Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg17h Structured version   Visualization version   GIF version

Theorem cdlemg17h 40052
Description: TODO: fix comment. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l ≀ = (leβ€˜πΎ)
cdlemg12.j ∨ = (joinβ€˜πΎ)
cdlemg12.m ∧ = (meetβ€˜πΎ)
cdlemg12.a 𝐴 = (Atomsβ€˜πΎ)
cdlemg12.h 𝐻 = (LHypβ€˜πΎ)
cdlemg12.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemg12b.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdlemg17h ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑆 = (πΉβ€˜π‘ƒ) ∨ 𝑆 = (πΉβ€˜π‘„)))
Distinct variable groups:   𝐴,π‘Ÿ   𝐺,π‘Ÿ   ∨ ,π‘Ÿ   ≀ ,π‘Ÿ   𝑃,π‘Ÿ   𝑄,π‘Ÿ   π‘Š,π‘Ÿ   𝐹,π‘Ÿ   𝑆,π‘Ÿ
Allowed substitution hints:   𝑅(π‘Ÿ)   𝑇(π‘Ÿ)   𝐻(π‘Ÿ)   𝐾(π‘Ÿ)   ∧ (π‘Ÿ)

Proof of Theorem cdlemg17h
StepHypRef Expression
1 simp11l 1281 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝐾 ∈ HL)
2 simp23r 1292 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))
3 simp11 1200 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
4 simp22l 1289 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝐹 ∈ 𝑇)
5 simp21l 1287 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑆 ∈ 𝐴)
6 cdlemg12.l . . . . . . . . 9 ≀ = (leβ€˜πΎ)
7 cdlemg12.a . . . . . . . . 9 𝐴 = (Atomsβ€˜πΎ)
8 cdlemg12.h . . . . . . . . 9 𝐻 = (LHypβ€˜πΎ)
9 cdlemg12.t . . . . . . . . 9 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
106, 7, 8, 9ltrncnvat 39525 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐴) β†’ (β—‘πΉβ€˜π‘†) ∈ 𝐴)
113, 4, 5, 10syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (β—‘πΉβ€˜π‘†) ∈ 𝐴)
12 eqid 2726 . . . . . . . 8 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1312, 7atbase 38672 . . . . . . 7 ((β—‘πΉβ€˜π‘†) ∈ 𝐴 β†’ (β—‘πΉβ€˜π‘†) ∈ (Baseβ€˜πΎ))
1411, 13syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (β—‘πΉβ€˜π‘†) ∈ (Baseβ€˜πΎ))
15 simp12l 1283 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑃 ∈ 𝐴)
16 simp13l 1285 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑄 ∈ 𝐴)
17 cdlemg12.j . . . . . . . 8 ∨ = (joinβ€˜πΎ)
1812, 17, 7hlatjcl 38750 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
191, 15, 16, 18syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
2012, 6, 8, 9ltrnle 39513 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((β—‘πΉβ€˜π‘†) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))) β†’ ((β—‘πΉβ€˜π‘†) ≀ (𝑃 ∨ 𝑄) ↔ (πΉβ€˜(β—‘πΉβ€˜π‘†)) ≀ (πΉβ€˜(𝑃 ∨ 𝑄))))
213, 4, 14, 19, 20syl112anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((β—‘πΉβ€˜π‘†) ≀ (𝑃 ∨ 𝑄) ↔ (πΉβ€˜(β—‘πΉβ€˜π‘†)) ≀ (πΉβ€˜(𝑃 ∨ 𝑄))))
2212, 8, 9ltrn1o 39508 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ 𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
233, 4, 22syl2anc 583 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
2412, 7atbase 38672 . . . . . . . 8 (𝑆 ∈ 𝐴 β†’ 𝑆 ∈ (Baseβ€˜πΎ))
255, 24syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑆 ∈ (Baseβ€˜πΎ))
26 f1ocnvfv2 7271 . . . . . . 7 ((𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ (πΉβ€˜(β—‘πΉβ€˜π‘†)) = 𝑆)
2723, 25, 26syl2anc 583 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (πΉβ€˜(β—‘πΉβ€˜π‘†)) = 𝑆)
2812, 7atbase 38672 . . . . . . . 8 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
2915, 28syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
3012, 7atbase 38672 . . . . . . . 8 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
3116, 30syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
