MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qredeu Structured version   Visualization version   GIF version

Theorem qredeu 15990
Description: Every rational number has a unique reduced form. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
qredeu (𝐴 ∈ ℚ → ∃!𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem qredeu
Dummy variables 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnz 11992 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
2 gcddvds 15840 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑧 gcd 𝑛) ∥ 𝑧 ∧ (𝑧 gcd 𝑛) ∥ 𝑛))
32simpld 495 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑧 gcd 𝑛) ∥ 𝑧)
41, 3sylan2 592 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∥ 𝑧)
5 gcdcl 15843 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑧 gcd 𝑛) ∈ ℕ0)
61, 5sylan2 592 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∈ ℕ0)
76nn0zd 12073 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∈ ℤ)
8 simpl 483 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ ℤ)
91adantl 482 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
10 nnne0 11659 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
1110neneqd 3018 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ¬ 𝑛 = 0)
1211intnand 489 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ¬ (𝑧 = 0 ∧ 𝑛 = 0))
1312adantl 482 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ¬ (𝑧 = 0 ∧ 𝑛 = 0))
14 gcdn0cl 15839 . . . . . . . . . . . 12 (((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ (𝑧 = 0 ∧ 𝑛 = 0)) → (𝑧 gcd 𝑛) ∈ ℕ)
158, 9, 13, 14syl21anc 833 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∈ ℕ)
16 nnne0 11659 . . . . . . . . . . 11 ((𝑧 gcd 𝑛) ∈ ℕ → (𝑧 gcd 𝑛) ≠ 0)
1715, 16syl 17 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ≠ 0)
18 dvdsval2 15598 . . . . . . . . . 10 (((𝑧 gcd 𝑛) ∈ ℤ ∧ (𝑧 gcd 𝑛) ≠ 0 ∧ 𝑧 ∈ ℤ) → ((𝑧 gcd 𝑛) ∥ 𝑧 ↔ (𝑧 / (𝑧 gcd 𝑛)) ∈ ℤ))
197, 17, 8, 18syl3anc 1363 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) ∥ 𝑧 ↔ (𝑧 / (𝑧 gcd 𝑛)) ∈ ℤ))
204, 19mpbid 233 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 / (𝑧 gcd 𝑛)) ∈ ℤ)
21203adant3 1124 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (𝑧 / (𝑧 gcd 𝑛)) ∈ ℤ)
222simprd 496 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑧 gcd 𝑛) ∥ 𝑛)
231, 22sylan2 592 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∥ 𝑛)
24 dvdsval2 15598 . . . . . . . . . . . 12 (((𝑧 gcd 𝑛) ∈ ℤ ∧ (𝑧 gcd 𝑛) ≠ 0 ∧ 𝑛 ∈ ℤ) → ((𝑧 gcd 𝑛) ∥ 𝑛 ↔ (𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ))
257, 17, 9, 24syl3anc 1363 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) ∥ 𝑛 ↔ (𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ))
2623, 25mpbid 233 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ)
27 nnre 11633 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
2827adantl 482 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
296nn0red 11944 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∈ ℝ)
30 nngt0 11656 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 < 𝑛)
3130adantl 482 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 0 < 𝑛)
32 nngt0 11656 . . . . . . . . . . . 12 ((𝑧 gcd 𝑛) ∈ ℕ → 0 < (𝑧 gcd 𝑛))
3315, 32syl 17 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 0 < (𝑧 gcd 𝑛))
3428, 29, 31, 33divgt0d 11563 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 0 < (𝑛 / (𝑧 gcd 𝑛)))
3526, 34jca 512 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ ∧ 0 < (𝑛 / (𝑧 gcd 𝑛))))
36353adant3 1124 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → ((𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ ∧ 0 < (𝑛 / (𝑧 gcd 𝑛))))
37 elnnz 11979 . . . . . . . 8 ((𝑛 / (𝑧 gcd 𝑛)) ∈ ℕ ↔ ((𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ ∧ 0 < (𝑛 / (𝑧 gcd 𝑛))))
3836, 37sylibr 235 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (𝑛 / (𝑧 gcd 𝑛)) ∈ ℕ)
3921, 38opelxpd 5586 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ ∈ (ℤ × ℕ))
4020, 26gcdcld 15845 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) ∈ ℕ0)
4140nn0cnd 11945 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) ∈ ℂ)
42 1cnd 10624 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 1 ∈ ℂ)
436nn0cnd 11945 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∈ ℂ)
4443mulid1d 10646 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) · 1) = (𝑧 gcd 𝑛))
45 zcn 11974 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
