Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg17h Structured version   Visualization version   GIF version

Theorem cdlemg17h 39527
Description: TODO: fix comment. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l ≀ = (leβ€˜πΎ)
cdlemg12.j ∨ = (joinβ€˜πΎ)
cdlemg12.m ∧ = (meetβ€˜πΎ)
cdlemg12.a 𝐴 = (Atomsβ€˜πΎ)
cdlemg12.h 𝐻 = (LHypβ€˜πΎ)
cdlemg12.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemg12b.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdlemg17h ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑆 = (πΉβ€˜π‘ƒ) ∨ 𝑆 = (πΉβ€˜π‘„)))
Distinct variable groups:   𝐴,π‘Ÿ   𝐺,π‘Ÿ   ∨ ,π‘Ÿ   ≀ ,π‘Ÿ   𝑃,π‘Ÿ   𝑄,π‘Ÿ   π‘Š,π‘Ÿ   𝐹,π‘Ÿ   𝑆,π‘Ÿ
Allowed substitution hints:   𝑅(π‘Ÿ)   𝑇(π‘Ÿ)   𝐻(π‘Ÿ)   𝐾(π‘Ÿ)   ∧ (π‘Ÿ)

Proof of Theorem cdlemg17h
StepHypRef Expression
1 simp11l 1284 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝐾 ∈ HL)
2 simp23r 1295 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))
3 simp11 1203 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
4 simp22l 1292 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝐹 ∈ 𝑇)
5 simp21l 1290 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑆 ∈ 𝐴)
6 cdlemg12.l . . . . . . . . 9 ≀ = (leβ€˜πΎ)
7 cdlemg12.a . . . . . . . . 9 𝐴 = (Atomsβ€˜πΎ)
8 cdlemg12.h . . . . . . . . 9 𝐻 = (LHypβ€˜πΎ)
9 cdlemg12.t . . . . . . . . 9 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
106, 7, 8, 9ltrncnvat 39000 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐴) β†’ (β—‘πΉβ€˜π‘†) ∈ 𝐴)
113, 4, 5, 10syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (β—‘πΉβ€˜π‘†) ∈ 𝐴)
12 eqid 2732 . . . . . . . 8 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1312, 7atbase 38147 . . . . . . 7 ((β—‘πΉβ€˜π‘†) ∈ 𝐴 β†’ (β—‘πΉβ€˜π‘†) ∈ (Baseβ€˜πΎ))
1411, 13syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (β—‘πΉβ€˜π‘†) ∈ (Baseβ€˜πΎ))
15 simp12l 1286 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑃 ∈ 𝐴)
16 simp13l 1288 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑄 ∈ 𝐴)
17 cdlemg12.j . . . . . . . 8 ∨ = (joinβ€˜πΎ)
1812, 17, 7hlatjcl 38225 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
191, 15, 16, 18syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
2012, 6, 8, 9ltrnle 38988 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((β—‘πΉβ€˜π‘†) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))) β†’ ((β—‘πΉβ€˜π‘†) ≀ (𝑃 ∨ 𝑄) ↔ (πΉβ€˜(β—‘πΉβ€˜π‘†)) ≀ (πΉβ€˜(𝑃 ∨ 𝑄))))
213, 4, 14, 19, 20syl112anc 1374 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((β—‘πΉβ€˜π‘†) ≀ (𝑃 ∨ 𝑄) ↔ (πΉβ€˜(β—‘πΉβ€˜π‘†)) ≀ (πΉβ€˜(𝑃 ∨ 𝑄))))
2212, 8, 9ltrn1o 38983 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ 𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
233, 4, 22syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
2412, 7atbase 38147 . . . . . . . 8 (𝑆 ∈ 𝐴 β†’ 𝑆 ∈ (Baseβ€˜πΎ))
255, 24syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑆 ∈ (Baseβ€˜πΎ))
26 f1ocnvfv2 7271 . . . . . . 7 ((𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ (πΉβ€˜(β—‘πΉβ€˜π‘†)) = 𝑆)
2723, 25, 26syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (πΉβ€˜(β—‘πΉβ€˜π‘†)) = 𝑆)
2812, 7atbase 38147 . . . . . . . 8 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
