Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnexchb2 Structured version   Visualization version   GIF version

Theorem llnexchb2 39967
Description: Line exchange property (compare cvlatexchb2 39433 for atoms). (Contributed by NM, 17-Nov-2012.)
Hypotheses
Ref Expression
llnexch.l = (le‘𝐾)
llnexch.j = (join‘𝐾)
llnexch.m = (meet‘𝐾)
llnexch.a 𝐴 = (Atoms‘𝐾)
llnexch.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnexchb2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))

Proof of Theorem llnexchb2
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp23 1209 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝑍𝑁)
2 simp1 1136 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝐾 ∈ HL)
3 eqid 2731 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 llnexch.n . . . . . 6 𝑁 = (LLines‘𝐾)
53, 4llnbase 39607 . . . . 5 (𝑍𝑁𝑍 ∈ (Base‘𝐾))
61, 5syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝑍 ∈ (Base‘𝐾))
7 llnexch.j . . . . 5 = (join‘𝐾)
8 llnexch.a . . . . 5 𝐴 = (Atoms‘𝐾)
93, 7, 8, 4islln3 39608 . . . 4 ((𝐾 ∈ HL ∧ 𝑍 ∈ (Base‘𝐾)) → (𝑍𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑍 = (𝑝 𝑞))))
102, 6, 9syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → (𝑍𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑍 = (𝑝 𝑞))))
111, 10mpbid 232 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑍 = (𝑝 𝑞)))
12 simp3r 1203 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝑋𝑍)
1312necomd 2983 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝑍𝑋)
14 simp11 1204 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝐾 ∈ HL)
1514hllatd 39462 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝐾 ∈ Lat)
16 simp2l 1200 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑝𝐴)
173, 8atbase 39387 . . . . . . . . . . . 12 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
1816, 17syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑝 ∈ (Base‘𝐾))
19 simp2r 1201 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑞𝐴)
203, 8atbase 39387 . . . . . . . . . . . 12 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
2119, 20syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑞 ∈ (Base‘𝐾))
22 simp121 1306 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑋𝑁)
233, 4llnbase 39607 . . . . . . . . . . . 12 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
2422, 23syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑋 ∈ (Base‘𝐾))
25 llnexch.l . . . . . . . . . . . 12 = (le‘𝐾)
263, 25, 7latjle12 18356 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾))) → ((𝑝 𝑋𝑞 𝑋) ↔ (𝑝 𝑞) 𝑋))
2715, 18, 21, 24, 26syl13anc 1374 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑋𝑞 𝑋) ↔ (𝑝 𝑞) 𝑋))
28 simp3 1138 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑝𝑞)
297, 8, 4llni2 39610 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (𝑝 𝑞) ∈ 𝑁)
3014, 16, 19, 28, 29syl31anc 1375 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (𝑝 𝑞) ∈ 𝑁)
3125, 4llncmp 39620 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑝 𝑞) ∈ 𝑁𝑋𝑁) → ((𝑝 𝑞) 𝑋 ↔ (𝑝 𝑞) = 𝑋))
3214, 30, 22, 31syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) 𝑋 ↔ (𝑝 𝑞) = 𝑋))
3327, 32bitr2d 280 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) = 𝑋 ↔ (𝑝 𝑋𝑞 𝑋)))
3433necon3abid 2964 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) ≠ 𝑋 ↔ ¬ (𝑝 𝑋𝑞 𝑋)))
35 ianor 983 . . . . . . . 8 (¬ (𝑝 𝑋𝑞 𝑋) ↔ (¬ 𝑝 𝑋 ∨ ¬ 𝑞 𝑋))
3634, 35bitrdi 287 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) ≠ 𝑋 ↔ (¬ 𝑝 𝑋 ∨ ¬ 𝑞 𝑋)))
37 simpl11 1249 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝐾 ∈ HL)
3822adantr 480 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝑋𝑁)
39 simp122 1307 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑌𝑁)
4039adantr 480 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝑌𝑁)
41 simpl2l 1227 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝑝𝐴)
42 simpl2r 1228 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝑞𝐴)
43 simpr 484 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → ¬ 𝑝 𝑋)
44 simp13l 1289 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (𝑋 𝑌) ∈ 𝐴)
