝑖 = 𝑝 → (((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖)) ↔ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))))
293289, 292orbi12d 917 . . . . . . . . . . . 12 (𝑖 = 𝑝 → ((((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ↔ (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)))))
294293rspcv 3631 . . . . . . . . . . 11 (𝑝 ∈ (1...𝑁) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) → (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)))))
295294ad2antrl 727 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) → (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)))))
296 simprr 772 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐴𝑝) ≤ (𝐶𝑝))
297 simp1 1136 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
298 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) → 𝑝 ∈ (1...𝑁))
299 fveere 28934 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐴𝑝) ∈ ℝ)
300297, 298, 299syl2an 595 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐴𝑝) ∈ ℝ)
301 simp3 1138 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
302 fveere 28934 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐶𝑝) ∈ ℝ)
303301, 298, 302syl2an 595 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐶𝑝) ∈ ℝ)
304 simpl2 1192 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → 𝐵 ∈ (𝔼‘𝑁))
305 simprl 770 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → 𝑝 ∈ (1...𝑁))
306 fveere 28934 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐵𝑝) ∈ ℝ)
307304, 305, 306syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐵𝑝) ∈ ℝ)
308300, 303, 307lesub1d 11897 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐴𝑝) ≤ (𝐶𝑝) ↔ ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝))))
309308adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐴𝑝) ≤ (𝐶𝑝) ↔ ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝))))
310296, 309mpbid 232 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝)))
311300, 307resubcld 11718 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐴𝑝) − (𝐵𝑝)) ∈ ℝ)
312311adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐴𝑝) − (𝐵𝑝)) ∈ ℝ)
313 simprl 770 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐵𝑝) ≤ (𝐴𝑝))
314300, 307subge0d 11880 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (0 ≤ ((𝐴𝑝) − (𝐵𝑝)) ↔ (𝐵𝑝) ≤ (𝐴𝑝)))
315314adantr 480 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (0 ≤ ((𝐴𝑝) − (𝐵𝑝)) ↔ (𝐵𝑝) ≤ (𝐴𝑝)))
316313, 315mpbird 257 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → 0 ≤ ((𝐴𝑝) − (𝐵𝑝)))
317303, 307resubcld 11718 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐶𝑝) − (𝐵𝑝)) ∈ ℝ)
318317adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐶𝑝) − (𝐵𝑝)) ∈ ℝ)
319 letr 11384 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑝) ∈ ℝ ∧ (𝐴𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) → (𝐵𝑝) ≤ (𝐶𝑝)))
320307, 300, 303, 319syl3anc 1371 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) → (𝐵𝑝) ≤ (𝐶𝑝)))
321320imp 406 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐵𝑝) ≤ (𝐶𝑝))
322 simplrr 777 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐵𝑝) ≠ (𝐶𝑝))
323322necomd 3002 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐶𝑝) ≠ (𝐵𝑝))
324307, 303ltlend 11435 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐵𝑝) < (𝐶𝑝) ↔ ((𝐵𝑝) ≤ (𝐶𝑝) ∧ (𝐶𝑝) ≠ (𝐵𝑝))))
325324adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐵𝑝) < (𝐶𝑝) ↔ ((𝐵𝑝) ≤ (𝐶𝑝) ∧ (𝐶𝑝) ≠ (𝐵𝑝))))
326321, 323, 325mpbir2and 712 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (𝐵𝑝) < (𝐶𝑝))
327307, 303posdifd 11877 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐵𝑝) < (𝐶𝑝) ↔ 0 < ((𝐶𝑝) − (𝐵𝑝))))
328327adantr 480 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((𝐵𝑝) < (𝐶𝑝) ↔ 0 < ((𝐶𝑝) − (𝐵𝑝))))
329326, 328mpbid 232 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → 0 < ((𝐶𝑝) − (𝐵𝑝)))
330 divelunit 13554 . . . . . . . . . . . . . 14 (((((𝐴𝑝) − (𝐵𝑝)) ∈ ℝ ∧ 0 ≤ ((𝐴𝑝) − (𝐵𝑝))) ∧ (((𝐶𝑝) − (𝐵𝑝)) ∈ ℝ ∧ 0 < ((𝐶𝑝) − (𝐵𝑝)))) → ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1) ↔ ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝))))
331312, 316, 318, 329, 330syl22anc 838 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1) ↔ ((𝐴𝑝) − (𝐵𝑝)) ≤ ((𝐶𝑝) − (𝐵𝑝))))
332310, 331mpbird 257 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1))
333300recnd 11318 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐴𝑝) ∈ ℂ)
334307recnd 11318 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐵𝑝) ∈ ℂ)
335303recnd 11318 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐶𝑝) ∈ ℂ)
336 simprr 772 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐵𝑝) ≠ (𝐶𝑝))