3212, 17, 8, 9ltrnj 39516 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ))) β†’ (πΉβ€˜(𝑃 ∨ 𝑄)) = ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))
333, 4, 29, 31, 32syl112anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (πΉβ€˜(𝑃 ∨ 𝑄)) = ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))
3427, 33breq12d 5154 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((πΉβ€˜(β—‘πΉβ€˜π‘†)) ≀ (πΉβ€˜(𝑃 ∨ 𝑄)) ↔ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„))))
3521, 34bitr2d 280 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) ↔ (β—‘πΉβ€˜π‘†) ≀ (𝑃 ∨ 𝑄)))
362, 35mpbid 231 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (β—‘πΉβ€˜π‘†) ≀ (𝑃 ∨ 𝑄))
37 simp33 1208 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))
38 simp23l 1291 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑃 β‰  𝑄)
39 simp21 1203 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š))
406, 7, 8, 9ltrncnvel 39526 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ ((β—‘πΉβ€˜π‘†) ∈ 𝐴 ∧ Β¬ (β—‘πΉβ€˜π‘†) ≀ π‘Š))
413, 4, 39, 40syl3anc 1368 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((β—‘πΉβ€˜π‘†) ∈ 𝐴 ∧ Β¬ (β—‘πΉβ€˜π‘†) ≀ π‘Š))
426, 17, 7cdleme0nex 39674 . . 3 (((𝐾 ∈ HL ∧ (β—‘πΉβ€˜π‘†) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ ((β—‘πΉβ€˜π‘†) ∈ 𝐴 ∧ Β¬ (β—‘πΉβ€˜π‘†) ≀ π‘Š)) β†’ ((β—‘πΉβ€˜π‘†) = 𝑃 ∨ (β—‘πΉβ€˜π‘†) = 𝑄))
431, 36, 37, 15, 16, 38, 41, 42syl331anc 1392 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((β—‘πΉβ€˜π‘†) = 𝑃 ∨ (β—‘πΉβ€˜π‘†) = 𝑄))
44 f1ocnvfvb 7273 . . . . 5 ((𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ ((πΉβ€˜π‘ƒ) = 𝑆 ↔ (β—‘πΉβ€˜π‘†) = 𝑃))
4523, 29, 25, 44syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((πΉβ€˜π‘ƒ) = 𝑆 ↔ (β—‘πΉβ€˜π‘†) = 𝑃))
46 eqcom 2733 . . . 4 ((πΉβ€˜π‘ƒ) = 𝑆 ↔ 𝑆 = (πΉβ€˜π‘ƒ))
4745, 46bitr3di 286 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((β—‘πΉβ€˜π‘†) = 𝑃 ↔ 𝑆 = (πΉβ€˜π‘ƒ)))
48 f1ocnvfvb 7273 . . . . 5 ((𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ ((πΉβ€˜π‘„) = 𝑆 ↔ (β—‘πΉβ€˜π‘†) = 𝑄))
4923, 31, 25, 48syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((πΉβ€˜π‘„) = 𝑆 ↔ (β—‘πΉβ€˜π‘†) = 𝑄))
50 eqcom 2733 . . . 4 ((πΉβ€˜π‘„) = 𝑆 ↔ 𝑆 = (πΉβ€˜π‘„))
5149, 50bitr3di 286 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((β—‘πΉβ€˜π‘†) = 𝑄 ↔ 𝑆 = (πΉβ€˜π‘„)))
5247, 51orbi12d 915 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (((β—‘πΉβ€˜π‘†) = 𝑃 ∨ (β—‘πΉβ€˜π‘†) = 𝑄) ↔ (𝑆 = (πΉβ€˜π‘ƒ) ∨ 𝑆 = (πΉβ€˜π‘„))))
5343, 52mpbid 231 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ 𝑆 ≀ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))) ∧ ((πΊβ€˜π‘ƒ) β‰  𝑃 ∧ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑆 = (πΉβ€˜π‘ƒ) ∨ 𝑆 = (πΉβ€˜π‘„)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ wo 844   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆƒwrex 3064   class class class wbr 5141  β—‘ccnv 5668  β€“1-1-ontoβ†’wf1o 6536  β€˜cfv 6537  (class class class)co 7405  Basecbs 17153  lecple 17213  joincjn 18276  meetcmee 18277  Atomscatm 38646  HLchlt 38733  LHypclh 39368  LTrncltrn 39485  trLctrl 39542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8824  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-lat 18397  df-oposet 38559  df-ol 38561  df-oml 38562  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734  df-lhyp 39372  df-laut 39373  df-ldil 39488  df-ltrn 39489
This theorem is referenced by:  cdlemg17i  40053
  Copyright terms: Public domain W3C validator