Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnexchb2 Structured version   Visualization version   GIF version

Theorem llnexchb2 39888
Description: Line exchange property (compare cvlatexchb2 39353 for atoms). (Contributed by NM, 17-Nov-2012.)
Hypotheses
Ref Expression
llnexch.l = (le‘𝐾)
llnexch.j = (join‘𝐾)
llnexch.m = (meet‘𝐾)
llnexch.a 𝐴 = (Atoms‘𝐾)
llnexch.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnexchb2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))

Proof of Theorem llnexchb2
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp23 1209 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝑍𝑁)
2 simp1 1136 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝐾 ∈ HL)
3 eqid 2735 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 llnexch.n . . . . . 6 𝑁 = (LLines‘𝐾)
53, 4llnbase 39528 . . . . 5 (𝑍𝑁𝑍 ∈ (Base‘𝐾))
61, 5syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝑍 ∈ (Base‘𝐾))
7 llnexch.j . . . . 5 = (join‘𝐾)
8 llnexch.a . . . . 5 𝐴 = (Atoms‘𝐾)
93, 7, 8, 4islln3 39529 . . . 4 ((𝐾 ∈ HL ∧ 𝑍 ∈ (Base‘𝐾)) → (𝑍𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑍 = (𝑝 𝑞))))
102, 6, 9syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → (𝑍𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑍 = (𝑝 𝑞))))
111, 10mpbid 232 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑍 = (𝑝 𝑞)))
12 simp3r 1203 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝑋𝑍)
1312necomd 2987 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝑍𝑋)
14 simp11 1204 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝐾 ∈ HL)
1514hllatd 39382 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝐾 ∈ Lat)
16 simp2l 1200 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑝𝐴)
173, 8atbase 39307 . . . . . . . . . . . 12 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
1816, 17syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑝 ∈ (Base‘𝐾))
19 simp2r 1201 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑞𝐴)
203, 8atbase 39307 . . . . . . . . . . . 12 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
2119, 20syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑞 ∈ (Base‘𝐾))
22 simp121 1306 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑋𝑁)
233, 4llnbase 39528 . . . . . . . . . . . 12 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
2422, 23syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑋 ∈ (Base‘𝐾))
25 llnexch.l . . . . . . . . . . . 12 = (le‘𝐾)
263, 25, 7latjle12 18460 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾))) → ((𝑝 𝑋𝑞 𝑋) ↔ (𝑝 𝑞) 𝑋))
2715, 18, 21, 24, 26syl13anc 1374 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑋𝑞 𝑋) ↔ (𝑝 𝑞) 𝑋))
28 simp3 1138 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑝𝑞)
297, 8, 4llni2 39531 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (𝑝 𝑞) ∈ 𝑁)
3014, 16, 19, 28, 29syl31anc 1375 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (𝑝 𝑞) ∈ 𝑁)
3125, 4llncmp 39541 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑝 𝑞) ∈ 𝑁𝑋𝑁) → ((𝑝 𝑞) 𝑋 ↔ (𝑝 𝑞) = 𝑋))
3214, 30, 22, 31syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) 𝑋 ↔ (𝑝 𝑞) = 𝑋))
3327, 32bitr2d 280 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) = 𝑋 ↔ (𝑝 𝑋𝑞 𝑋)))
3433necon3abid 2968 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) ≠ 𝑋 ↔ ¬ (𝑝 𝑋𝑞 𝑋)))
35 ianor 983 . . . . . . . 8 (¬ (𝑝 𝑋𝑞 𝑋) ↔ (¬ 𝑝 𝑋 ∨ ¬ 𝑞 𝑋))
3634, 35bitrdi 287 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) ≠ 𝑋 ↔ (¬ 𝑝 𝑋 ∨ ¬ 𝑞 𝑋)))
37 simpl11 1249 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝐾 ∈ HL)
3822adantr 480 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝑋𝑁)
39 simp122 1307 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑌𝑁)
4039adantr 480 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝑌𝑁)
41 simpl2l 1227 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝑝𝐴)
42 simpl2r 1228 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝑞𝐴)
43 simpr 484 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → ¬ 𝑝 𝑋)
44 simp13l 1289 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (𝑋 𝑌) ∈ 𝐴)