337336necomd 3002 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝐶𝑝) ≠ (𝐵𝑝))
338333, 334, 335, 334, 337div2subd 12120 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))))
339338adantr 480 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))))
340 simprl 770 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐶𝑝) ≤ (𝐴𝑝))
341303, 300, 307lesub2d 11898 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐶𝑝) ≤ (𝐴𝑝) ↔ ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝))))
342341adantr 480 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐶𝑝) ≤ (𝐴𝑝) ↔ ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝))))
343340, 342mpbid 232 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝)))
344307, 300resubcld 11718 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐵𝑝) − (𝐴𝑝)) ∈ ℝ)
345344adantr 480 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐵𝑝) − (𝐴𝑝)) ∈ ℝ)
346 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐴𝑝) ≤ (𝐵𝑝))
347307, 300subge0d 11880 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (0 ≤ ((𝐵𝑝) − (𝐴𝑝)) ↔ (𝐴𝑝) ≤ (𝐵𝑝)))
348347adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (0 ≤ ((𝐵𝑝) − (𝐴𝑝)) ↔ (𝐴𝑝) ≤ (𝐵𝑝)))
349346, 348mpbird 257 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → 0 ≤ ((𝐵𝑝) − (𝐴𝑝)))
350307, 303resubcld 11718 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐵𝑝) − (𝐶𝑝)) ∈ ℝ)
351350adantr 480 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐵𝑝) − (𝐶𝑝)) ∈ ℝ)
352 letr 11384 . . . . . . . . . . . . . . . . . . 19 (((𝐶𝑝) ∈ ℝ ∧ (𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ) → (((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)) → (𝐶𝑝) ≤ (𝐵𝑝)))
353303, 300, 307, 352syl3anc 1371 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)) → (𝐶𝑝) ≤ (𝐵𝑝)))
354353imp 406 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐶𝑝) ≤ (𝐵𝑝))
355 simplrr 777 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐵𝑝) ≠ (𝐶𝑝))
356303, 307ltlend 11435 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐶𝑝) < (𝐵𝑝) ↔ ((𝐶𝑝) ≤ (𝐵𝑝) ∧ (𝐵𝑝) ≠ (𝐶𝑝))))
357356adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐶𝑝) < (𝐵𝑝) ↔ ((𝐶𝑝) ≤ (𝐵𝑝) ∧ (𝐵𝑝) ≠ (𝐶𝑝))))
358354, 355, 357mpbir2and 712 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (𝐶𝑝) < (𝐵𝑝))
359303, 307posdifd 11877 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((𝐶𝑝) < (𝐵𝑝) ↔ 0 < ((𝐵𝑝) − (𝐶𝑝))))
360359adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((𝐶𝑝) < (𝐵𝑝) ↔ 0 < ((𝐵𝑝) − (𝐶𝑝))))
361358, 360mpbid 232 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → 0 < ((𝐵𝑝) − (𝐶𝑝)))
362 divelunit 13554 . . . . . . . . . . . . . . 15 (((((𝐵𝑝) − (𝐴𝑝)) ∈ ℝ ∧ 0 ≤ ((𝐵𝑝) − (𝐴𝑝))) ∧ (((𝐵𝑝) − (𝐶𝑝)) ∈ ℝ ∧ 0 < ((𝐵𝑝) − (𝐶𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))) ∈ (0[,]1) ↔ ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝))))
363345, 349, 351, 361, 362syl22anc 838 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))) ∈ (0[,]1) ↔ ((𝐵𝑝) − (𝐴𝑝)) ≤ ((𝐵𝑝) − (𝐶𝑝))))
364343, 363mpbird 257 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (((𝐵𝑝) − (𝐴𝑝)) / ((𝐵𝑝) − (𝐶𝑝))) ∈ (0[,]1))
365339, 364eqeltrd 2844 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1))
366332, 365jaodan 958 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) ∧ (((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝)))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1))
367366ex 412 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((((𝐵𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐶𝑝)) ∨ ((𝐶𝑝) ≤ (𝐴𝑝) ∧ (𝐴𝑝) ≤ (𝐵𝑝))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1)))
368295, 367syld 47 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) → (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1)))
369 simp2l 1199 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝑝 ∈ (1...𝑁))
370 simp3 1138 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ (1...𝑁))
371284, 285oveq12d 7466 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑝 → ((𝐵𝑖) − (𝐴𝑖)) = ((𝐵𝑝) − (𝐴𝑝)))
372371oveq1d 7463 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑝 → (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑗) − (𝐴𝑗))))
373287, 285oveq12d 7466 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑝 → ((𝐶𝑖) − (𝐴𝑖)) = ((𝐶𝑝) − (𝐴𝑝)))
374373oveq2d 7464 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑝 → (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑝) − (𝐴𝑝))))
375372, 374eqeq12d 2756 . . . . . . . . . . . . . . 15 (𝑖 = 𝑝 → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑝) − (𝐴𝑝)))))
376 fveq2 6920 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → (𝐶𝑗) = (𝐶𝑘))
377 fveq2 6920 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