4544adantr 480 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → (𝑋 𝑌) ∈ 𝐴)
46 llnexch.m . . . . . . . . . . 11 = (meet‘𝐾)
4725, 7, 46, 8, 4llnexchb2lem 39966 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝𝐴𝑞𝐴 ∧ ¬ 𝑝 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))
4837, 38, 40, 41, 42, 43, 45, 47syl331anc 1397 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))
4948ex 412 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (¬ 𝑝 𝑋 → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
50 simpl11 1249 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝐾 ∈ HL)
5122adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝑋𝑁)
5239adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝑌𝑁)
53 simpl2r 1228 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝑞𝐴)
54 simpl2l 1227 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝑝𝐴)
55 simpr 484 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ¬ 𝑞 𝑋)
5644adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → (𝑋 𝑌) ∈ 𝐴)
5725, 7, 46, 8, 4llnexchb2lem 39966 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑞𝐴𝑝𝐴 ∧ ¬ 𝑞 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) (𝑞 𝑝) ↔ (𝑋 𝑌) = (𝑋 (𝑞 𝑝))))
5850, 51, 52, 53, 54, 55, 56, 57syl331anc 1397 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ((𝑋 𝑌) (𝑞 𝑝) ↔ (𝑋 𝑌) = (𝑋 (𝑞 𝑝))))
597, 8hlatjcom 39466 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝 𝑞) = (𝑞 𝑝))
6050, 54, 53, 59syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → (𝑝 𝑞) = (𝑞 𝑝))
6160breq2d 5101 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) (𝑞 𝑝)))
6260oveq2d 7362 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → (𝑋 (𝑝 𝑞)) = (𝑋 (𝑞 𝑝)))
6362eqeq2d 2742 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ((𝑋 𝑌) = (𝑋 (𝑝 𝑞)) ↔ (𝑋 𝑌) = (𝑋 (𝑞 𝑝))))
6458, 61, 633bitr4d 311 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))
6564ex 412 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (¬ 𝑞 𝑋 → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
6649, 65jaod 859 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((¬ 𝑝 𝑋 ∨ ¬ 𝑞 𝑋) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
6736, 66sylbid 240 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) ≠ 𝑋 → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
68 neeq1 2990 . . . . . . 7 (𝑍 = (𝑝 𝑞) → (𝑍𝑋 ↔ (𝑝 𝑞) ≠ 𝑋))
69 breq2 5093 . . . . . . . 8 (𝑍 = (𝑝 𝑞) → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) (𝑝 𝑞)))
70 oveq2 7354 . . . . . . . . 9 (𝑍 = (𝑝 𝑞) → (𝑋 𝑍) = (𝑋 (𝑝 𝑞)))
7170eqeq2d 2742 . . . . . . . 8 (𝑍 = (𝑝 𝑞) → ((𝑋 𝑌) = (𝑋 𝑍) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))
7269, 71bibi12d 345 . . . . . . 7 (𝑍 = (𝑝 𝑞) → (((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)) ↔ ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
7368, 72imbi12d 344 . . . . . 6 (𝑍 = (𝑝 𝑞) → ((𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍))) ↔ ((𝑝 𝑞) ≠ 𝑋 → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))))
7467, 73syl5ibrcom 247 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (𝑍 = (𝑝 𝑞) → (𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))))
75743exp 1119 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ((𝑝𝐴𝑞𝐴) → (𝑝𝑞 → (𝑍 = (𝑝 𝑞) → (𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))))))
7675imp4a 422 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ((𝑝𝐴𝑞𝐴) → ((𝑝𝑞𝑍 = (𝑝 𝑞)) → (𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍))))))
7776rexlimdvv 3188 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → (∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑍 = (𝑝 𝑞)) → (𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))))
7811, 13, 77mp2d 49 1 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Latclat 18337  Atomscatm 39361  HLchlt 39448  LLinesclln 39589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39274  df-ol 39276  df-oml 39277  df-covers 39364  df-ats 39365  df-atl 39396  df-cvlat 39420  df-hlat 39449  df-llines 39596  df-psubsp 39601  df-pmap 39602  df-padd 39894
This theorem is referenced by:  llnexch2N  39968  cdleme20l  40420
  Copyright terms: Public domain W3C validator