Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg17b Structured version   Visualization version   GIF version

Theorem cdlemg17b 40309
Description: Part of proof of Lemma G in [Crawley] p. 117, 4th line. Whenever (in their terminology) p q/0 (i.e. the sublattice from 0 to p q) contains precisely three atoms and g is not the identity, g(p) = q. See also comments under cdleme0nex 39937. (Contributed by NM, 8-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg17b ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐺𝑃) = 𝑄)
Distinct variable groups:   𝐴,𝑟   𝐺,𝑟   ,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑊,𝑟
Allowed substitution hints:   𝑅(𝑟)   𝑇(𝑟)   𝐻(𝑟)   𝐾(𝑟)   (𝑟)

Proof of Theorem cdlemg17b
StepHypRef Expression
1 simp31 1206 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐺𝑃) ≠ 𝑃)
21neneqd 2934 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ (𝐺𝑃) = 𝑃)
3 simp11l 1281 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ HL)
4 simp11 1200 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5 simp12 1201 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
6 simp13 1202 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
7 simp2l 1196 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐺𝑇)
8 simp32 1207 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑅𝐺) (𝑃 𝑄))
9 cdlemg12.l . . . . . 6 = (le‘𝐾)
10 cdlemg12.j . . . . . 6 = (join‘𝐾)
11 cdlemg12.m . . . . . 6 = (meet‘𝐾)
12 cdlemg12.a . . . . . 6 𝐴 = (Atoms‘𝐾)
13 cdlemg12.h . . . . . 6 𝐻 = (LHyp‘𝐾)
14 cdlemg12.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
15 cdlemg12b.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
169, 10, 11, 12, 13, 14, 15cdlemg17a 40308 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐺𝑇 ∧ (𝑅𝐺) (𝑃 𝑄))) → (𝐺𝑃) (𝑃 𝑄))
174, 5, 6, 7, 8, 16syl122anc 1376 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐺𝑃) (𝑃 𝑄))
18 simp33 1208 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
19 simp12l 1283 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝐴)
20 simp13l 1285 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑄𝐴)
21 simp2r 1197 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝑄)
229, 12, 13, 14ltrnel 39786 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
234, 7, 5, 22syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
249, 10, 12cdleme0nex 39937 . . . 4 (((𝐾 ∈ HL ∧ (𝐺𝑃) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊)) → ((𝐺𝑃) = 𝑃 ∨ (𝐺𝑃) = 𝑄))
253, 17, 18, 19, 20, 21, 23, 24syl331anc 1392 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐺𝑃) = 𝑃 ∨ (𝐺𝑃) = 𝑄))
2625ord 862 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (¬ (𝐺𝑃) = 𝑃 → (𝐺𝑃) = 𝑄))
272, 26mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐺𝑃) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wrex 3059   class class class wbr 5152  cfv 6553  (class class class)co 7423  lecple 17268  joincjn 18331  meetcmee 18332  Atomscatm 38909  HLchlt 38996  LHypclh 39631  LTrncltrn 39748  trLctrl 39805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-1st 8002  df-2nd 8003  df-map 8856  df-proset 18315  df-poset 18333  df-plt 18350  df-lub 18366  df-glb 18367  df-join 18368  df-meet 18369  df-p0 18445  df-p1 18446  df-lat 18452  df-clat 18519  df-oposet 38822  df-ol 38824  df-oml 38825  df-covers 38912  df-ats 38913  df-atl 38944  df-cvlat 38968  df-hlat 38997  df-psubsp 39150  df-pmap 39151  df-padd 39443  df-lhyp 39635  df-laut 39636  df-ldil 39751  df-ltrn 39752  df-trl 39806
This theorem is referenced by:  cdlemg17dN  40310  cdlemg17e  40312  cdlemg17ir  40317  cdlemg17bq  40320  cdlemg17  40324  cdlemg18d  40328
  Copyright terms: Public domain W3C validator