2915, 28syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
3012, 7atbase 38147 . . . . . . . 8 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
3116, 30syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
3212, 17, 8, 9ltrnj 38991 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ))) β†’ (πΉβ€˜(𝑃 ∨ 𝑄)) = ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))
333, 4, 29, 31, 32syl112anc 1374 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (πΉβ€˜(𝑃 ∨ 𝑄)) = ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))
3427, 33breq12d 5160 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((πΉβ€˜(β—‘πΉβ€˜π‘†)) ≀ (πΉβ€˜(𝑃 ∨ 𝑄)) ↔ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„))))
3521, 34bitr2d 279 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) ↔ (β—‘πΉβ€˜π‘†) ≀ (𝑃 ∨ 𝑄)))
362, 35mpbid 231 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (β—‘πΉβ€˜π‘†) ≀ (𝑃 ∨ 𝑄))
37 simp33 1211 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))
38 simp23l 1294 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑃 β‰  𝑄)
39 simp21 1206 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š))
406, 7, 8, 9ltrncnvel 39001 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ ((β—‘πΉβ€˜π‘†) ∈ 𝐴 ∧ Β¬ (β—‘πΉβ€˜π‘†) ≀ π‘Š))
413, 4, 39, 40syl3anc 1371 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((β—‘πΉβ€˜π‘†) ∈ 𝐴 ∧ Β¬ (β—‘πΉβ€˜π‘†) ≀ π‘Š))
426, 17, 7cdleme0nex 39149 . . 3 (((𝐾 ∈ HL ∧ (β—‘πΉβ€˜π‘†) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((β—‘πΉβ€˜π‘†) ∈ 𝐴 ∧ Β¬ (β—‘πΉβ€˜π‘†) ≀ π‘Š)) β†’ ((β—‘πΉβ€˜π‘†) = 𝑃 ∨ (β—‘πΉβ€˜π‘†) = 𝑄))
431, 36, 37, 15, 16, 38, 41, 42syl331anc 1395 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((β—‘πΉβ€˜π‘†) = 𝑃 ∨ (β—‘πΉβ€˜π‘†) = 𝑄))
44 f1ocnvfvb 7273 . . . . 5 ((𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ ((πΉβ€˜π‘ƒ) = 𝑆 ↔ (β—‘πΉβ€˜π‘†) = 𝑃))
4523, 29, 25, 44syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((πΉβ€˜π‘ƒ) = 𝑆 ↔ (β—‘πΉβ€˜π‘†) = 𝑃))
46 eqcom 2739 . . . 4 ((πΉβ€˜π‘ƒ) = 𝑆 ↔ 𝑆 = (πΉβ€˜π‘ƒ))
4745, 46bitr3di 285 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((β—‘πΉβ€˜π‘†) = 𝑃 ↔ 𝑆 = (πΉβ€˜π‘ƒ)))
48 f1ocnvfvb 7273 . . . . 5 ((𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ ((πΉβ€˜π‘„) = 𝑆 ↔ (β—‘πΉβ€˜π‘†) = 𝑄))
4923, 31, 25, 48syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((πΉβ€˜π‘„) = 𝑆 ↔ (β—‘πΉβ€˜π‘†) = 𝑄))
50 eqcom 2739 . . . 4 ((πΉβ€˜π‘„) = 𝑆 ↔ 𝑆 = (πΉβ€˜π‘„))
5149, 50bitr3di 285 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((β—‘πΉβ€˜π‘†) = 𝑄 ↔ 𝑆 = (πΉβ€˜π‘„)))
5247, 51orbi12d 917 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (((β—‘πΉβ€˜π‘†) = 𝑃 ∨ (β—‘πΉβ€˜π‘†) = 𝑄) ↔ (𝑆 = (πΉβ€˜π‘ƒ) ∨ 𝑆 = (πΉβ€˜π‘„))))
5343, 52mpbid 231 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑆 = (πΉβ€˜π‘ƒ) ∨ 𝑆 = (πΉβ€˜π‘„)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070   class class class wbr 5147  β—‘ccnv 5674  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  meetcmee 18261  Atomscatm 38121  HLchlt 38208  LHypclh 38843  LTrncltrn 38960  trLctrl 39017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-lhyp 38847  df-laut 38848  df-ldil 38963  df-ltrn 38964
This theorem is referenced by:  cdlemg17i  39528
  Copyright terms: Public domain W3C validator