Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnexchb2 Structured version   Visualization version   GIF version

Theorem llnexchb2 39863
Description: Line exchange property (compare cvlatexchb2 39328 for atoms). (Contributed by NM, 17-Nov-2012.)
Hypotheses
Ref Expression
llnexch.l = (le‘𝐾)
llnexch.j = (join‘𝐾)
llnexch.m = (meet‘𝐾)
llnexch.a 𝐴 = (Atoms‘𝐾)
llnexch.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnexchb2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))

Proof of Theorem llnexchb2
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp23 1209 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝑍𝑁)
2 simp1 1136 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝐾 ∈ HL)
3 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 llnexch.n . . . . . 6 𝑁 = (LLines‘𝐾)
53, 4llnbase 39503 . . . . 5 (𝑍𝑁𝑍 ∈ (Base‘𝐾))
61, 5syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝑍 ∈ (Base‘𝐾))
7 llnexch.j . . . . 5 = (join‘𝐾)
8 llnexch.a . . . . 5 𝐴 = (Atoms‘𝐾)
93, 7, 8, 4islln3 39504 . . . 4 ((𝐾 ∈ HL ∧ 𝑍 ∈ (Base‘𝐾)) → (𝑍𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑍 = (𝑝 𝑞))))
102, 6, 9syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → (𝑍𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑍 = (𝑝 𝑞))))
111, 10mpbid 232 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑍 = (𝑝 𝑞)))
12 simp3r 1203 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝑋𝑍)
1312necomd 2980 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝑍𝑋)
14 simp11 1204 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝐾 ∈ HL)
1514hllatd 39357 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝐾 ∈ Lat)
16 simp2l 1200 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑝𝐴)
173, 8atbase 39282 . . . . . . . . . . . 12 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
1816, 17syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑝 ∈ (Base‘𝐾))
19 simp2r 1201 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑞𝐴)
203, 8atbase 39282 . . . . . . . . . . . 12 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
2119, 20syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑞 ∈ (Base‘𝐾))
22 simp121 1306 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑋𝑁)
233, 4llnbase 39503 . . . . . . . . . . . 12 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
2422, 23syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑋 ∈ (Base‘𝐾))
25 llnexch.l . . . . . . . . . . . 12 = (le‘𝐾)
263, 25, 7latjle12 18409 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾))) → ((𝑝 𝑋𝑞 𝑋) ↔ (𝑝 𝑞) 𝑋))
2715, 18, 21, 24, 26syl13anc 1374 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑋𝑞 𝑋) ↔ (𝑝 𝑞) 𝑋))
28 simp3 1138 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑝𝑞)
297, 8, 4llni2 39506 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (𝑝 𝑞) ∈ 𝑁)
3014, 16, 19, 28, 29syl31anc 1375 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (𝑝 𝑞) ∈ 𝑁)
3125, 4llncmp 39516 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑝 𝑞) ∈ 𝑁𝑋𝑁) → ((𝑝 𝑞) 𝑋 ↔ (𝑝 𝑞) = 𝑋))
3214, 30, 22, 31syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) 𝑋 ↔ (𝑝 𝑞) = 𝑋))
3327, 32bitr2d 280 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) = 𝑋 ↔ (𝑝 𝑋𝑞 𝑋)))
3433necon3abid 2961 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) ≠ 𝑋 ↔ ¬ (𝑝 𝑋𝑞 𝑋)))
35 ianor 983 . . . . . . . 8 (¬ (𝑝 𝑋𝑞 𝑋) ↔ (¬ 𝑝 𝑋 ∨ ¬ 𝑞 𝑋))
3634, 35bitrdi 287 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) ≠ 𝑋 ↔ (¬ 𝑝 𝑋 ∨ ¬ 𝑞 𝑋)))
37 simpl11 1249 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝐾 ∈ HL)
3822adantr 480 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝑋𝑁)
39 simp122 1307 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑌𝑁)
4039adantr 480 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝑌𝑁)
41 simpl2l 1227 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝑝𝐴)
42 simpl2r 1228 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝑞𝐴)
43 simpr 484 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → ¬ 𝑝 𝑋)
