Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg17h Structured version   Visualization version   GIF version

Theorem cdlemg17h 39160
Description: TODO: fix comment. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l ≀ = (leβ€˜πΎ)
cdlemg12.j ∨ = (joinβ€˜πΎ)
cdlemg12.m ∧ = (meetβ€˜πΎ)
cdlemg12.a 𝐴 = (Atomsβ€˜πΎ)
cdlemg12.h 𝐻 = (LHypβ€˜πΎ)
cdlemg12.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemg12b.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdlemg17h ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑆 = (πΉβ€˜π‘ƒ) ∨ 𝑆 = (πΉβ€˜π‘„)))
Distinct variable groups:   𝐴,π‘Ÿ   𝐺,π‘Ÿ   ∨ ,π‘Ÿ   ≀ ,π‘Ÿ   𝑃,π‘Ÿ   𝑄,π‘Ÿ   π‘Š,π‘Ÿ   𝐹,π‘Ÿ   𝑆,π‘Ÿ
Allowed substitution hints:   𝑅(π‘Ÿ)   𝑇(π‘Ÿ)   𝐻(π‘Ÿ)   𝐾(π‘Ÿ)   ∧ (π‘Ÿ)

Proof of Theorem cdlemg17h
StepHypRef Expression
1 simp11l 1285 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝐾 ∈ HL)
2 simp23r 1296 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))
3 simp11 1204 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
4 simp22l 1293 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝐹 ∈ 𝑇)
5 simp21l 1291 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑆 ∈ 𝐴)
6 cdlemg12.l . . . . . . . . 9 ≀ = (leβ€˜πΎ)
7 cdlemg12.a . . . . . . . . 9 𝐴 = (Atomsβ€˜πΎ)
8 cdlemg12.h . . . . . . . . 9 𝐻 = (LHypβ€˜πΎ)
9 cdlemg12.t . . . . . . . . 9 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
106, 7, 8, 9ltrncnvat 38633 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐴) β†’ (β—‘πΉβ€˜π‘†) ∈ 𝐴)
113, 4, 5, 10syl3anc 1372 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (β—‘πΉβ€˜π‘†) ∈ 𝐴)
12 eqid 2737 . . . . . . . 8 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1312, 7atbase 37780 . . . . . . 7 ((β—‘πΉβ€˜π‘†) ∈ 𝐴 β†’ (β—‘πΉβ€˜π‘†) ∈ (Baseβ€˜πΎ))
1411, 13syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (β—‘πΉβ€˜π‘†) ∈ (Baseβ€˜πΎ))
15 simp12l 1287 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑃 ∈ 𝐴)
16 simp13l 1289 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑄 ∈ 𝐴)
17 cdlemg12.j . . . . . . . 8 ∨ = (joinβ€˜πΎ)
1812, 17, 7hlatjcl 37858 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
191, 15, 16, 18syl3anc 1372 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
2012, 6, 8, 9ltrnle 38621 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((β—‘πΉβ€˜π‘†) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))) β†’ ((β—‘πΉβ€˜π‘†) ≀ (𝑃 ∨ 𝑄) ↔ (πΉβ€˜(β—‘πΉβ€˜π‘†)) ≀ (πΉβ€˜(𝑃 ∨ 𝑄))))
213, 4, 14, 19, 20syl112anc 1375 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((β—‘πΉβ€˜π‘†) ≀ (𝑃 ∨ 𝑄) ↔ (πΉβ€˜(β—‘πΉβ€˜π‘†)) ≀ (πΉβ€˜(𝑃 ∨ 𝑄))))
2212, 8, 9ltrn1o 38616 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ 𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
233, 4, 22syl2anc 585 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
2412, 7atbase 37780 . . . . . . . 8 (𝑆 ∈ 𝐴 β†’ 𝑆 ∈ (Baseβ€˜πΎ))
255, 24syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑆 ∈ (Baseβ€˜πΎ))
26 f1ocnvfv2 7228 . . . . . . 7 ((𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ (πΉβ€˜(β—‘πΉβ€˜π‘†)) = 𝑆)
2723, 25, 26syl2anc 585 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (πΉβ€˜(β—‘πΉβ€˜π‘†)) = 𝑆)
2812, 7atbase 37780 . . . . . . . 8 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
2915, 28syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
3012, 7atbase 37780 . . . . . . . 8 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
3116, 30syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