4645adantr 481 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ ℂ)
4746, 43, 17divcan2d 11406 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) · (𝑧 / (𝑧 gcd 𝑛))) = 𝑧)
48 nncn 11634 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
4948adantl 482 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
5049, 43, 17divcan2d 11406 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) · (𝑛 / (𝑧 gcd 𝑛))) = 𝑛)
5147, 50oveq12d 7163 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (((𝑧 gcd 𝑛) · (𝑧 / (𝑧 gcd 𝑛))) gcd ((𝑧 gcd 𝑛) · (𝑛 / (𝑧 gcd 𝑛)))) = (𝑧 gcd 𝑛))
52 mulgcd 15884 . . . . . . . . . 10 (((𝑧 gcd 𝑛) ∈ ℕ0 ∧ (𝑧 / (𝑧 gcd 𝑛)) ∈ ℤ ∧ (𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ) → (((𝑧 gcd 𝑛) · (𝑧 / (𝑧 gcd 𝑛))) gcd ((𝑧 gcd 𝑛) · (𝑛 / (𝑧 gcd 𝑛)))) = ((𝑧 gcd 𝑛) · ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛)))))
536, 20, 26, 52syl3anc 1363 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (((𝑧 gcd 𝑛) · (𝑧 / (𝑧 gcd 𝑛))) gcd ((𝑧 gcd 𝑛) · (𝑛 / (𝑧 gcd 𝑛)))) = ((𝑧 gcd 𝑛) · ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛)))))
5444, 51, 533eqtr2rd 2860 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) · ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛)))) = ((𝑧 gcd 𝑛) · 1))
5541, 42, 43, 17, 54mulcanad 11263 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) = 1)
56553adant3 1124 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) = 1)
5710adantl 482 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0)
5846, 49, 43, 57, 17divcan7d 11432 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛))) = (𝑧 / 𝑛))
5958eqeq2d 2829 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝐴 = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛))) ↔ 𝐴 = (𝑧 / 𝑛)))
6059biimp3ar 1461 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → 𝐴 = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛))))
61 ovex 7178 . . . . . . . . . . 11 (𝑧 / (𝑧 gcd 𝑛)) ∈ V
62 ovex 7178 . . . . . . . . . . 11 (𝑛 / (𝑧 gcd 𝑛)) ∈ V
6361, 62op1std 7688 . . . . . . . . . 10 (𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ → (1st𝑥) = (𝑧 / (𝑧 gcd 𝑛)))
6461, 62op2ndd 7689 . . . . . . . . . 10 (𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ → (2nd𝑥) = (𝑛 / (𝑧 gcd 𝑛)))
6563, 64oveq12d 7163 . . . . . . . . 9 (𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ → ((1st𝑥) gcd (2nd𝑥)) = ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))))
6665eqeq1d 2820 . . . . . . . 8 (𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ → (((1st𝑥) gcd (2nd𝑥)) = 1 ↔ ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) = 1))
6763, 64oveq12d 7163 . . . . . . . . 9 (𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ → ((1st𝑥) / (2nd𝑥)) = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛))))
6867eqeq2d 2829 . . . . . . . 8 (𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ → (𝐴 = ((1st𝑥) / (2nd𝑥)) ↔ 𝐴 = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛)))))
6966, 68anbi12d 630 . . . . . . 7 (𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ → ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ↔ (((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) = 1 ∧ 𝐴 = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛))))))
7069rspcev 3620 . . . . . 6 ((⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ ∈ (ℤ × ℕ) ∧ (((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) = 1 ∧ 𝐴 = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛))))) → ∃𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))
7139, 56, 60, 70syl12anc 832 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → ∃𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))
72 elxp6 7712 . . . . . . 7 (𝑥 ∈ (ℤ × ℕ) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)))
73 elxp6 7712 . . . . . . 7 (𝑦 ∈ (ℤ × ℕ) ↔ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ)))
74 simprl 767 . . . . . . . . . . . 12 ((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) → (1st𝑥) ∈ ℤ)
7574ad2antrr 722 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → (1st𝑥) ∈ ℤ)
76 simprr 769 . . . . . . . . . . . 12 ((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) → (2nd𝑥) ∈ ℕ)
7776ad2antrr 722 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → (2nd𝑥) ∈ ℕ)
78 simprll 775 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → ((1st𝑥) gcd (2nd𝑥)) = 1)