378376, 377oveq12d 7466 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → ((𝐶𝑗) − (𝐴𝑗)) = ((𝐶𝑘) − (𝐴𝑘)))
379378oveq2d 7464 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))))
380 fveq2 6920 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
381380, 377oveq12d 7466 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → ((𝐵𝑗) − (𝐴𝑗)) = ((𝐵𝑘) − (𝐴𝑘)))
382381oveq1d 7463 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))))
383379, 382eqeq12d 2756 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑝) − (𝐴𝑝))) ↔ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))))
384375, 383rspc2v 3646 . . . . . . . . . . . . . 14 ((𝑝 ∈ (1...𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))))
385369, 370, 384syl2anc 583 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))))
386 simp11 1203 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
387386, 370, 243syl2anc 583 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
388 simp12 1204 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
389388, 370, 245syl2anc 583 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℂ)
390 simp13 1205 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
391390, 370, 247syl2anc 583 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℂ)
3923333adant3 1132 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑝) ∈ ℂ)
3933343adant3 1132 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑝) ∈ ℂ)
3943353adant3 1132 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑝) ∈ ℂ)
395 simp2r 1200 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑝) ≠ (𝐶𝑝))
396395necomd 3002 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑝) ≠ (𝐵𝑝))
397 simpl23 1253 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐶𝑝) ∈ ℂ)
398 simpl21 1251 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐴𝑝) ∈ ℂ)
399397, 398subcld 11647 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐶𝑝) − (𝐴𝑝)) ∈ ℂ)
400 simpl12 1249 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐵𝑘) ∈ ℂ)
401399, 400mulcld 11310 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) ∈ ℂ)
402 simpl22 1252 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐵𝑝) ∈ ℂ)
403398, 402subcld 11647 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐴𝑝) − (𝐵𝑝)) ∈ ℂ)
404 simpl13 1250 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐶𝑘) ∈ ℂ)
405403, 404mulcld 11310 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)) ∈ ℂ)
406397, 402subcld 11647 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐶𝑝) − (𝐵𝑝)) ∈ ℂ)
407 simpl3 1193 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐶𝑝) ≠ (𝐵𝑝))
408397, 402, 407subne0d 11656 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐶𝑝) − (𝐵𝑝)) ≠ 0)
409401, 405, 406, 408divdird 12108 . . . . . . . . . . . . . . . 16 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) / ((𝐶𝑝) − (𝐵𝑝))) = (((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) + ((((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)) / ((𝐶𝑝) − (𝐵𝑝)))))
410 npncan2 11563 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐵𝑝) ∈ ℂ ∧ (𝐴𝑝) ∈ ℂ) → (((𝐵𝑝) − (𝐴𝑝)) + ((𝐴𝑝) − (𝐵𝑝))) = 0)
411402, 398, 410syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) + ((𝐴𝑝) − (𝐵𝑝))) = 0)
412411oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) + ((𝐴𝑝) − (𝐵𝑝))) · (𝐶𝑘)) = (0 · (𝐶𝑘)))
413402, 398subcld 11647 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐵𝑝) − (𝐴𝑝)) ∈ ℂ)
414413, 403, 404adddird 11315 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) + ((𝐴𝑝) − (𝐵𝑝))) · (𝐶𝑘)) = ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
415404mul02d 11488 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (0 · (𝐶𝑘)) = 0)
416412, 414, 4153eqtr3d 2788 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) = 0)
417416oveq1d 7463 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = (0 + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))))
418413, 404mulcld 11310 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) ∈ ℂ)
419 simpl11 1248 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐴𝑘) ∈ ℂ)
420406, 419mulcld 11310 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) ∈ ℂ)
421418, 405, 420add32d 11517 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
422420addlidd 11491 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (0 + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)))
423417, 421, 4223eqtr3rd 2789 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
424399, 419mulcld 11310 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) ∈ ℂ)
425413, 419mulcld 11310 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘)) ∈ ℂ)