44 simp13l 1289 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (𝑋 𝑌) ∈ 𝐴)
4544adantr 480 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → (𝑋 𝑌) ∈ 𝐴)
46 llnexch.m . . . . . . . . . . 11 = (meet‘𝐾)
4725, 7, 46, 8, 4llnexchb2lem 39862 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝𝐴𝑞𝐴 ∧ ¬ 𝑝 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))
4837, 38, 40, 41, 42, 43, 45, 47syl331anc 1397 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))
4948ex 412 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (¬ 𝑝 𝑋 → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
50 simpl11 1249 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝐾 ∈ HL)
5122adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝑋𝑁)
5239adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝑌𝑁)
53 simpl2r 1228 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝑞𝐴)
54 simpl2l 1227 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝑝𝐴)
55 simpr 484 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ¬ 𝑞 𝑋)
5644adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → (𝑋 𝑌) ∈ 𝐴)
5725, 7, 46, 8, 4llnexchb2lem 39862 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑞𝐴𝑝𝐴 ∧ ¬ 𝑞 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) (𝑞 𝑝) ↔ (𝑋 𝑌) = (𝑋 (𝑞 𝑝))))
5850, 51, 52, 53, 54, 55, 56, 57syl331anc 1397 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ((𝑋 𝑌) (𝑞 𝑝) ↔ (𝑋 𝑌) = (𝑋 (𝑞 𝑝))))
597, 8hlatjcom 39361 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝 𝑞) = (𝑞 𝑝))
6050, 54, 53, 59syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → (𝑝 𝑞) = (𝑞 𝑝))
6160breq2d 5119 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) (𝑞 𝑝)))
6260oveq2d 7403 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → (𝑋 (𝑝 𝑞)) = (𝑋 (𝑞 𝑝)))
6362eqeq2d 2740 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ((𝑋 𝑌) = (𝑋 (𝑝 𝑞)) ↔ (𝑋 𝑌) = (𝑋 (𝑞 𝑝))))
6458, 61, 633bitr4d 311 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))
6564ex 412 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (¬ 𝑞 𝑋 → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
6649, 65jaod 859 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((¬ 𝑝 𝑋 ∨ ¬ 𝑞 𝑋) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
6736, 66sylbid 240 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) ≠ 𝑋 → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
68 neeq1 2987 . . . . . . 7 (𝑍 = (𝑝 𝑞) → (𝑍𝑋 ↔ (𝑝 𝑞) ≠ 𝑋))
69 breq2 5111 . . . . . . . 8 (𝑍 = (𝑝 𝑞) → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) (𝑝 𝑞)))
70 oveq2 7395 . . . . . . . . 9 (𝑍 = (𝑝 𝑞) → (𝑋 𝑍) = (𝑋 (𝑝 𝑞)))
7170eqeq2d 2740 . . . . . . . 8 (𝑍 = (𝑝 𝑞) → ((𝑋 𝑌) = (𝑋 𝑍) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))
7269, 71bibi12d 345 . . . . . . 7 (𝑍 = (𝑝 𝑞) → (((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)) ↔ ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
7368, 72imbi12d 344 . . . . . 6 (𝑍 = (𝑝 𝑞) → ((𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍))) ↔ ((𝑝 𝑞) ≠ 𝑋 → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))))
7467, 73syl5ibrcom 247 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (𝑍 = (𝑝 𝑞) → (𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))))
75743exp 1119 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ((𝑝𝐴𝑞𝐴) → (𝑝𝑞 → (𝑍 = (𝑝 𝑞) → (𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))))))
7675imp4a 422 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ((𝑝𝐴𝑞𝐴) → ((𝑝𝑞𝑍 = (𝑝 𝑞)) → (𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍))))))
7776rexlimdvv 3193 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → (∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑍 = (𝑝 𝑞)) → (𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))))
7811, 13, 77mp2d 49 1 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  Latclat 18390  Atomscatm 39256  HLchlt 39343  LLinesclln 39485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-psubsp 39497  df-pmap 39498  df-padd 39790
This theorem is referenced by:  llnexch2N  39864  cdleme20l  40316
  Copyright terms: Public domain W3C validator