79 simprl 767 . . . . . . . . . . . 12 ((𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ)) → (1st𝑦) ∈ ℤ)
8079ad2antlr 723 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → (1st𝑦) ∈ ℤ)
81 simprr 769 . . . . . . . . . . . 12 ((𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ)) → (2nd𝑦) ∈ ℕ)
8281ad2antlr 723 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → (2nd𝑦) ∈ ℕ)
83 simprrl 777 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → ((1st𝑦) gcd (2nd𝑦)) = 1)
84 simprlr 776 . . . . . . . . . . . 12 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → 𝐴 = ((1st𝑥) / (2nd𝑥)))
85 simprrr 778 . . . . . . . . . . . 12 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → 𝐴 = ((1st𝑦) / (2nd𝑦)))
8684, 85eqtr3d 2855 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → ((1st𝑥) / (2nd𝑥)) = ((1st𝑦) / (2nd𝑦)))
87 qredeq 15989 . . . . . . . . . . 11 ((((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ ∧ ((1st𝑥) gcd (2nd𝑥)) = 1) ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ ∧ ((1st𝑦) gcd (2nd𝑦)) = 1) ∧ ((1st𝑥) / (2nd𝑥)) = ((1st𝑦) / (2nd𝑦))) → ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦)))
8875, 77, 78, 80, 82, 83, 86, 87syl331anc 1387 . . . . . . . . . 10 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦)))
89 fvex 6676 . . . . . . . . . . 11 (1st𝑥) ∈ V
90 fvex 6676 . . . . . . . . . . 11 (2nd𝑥) ∈ V
9189, 90opth 5359 . . . . . . . . . 10 (⟨(1st𝑥), (2nd𝑥)⟩ = ⟨(1st𝑦), (2nd𝑦)⟩ ↔ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦)))
9288, 91sylibr 235 . . . . . . . . 9 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → ⟨(1st𝑥), (2nd𝑥)⟩ = ⟨(1st𝑦), (2nd𝑦)⟩)
93 simplll 771 . . . . . . . . 9 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
94 simplrl 773 . . . . . . . . 9 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
9592, 93, 943eqtr4d 2863 . . . . . . . 8 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → 𝑥 = 𝑦)
9695ex 413 . . . . . . 7 (((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) → (((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦))
9772, 73, 96syl2anb 597 . . . . . 6 ((𝑥 ∈ (ℤ × ℕ) ∧ 𝑦 ∈ (ℤ × ℕ)) → (((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦))
9897rgen2 3200 . . . . 5 𝑥 ∈ (ℤ × ℕ)∀𝑦 ∈ (ℤ × ℕ)(((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦)
9971, 98jctir 521 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (∃𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ ∀𝑥 ∈ (ℤ × ℕ)∀𝑦 ∈ (ℤ × ℕ)(((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦)))
100993expia 1113 . . 3 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝐴 = (𝑧 / 𝑛) → (∃𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ ∀𝑥 ∈ (ℤ × ℕ)∀𝑦 ∈ (ℤ × ℕ)(((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦))))
101100rexlimivv 3289 . 2 (∃𝑧 ∈ ℤ ∃𝑛 ∈ ℕ 𝐴 = (𝑧 / 𝑛) → (∃𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ ∀𝑥 ∈ (ℤ × ℕ)∀𝑦 ∈ (ℤ × ℕ)(((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦)))
102 elq 12338 . 2 (𝐴 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑛 ∈ ℕ 𝐴 = (𝑧 / 𝑛))
103 fveq2 6663 . . . . . 6 (𝑥 = 𝑦 → (1st𝑥) = (1st𝑦))
104 fveq2 6663 . . . . . 6 (𝑥 = 𝑦 → (2nd𝑥) = (2nd𝑦))
105103, 104oveq12d 7163 . . . . 5 (𝑥 = 𝑦 → ((1st𝑥) gcd (2nd𝑥)) = ((1st𝑦) gcd (2nd𝑦)))
106105eqeq1d 2820 . . . 4 (𝑥 = 𝑦 → (((1st𝑥) gcd (2nd𝑥)) = 1 ↔ ((1st𝑦) gcd (2nd𝑦)) = 1))
107103, 104oveq12d 7163 . . . . 5 (𝑥 = 𝑦 → ((1st𝑥) / (2nd𝑥)) = ((1st𝑦) / (2nd𝑦)))
108107eqeq2d 2829 . . . 4 (𝑥 = 𝑦 → (𝐴 = ((1st𝑥) / (2nd𝑥)) ↔ 𝐴 = ((1st𝑦) / (2nd𝑦))))
109106, 108anbi12d 630 . . 3 (𝑥 = 𝑦 → ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ↔ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))))
110109reu4 3719 . 2 (∃!𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ↔ (∃𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ ∀𝑥 ∈ (ℤ × ℕ)∀𝑦 ∈ (ℤ × ℕ)(((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦)))
111101, 102, 1103imtr4i 293 1 (𝐴 ∈ ℚ → ∃!𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136  ∃!wreu 3137  cop 4563   class class class wbr 5057   × cxp 5546  cfv 6348  (class class class)co 7145  1st c1st 7676  2nd c2nd 7677  cc 10523  cr 10524  0cc0 10525  1c1 10526   · cmul 10530   < clt 10663   / cdiv 11285  cn 11626  0cn0 11885  cz 11969  cq 12336  cdvds 15595   gcd cgcd 15831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-dvds 15596  df-gcd 15832
This theorem is referenced by:  qnumdencl  16067  qnumdenbi  16072
  Copyright terms: Public domain W3C validator