426418, 424, 425addsubd 11668 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
427397, 402, 398nnncan2d 11682 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) − ((𝐵𝑝) − (𝐴𝑝))) = ((𝐶𝑝) − (𝐵𝑝)))
428427oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) − ((𝐵𝑝) − (𝐴𝑝))) · (𝐴𝑘)) = (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)))
429399, 413, 419subdird 11747 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) − ((𝐵𝑝) − (𝐴𝑝))) · (𝐴𝑘)) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
430428, 429eqtr3d 2782 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
431430oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + ((((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘)))))
432418, 424, 425addsubassd 11667 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + ((((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘)))))
433431, 432eqtr4d 2783 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
434413, 404, 419subdid 11746 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
435434oveq1d 7463 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) − (((𝐵𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
436426, 433, 4353eqtr4d 2790 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) = ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
437436oveq1d 7463 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · (𝐶𝑘)) + (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) = (((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
438423, 437eqtrd 2780 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = (((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
439 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))))
440439oveq1d 7463 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = ((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
441440oveq1d 7463 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) = (((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
442400, 419subcld 11647 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ℂ)
443442, 399mulcomd 11311 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑘) − (𝐴𝑘))))
444443oveq1d 7463 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = ((((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
445399, 442, 419adddid 11314 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) · (((𝐵𝑘) − (𝐴𝑘)) + (𝐴𝑘))) = ((((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑘) − (𝐴𝑘))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))))
446400, 419npcand 11651 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐵𝑘) − (𝐴𝑘)) + (𝐴𝑘)) = (𝐵𝑘))
447446oveq2d 7464 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) · (((𝐵𝑘) − (𝐴𝑘)) + (𝐴𝑘))) = (((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)))
448444, 445, 4473eqtr2d 2786 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) = (((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)))
449448oveq1d 7463 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) + (((𝐶𝑝) − (𝐴𝑝)) · (𝐴𝑘))) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
450438, 441, 4493eqtrd 2784 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))))
451401, 405addcld 11309 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) ∈ ℂ)
452451, 406, 419, 408divmuld 12092 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) / ((𝐶𝑝) − (𝐵𝑝))) = (𝐴𝑘) ↔ (((𝐶𝑝) − (𝐵𝑝)) · (𝐴𝑘)) = ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)))))
453450, 452mpbird 257 . . . . . . . . . . . . . . . 16 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) + (((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘))) / ((𝐶𝑝) − (𝐵𝑝))) = (𝐴𝑘))
454399, 400, 406, 408div23d 12107 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) = ((((𝐶𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐵𝑘)))
455406, 403, 406, 408divsubdird 12109 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐵𝑝)) − ((𝐴𝑝) − (𝐵𝑝))) / ((𝐶𝑝) − (𝐵𝑝))) = ((((𝐶𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))))
456397, 398, 402nnncan2d 11682 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) − ((𝐴𝑝) − (𝐵𝑝))) = ((𝐶𝑝) − (𝐴𝑝)))
457456oveq1d 7463 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐵𝑝)) − ((𝐴𝑝) − (𝐵𝑝))) / ((𝐶𝑝) − (𝐵𝑝))) = (((𝐶𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐵𝑝))))
458406, 408dividd 12068 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) = 1)
459458oveq1d 7463 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) = (1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))))
460455, 457, 4593eqtr3d 2788 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((𝐶𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) = (1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))))