4544adantr 480 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → (𝑋 𝑌) ∈ 𝐴)
46 llnexch.m . . . . . . . . . . 11 = (meet‘𝐾)
4725, 7, 46, 8, 4llnexchb2lem 39887 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝𝐴𝑞𝐴 ∧ ¬ 𝑝 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))
4837, 38, 40, 41, 42, 43, 45, 47syl331anc 1397 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))
4948ex 412 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (¬ 𝑝 𝑋 → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
50 simpl11 1249 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝐾 ∈ HL)
5122adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝑋𝑁)
5239adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝑌𝑁)
53 simpl2r 1228 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝑞𝐴)
54 simpl2l 1227 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝑝𝐴)
55 simpr 484 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ¬ 𝑞 𝑋)
5644adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → (𝑋 𝑌) ∈ 𝐴)
5725, 7, 46, 8, 4llnexchb2lem 39887 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑞𝐴𝑝𝐴 ∧ ¬ 𝑞 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) (𝑞 𝑝) ↔ (𝑋 𝑌) = (𝑋 (𝑞 𝑝))))
5850, 51, 52, 53, 54, 55, 56, 57syl331anc 1397 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ((𝑋 𝑌) (𝑞 𝑝) ↔ (𝑋 𝑌) = (𝑋 (𝑞 𝑝))))
597, 8hlatjcom 39386 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝 𝑞) = (𝑞 𝑝))
6050, 54, 53, 59syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → (𝑝 𝑞) = (𝑞 𝑝))
6160breq2d 5131 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) (𝑞 𝑝)))
6260oveq2d 7421 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → (𝑋 (𝑝 𝑞)) = (𝑋 (𝑞 𝑝)))
6362eqeq2d 2746 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ((𝑋 𝑌) = (𝑋 (𝑝 𝑞)) ↔ (𝑋 𝑌) = (𝑋 (𝑞 𝑝))))
6458, 61, 633bitr4d 311 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))
6564ex 412 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (¬ 𝑞 𝑋 → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
6649, 65jaod 859 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((¬ 𝑝 𝑋 ∨ ¬ 𝑞 𝑋) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
6736, 66sylbid 240 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) ≠ 𝑋 → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
68 neeq1 2994 . . . . . . 7 (𝑍 = (𝑝 𝑞) → (𝑍𝑋 ↔ (𝑝 𝑞) ≠ 𝑋))
69 breq2 5123 . . . . . . . 8 (𝑍 = (𝑝 𝑞) → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) (𝑝 𝑞)))
70 oveq2 7413 . . . . . . . . 9 (𝑍 = (𝑝 𝑞) → (𝑋 𝑍) = (𝑋 (𝑝 𝑞)))
7170eqeq2d 2746 . . . . . . . 8 (𝑍 = (𝑝 𝑞) → ((𝑋 𝑌) = (𝑋 𝑍) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))
7269, 71bibi12d 345 . . . . . . 7 (𝑍 = (𝑝 𝑞) → (((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)) ↔ ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
7368, 72imbi12d 344 . . . . . 6 (𝑍 = (𝑝 𝑞) → ((𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍))) ↔ ((𝑝 𝑞) ≠ 𝑋 → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))))
7467, 73syl5ibrcom 247 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (𝑍 = (𝑝 𝑞) → (𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))))
75743exp 1119 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ((𝑝𝐴𝑞𝐴) → (𝑝𝑞 → (𝑍 = (𝑝 𝑞) → (𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))))))
7675imp4a 422 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ((𝑝𝐴𝑞𝐴) → ((𝑝𝑞𝑍 = (𝑝 𝑞)) → (𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍))))))
7776rexlimdvv 3197 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → (∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑍 = (𝑝 𝑞)) → (𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))))
7811, 13, 77mp2d 49 1 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  lecple 17278  joincjn 18323  meetcmee 18324  Latclat 18441  Atomscatm 39281  HLchlt 39368  LLinesclln 39510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39517  df-psubsp 39522  df-pmap 39523  df-padd 39815
This theorem is referenced by:  llnexch2N  39889  cdleme20l  40341
  Copyright terms: Public domain W3C validator