Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk38 Structured version   Visualization version   GIF version

Theorem cdlemk38 40299
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 31, p. 119. TODO: derive more directly with r19.23 3247? (Contributed by NM, 19-Jul-2013.)
Hypotheses
Ref Expression
cdlemk4.b 𝐡 = (Baseβ€˜πΎ)
cdlemk4.l ≀ = (leβ€˜πΎ)
cdlemk4.j ∨ = (joinβ€˜πΎ)
cdlemk4.m ∧ = (meetβ€˜πΎ)
cdlemk4.a 𝐴 = (Atomsβ€˜πΎ)
cdlemk4.h 𝐻 = (LHypβ€˜πΎ)
cdlemk4.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemk4.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemk4.z 𝑍 = ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))))
cdlemk4.y π‘Œ = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑍 ∨ (π‘…β€˜(𝐺 ∘ ◑𝑏))))
cdlemk4.x 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ (π‘§β€˜π‘ƒ) = π‘Œ))
Assertion
Ref Expression
cdlemk38 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) β†’ (π‘‹β€˜π‘ƒ) ≀ (𝑃 ∨ (π‘…β€˜πΊ)))
Distinct variable groups:   𝑧,𝑏, ∧   ≀ ,𝑏,𝑧   ∨ ,𝑏,𝑧   𝐴,𝑏,𝑧   𝐡,𝑏,𝑧   𝐹,𝑏,𝑧   𝐺,𝑏,𝑧   𝐻,𝑏,𝑧   𝐾,𝑏,𝑧   𝑁,𝑏,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   π‘Š,𝑏,𝑧   𝑧,π‘Œ
Allowed substitution hints:   𝑋(𝑧,𝑏)   π‘Œ(𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk38
StepHypRef Expression
1 cdlemk4.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 cdlemk4.h . . . 4 𝐻 = (LHypβ€˜πΎ)
3 cdlemk4.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
4 cdlemk4.r . . . 4 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
51, 2, 3, 4cdlemftr2 39950 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ βˆƒπ‘ ∈ 𝑇 (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)))
653ad2ant1 1130 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) β†’ βˆƒπ‘ ∈ 𝑇 (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)))
7 nfv 1909 . . 3 Ⅎ𝑏((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)))
8 cdlemk4.x . . . . . 6 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ (π‘§β€˜π‘ƒ) = π‘Œ))
9 nfra1 3275 . . . . . . 7 β„²π‘βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ (π‘§β€˜π‘ƒ) = π‘Œ)
10 nfcv 2897 . . . . . . 7 Ⅎ𝑏𝑇
119, 10nfriota 7374 . . . . . 6 Ⅎ𝑏(℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ (π‘§β€˜π‘ƒ) = π‘Œ))
128, 11nfcxfr 2895 . . . . 5 Ⅎ𝑏𝑋
13 nfcv 2897 . . . . 5 Ⅎ𝑏𝑃
1412, 13nffv 6895 . . . 4 Ⅎ𝑏(π‘‹β€˜π‘ƒ)
15 nfcv 2897 . . . 4 Ⅎ𝑏 ≀
16 nfcv 2897 . . . 4 Ⅎ𝑏(𝑃 ∨ (π‘…β€˜πΊ))
1714, 15, 16nfbr 5188 . . 3 Ⅎ𝑏(π‘‹β€˜π‘ƒ) ≀ (𝑃 ∨ (π‘…β€˜πΊ))
18 simpl1 1188 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
19 simpl21 1248 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)))) β†’ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)))
20 simpl22 1249 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)))) β†’ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)))
21 simpl23 1250 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)))) β†’ 𝑁 ∈ 𝑇)
22 simpl3l 1225 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
23 simpl3r 1226 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)))) β†’ (π‘…β€˜πΉ) = (π‘…β€˜π‘))
24 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)))) β†’ (𝑏 ∈ 𝑇 ∧ (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ))))
25 cdlemk4.l . . . . . 6 ≀ = (leβ€˜πΎ)
26 cdlemk4.j . . . . . 6 ∨ = (joinβ€˜πΎ)
27 cdlemk4.m . . . . . 6 ∧ = (meetβ€˜πΎ)
28 cdlemk4.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
29 cdlemk4.z . . . . . 6 𝑍 = ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))))
30 cdlemk4.y . . . . . 6 π‘Œ = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ (𝑍 ∨ (π‘…β€˜(𝐺 ∘ ◑𝑏))))
311, 25, 26, 27, 28, 2, 3, 4, 29, 30, 8cdlemk37 40298 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)))) β†’ (π‘‹β€˜π‘ƒ) ≀ (𝑃 ∨ (π‘…β€˜πΊ)))
3218, 19, 20, 21, 22, 23, 24, 31syl331anc 1392 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)))) β†’ (π‘‹β€˜π‘ƒ) ≀ (𝑃 ∨ (π‘…β€˜πΊ)))
3332exp32 420 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) β†’ (𝑏 ∈ 𝑇 β†’ ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ (π‘‹β€˜π‘ƒ) ≀ (𝑃 ∨ (π‘…β€˜πΊ)))))
347, 17, 33rexlimd 3257 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) β†’ (βˆƒπ‘ ∈ 𝑇 (𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜πΊ)) β†’ (π‘‹β€˜π‘ƒ) ≀ (𝑃 ∨ (π‘…β€˜πΊ))))
356, 34mpd 15 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘))) β†’ (π‘‹β€˜π‘ƒ) ≀ (𝑃 ∨ (π‘…β€˜πΊ)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆ€wral 3055  βˆƒwrex 3064   class class class wbr 5141   I cid 5566  β—‘ccnv 5668   β†Ύ cres 5671   ∘ ccom 5673  β€˜cfv 6537  β„©crio 7360  (class class class)co 7405  Basecbs 17153  lecple 17213  joincjn 18276  meetcmee 18277  Atomscatm 38646  HLchlt 38733  LHypclh 39368  LTrncltrn 39485  trLctrl 39542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-riotaBAD 38336
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-undef 8259  df-map 8824  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-oposet 38559  df-ol 38561  df-oml 38562  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734  df-llines 38882  df-lplanes 38883  df-lvols 38884  df-lines 38885  df-psubsp 38887  df-pmap 38888  df-padd 39180  df-lhyp 39372  df-laut 39373  df-ldil 39488  df-ltrn 39489  df-trl 39543
This theorem is referenced by:  cdlemk39  40300
  Copyright terms: Public domain W3C validator