461460oveq1d 7463 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐵𝑘)) = ((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)))
462454, 461eqtrd 2780 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) = ((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)))
463403, 404, 406, 408div23d 12107 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → ((((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) = ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))
464462, 463oveq12d 7466 . . . . . . . . . . . . . . . 16 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (((((𝐶𝑝) − (𝐴𝑝)) · (𝐵𝑘)) / ((𝐶𝑝) − (𝐵𝑝))) + ((((𝐴𝑝) − (𝐵𝑝)) · (𝐶𝑘)) / ((𝐶𝑝) − (𝐵𝑝)))) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))
465409, 453, 4643eqtr3d 2788 . . . . . . . . . . . . . . 15 (((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) ∧ (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝)))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))
466465ex 412 . . . . . . . . . . . . . 14 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ ∧ (𝐶𝑘) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐵𝑝)) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
467387, 389, 391, 392, 393, 394, 396, 466syl331anc 1395 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑘) − (𝐴𝑘))) = (((𝐵𝑘) − (𝐴𝑘)) · ((𝐶𝑝) − (𝐴𝑝))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
468385, 467syld 47 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝)) ∧ 𝑘 ∈ (1...𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
4694683expia 1121 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (𝑘 ∈ (1...𝑁) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))))
470469com23 86 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (𝑘 ∈ (1...𝑁) → (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))))
471470ralrimdv 3158 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
472368, 471anim12d 608 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1) ∧ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))))
473 oveq2 7456 . . . . . . . . . . . . 13 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → (1 − 𝑡) = (1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))))
474473oveq1d 7463 . . . . . . . . . . . 12 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → ((1 − 𝑡) · (𝐵𝑘)) = ((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)))
475 oveq1 7455 . . . . . . . . . . . 12 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → (𝑡 · (𝐶𝑘)) = ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))
476474, 475oveq12d 7466 . . . . . . . . . . 11 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘))))
477476eqeq2d 2751 . . . . . . . . . 10 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → ((𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
478477ralbidv 3184 . . . . . . . . 9 (𝑡 = (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) → (∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))))
479478rspcev 3635 . . . . . . . 8 (((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) ∈ (0[,]1) ∧ ∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − (((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝)))) · (𝐵𝑘)) + ((((𝐴𝑝) − (𝐵𝑝)) / ((𝐶𝑝) − (𝐵𝑝))) · (𝐶𝑘)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))
480472, 479syl6 35 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐵𝑝) ≠ (𝐶𝑝))) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘)))))
481480rexlimdvaa 3162 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∃𝑝 ∈ (1...𝑁)(𝐵𝑝) ≠ (𝐶𝑝) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))))
482283, 481sylbid 240 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵𝐶 → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))))))
483275, 482pm2.61dne 3034 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐶𝑖)) ∨ ((𝐶𝑖) ≤ (𝐴𝑖) ∧ (𝐴𝑖) ≤ (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘)))))
484219, 483sylbid 240 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘)))))
485213, 484impbid 212 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑘 ∈ (1...𝑁)(𝐴𝑘) = (((1 − 𝑡) · (𝐵𝑘)) + (𝑡 · (𝐶𝑘))) ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
4861, 485bitrd 279 1 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cop 4654   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  2c2 12348  [,]cicc 13410  ...cfz 13567  cexp 14112  𝔼cee 28921   Btwn cbtwn 28922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-icc 13414  df-fz 13568  df-seq 14053  df-exp 14113  df-ee 28924  df-btwn 28925
This theorem is referenced by:  colinearalg  28943
  Copyright terms: Public domain W3C validator