Step | Hyp | Ref
| Expression |
1 | | cdlemk4.b |
. . . 4
β’ π΅ = (BaseβπΎ) |
2 | | cdlemk4.h |
. . . 4
β’ π» = (LHypβπΎ) |
3 | | cdlemk4.t |
. . . 4
β’ π = ((LTrnβπΎ)βπ) |
4 | | cdlemk4.r |
. . . 4
β’ π
= ((trLβπΎ)βπ) |
5 | 1, 2, 3, 4 | cdlemftr2 39075 |
. . 3
β’ ((πΎ β HL β§ π β π») β βπ β π (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ))) |
6 | 5 | 3ad2ant1 1134 |
. 2
β’ (((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β βπ β π (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ))) |
7 | | nfv 1918 |
. . 3
β’
β²π((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) |
8 | | cdlemk4.x |
. . . . . 6
β’ π = (β©π§ β π βπ β π ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β (π§βπ) = π)) |
9 | | nfra1 3266 |
. . . . . . 7
β’
β²πβπ β π ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β (π§βπ) = π) |
10 | | nfcv 2904 |
. . . . . . 7
β’
β²ππ |
11 | 9, 10 | nfriota 7327 |
. . . . . 6
β’
β²π(β©π§ β π βπ β π ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β (π§βπ) = π)) |
12 | 8, 11 | nfcxfr 2902 |
. . . . 5
β’
β²ππ |
13 | | nfcv 2904 |
. . . . 5
β’
β²ππ |
14 | 12, 13 | nffv 6853 |
. . . 4
β’
β²π(πβπ) |
15 | | nfcv 2904 |
. . . 4
β’
β²π
β€ |
16 | | nfcv 2904 |
. . . 4
β’
β²π(π β¨ (π
βπΊ)) |
17 | 14, 15, 16 | nfbr 5153 |
. . 3
β’
β²π(πβπ) β€ (π β¨ (π
βπΊ)) |
18 | | simpl1 1192 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β (πΎ β HL β§ π β π»)) |
19 | | simpl21 1252 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β (πΉ β π β§ πΉ β ( I βΎ π΅))) |
20 | | simpl22 1253 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β (πΊ β π β§ πΊ β ( I βΎ π΅))) |
21 | | simpl23 1254 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β π β π) |
22 | | simpl3l 1229 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β (π β π΄ β§ Β¬ π β€ π)) |
23 | | simpl3r 1230 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β (π
βπΉ) = (π
βπ)) |
24 | | simpr 486 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β (π β π β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) |
25 | | cdlemk4.l |
. . . . . 6
β’ β€ =
(leβπΎ) |
26 | | cdlemk4.j |
. . . . . 6
β’ β¨ =
(joinβπΎ) |
27 | | cdlemk4.m |
. . . . . 6
β’ β§ =
(meetβπΎ) |
28 | | cdlemk4.a |
. . . . . 6
β’ π΄ = (AtomsβπΎ) |
29 | | cdlemk4.z |
. . . . . 6
β’ π = ((π β¨ (π
βπ)) β§ ((πβπ) β¨ (π
β(π β β‘πΉ)))) |
30 | | cdlemk4.y |
. . . . . 6
β’ π = ((π β¨ (π
βπΊ)) β§ (π β¨ (π
β(πΊ β β‘π)))) |
31 | 1, 25, 26, 27, 28, 2, 3, 4, 29,
30, 8 | cdlemk37 39423 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅))) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ (π β π β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β (πβπ) β€ (π β¨ (π
βπΊ))) |
32 | 18, 19, 20, 21, 22, 23, 24, 31 | syl331anc 1396 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β (πβπ) β€ (π β¨ (π
βπΊ))) |
33 | 32 | exp32 422 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β (π β π β ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β (πβπ) β€ (π β¨ (π
βπΊ))))) |
34 | 7, 17, 33 | rexlimd 3248 |
. 2
β’ (((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β (βπ β π (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β (πβπ) β€ (π β¨ (π
βπΊ)))) |
35 | 6, 34 | mpd 15 |
1
β’ (((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β (πβπ) β€ (π β¨ (π
βπΊ))) |