3212, 17, 8, 9ltrnj 38624 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ))) β†’ (πΉβ€˜(𝑃 ∨ 𝑄)) = ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))
333, 4, 29, 31, 32syl112anc 1375 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (πΉβ€˜(𝑃 ∨ 𝑄)) = ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))
3427, 33breq12d 5123 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((πΉβ€˜(β—‘πΉβ€˜π‘†)) ≀ (πΉβ€˜(𝑃 ∨ 𝑄)) ↔ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„))))
3521, 34bitr2d 280 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) ↔ (β—‘πΉβ€˜π‘†) ≀ (𝑃 ∨ 𝑄)))
362, 35mpbid 231 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (β—‘πΉβ€˜π‘†) ≀ (𝑃 ∨ 𝑄))
37 simp33 1212 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))
38 simp23l 1295 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑃 β‰  𝑄)
39 simp21 1207 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š))
406, 7, 8, 9ltrncnvel 38634 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ ((β—‘πΉβ€˜π‘†) ∈ 𝐴 ∧ Β¬ (β—‘πΉβ€˜π‘†) ≀ π‘Š))
413, 4, 39, 40syl3anc 1372 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((β—‘πΉβ€˜π‘†) ∈ 𝐴 ∧ Β¬ (β—‘πΉβ€˜π‘†) ≀ π‘Š))
426, 17, 7cdleme0nex 38782 . . 3 (((𝐾 ∈ HL ∧ (β—‘πΉβ€˜π‘†) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((β—‘πΉβ€˜π‘†) ∈ 𝐴 ∧ Β¬ (β—‘πΉβ€˜π‘†) ≀ π‘Š)) β†’ ((β—‘πΉβ€˜π‘†) = 𝑃 ∨ (β—‘πΉβ€˜π‘†) = 𝑄))
431, 36, 37, 15, 16, 38, 41, 42syl331anc 1396 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((β—‘πΉβ€˜π‘†) = 𝑃 ∨ (β—‘πΉβ€˜π‘†) = 𝑄))
44 f1ocnvfvb 7230 . . . . 5 ((𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ ((πΉβ€˜π‘ƒ) = 𝑆 ↔ (β—‘πΉβ€˜π‘†) = 𝑃))
4523, 29, 25, 44syl3anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((πΉβ€˜π‘ƒ) = 𝑆 ↔ (β—‘πΉβ€˜π‘†) = 𝑃))
46 eqcom 2744 . . . 4 ((πΉβ€˜π‘ƒ) = 𝑆 ↔ 𝑆 = (πΉβ€˜π‘ƒ))
4745, 46bitr3di 286 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((β—‘πΉβ€˜π‘†) = 𝑃 ↔ 𝑆 = (πΉβ€˜π‘ƒ)))
48 f1ocnvfvb 7230 . . . . 5 ((𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ ((πΉβ€˜π‘„) = 𝑆 ↔ (β—‘πΉβ€˜π‘†) = 𝑄))
4923, 31, 25, 48syl3anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((πΉβ€˜π‘„) = 𝑆 ↔ (β—‘πΉβ€˜π‘†) = 𝑄))
50 eqcom 2744 . . . 4 ((πΉβ€˜π‘„) = 𝑆 ↔ 𝑆 = (πΉβ€˜π‘„))
5149, 50bitr3di 286 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((β—‘πΉβ€˜π‘†) = 𝑄 ↔ 𝑆 = (πΉβ€˜π‘„)))
5247, 51orbi12d 918 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (((β—‘πΉβ€˜π‘†) = 𝑃 ∨ (β—‘πΉβ€˜π‘†) = 𝑄) ↔ (𝑆 = (πΉβ€˜π‘ƒ) ∨ 𝑆 = (πΉβ€˜π‘„))))
5343, 52mpbid 231 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑆 = (πΉβ€˜π‘ƒ) ∨ 𝑆 = (πΉβ€˜π‘„)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∨ wo 846   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2944  βˆƒwrex 3074   class class class wbr 5110  β—‘ccnv 5637  β€“1-1-ontoβ†’wf1o 6500  β€˜cfv 6501  (class class class)co 7362  Basecbs 17090  lecple 17147  joincjn 18207  meetcmee 18208  Atomscatm 37754  HLchlt 37841  LHypclh 38476  LTrncltrn 38593  trLctrl 38650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-map 8774  df-proset 18191  df-poset 18209  df-plt 18226  df-lub 18242  df-glb 18243  df-join 18244  df-meet 18245  df-p0 18321  df-lat 18328  df-oposet 37667  df-ol 37669  df-oml 37670  df-covers 37757  df-ats 37758  df-atl 37789  df-cvlat 37813  df-hlat 37842  df-lhyp 38480  df-laut 38481  df-ldil 38596  df-ltrn 38597
This theorem is referenced by:  cdlemg17i  39161
  Copyright terms: Public domain W3C validator