Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnexchb2 Structured version   Visualization version   GIF version

Theorem llnexchb2 35651
Description: Line exchange property (compare cvlatexchb2 35117 for atoms). (Contributed by NM, 17-Nov-2012.)
Hypotheses
Ref Expression
llnexch.l = (le‘𝐾)
llnexch.j = (join‘𝐾)
llnexch.m = (meet‘𝐾)
llnexch.a 𝐴 = (Atoms‘𝐾)
llnexch.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnexchb2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))

Proof of Theorem llnexchb2
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp23 1258 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝑍𝑁)
2 simp1 1159 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝐾 ∈ HL)
3 eqid 2813 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 llnexch.n . . . . . 6 𝑁 = (LLines‘𝐾)
53, 4llnbase 35291 . . . . 5 (𝑍𝑁𝑍 ∈ (Base‘𝐾))
61, 5syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝑍 ∈ (Base‘𝐾))
7 llnexch.j . . . . 5 = (join‘𝐾)
8 llnexch.a . . . . 5 𝐴 = (Atoms‘𝐾)
93, 7, 8, 4islln3 35292 . . . 4 ((𝐾 ∈ HL ∧ 𝑍 ∈ (Base‘𝐾)) → (𝑍𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑍 = (𝑝 𝑞))))
102, 6, 9syl2anc 575 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → (𝑍𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑍 = (𝑝 𝑞))))
111, 10mpbid 223 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑍 = (𝑝 𝑞)))
12 simp3r 1252 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝑋𝑍)
1312necomd 3040 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → 𝑍𝑋)
14 simp11 1253 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝐾 ∈ HL)
1514hllatd 35146 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝐾 ∈ Lat)
16 simp2l 1249 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑝𝐴)
173, 8atbase 35071 . . . . . . . . . . . 12 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
1816, 17syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑝 ∈ (Base‘𝐾))
19 simp2r 1250 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑞𝐴)
203, 8atbase 35071 . . . . . . . . . . . 12 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
2119, 20syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑞 ∈ (Base‘𝐾))
22 simp121 1397 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑋𝑁)
233, 4llnbase 35291 . . . . . . . . . . . 12 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
2422, 23syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑋 ∈ (Base‘𝐾))
25 llnexch.l . . . . . . . . . . . 12 = (le‘𝐾)
263, 25, 7latjle12 17270 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾))) → ((𝑝 𝑋𝑞 𝑋) ↔ (𝑝 𝑞) 𝑋))
2715, 18, 21, 24, 26syl13anc 1484 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑋𝑞 𝑋) ↔ (𝑝 𝑞) 𝑋))
28 simp3 1161 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑝𝑞)
297, 8, 4llni2 35294 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (𝑝 𝑞) ∈ 𝑁)
3014, 16, 19, 28, 29syl31anc 1485 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (𝑝 𝑞) ∈ 𝑁)
3125, 4llncmp 35304 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑝 𝑞) ∈ 𝑁𝑋𝑁) → ((𝑝 𝑞) 𝑋 ↔ (𝑝 𝑞) = 𝑋))
3214, 30, 22, 31syl3anc 1483 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) 𝑋 ↔ (𝑝 𝑞) = 𝑋))
3327, 32bitr2d 271 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) = 𝑋 ↔ (𝑝 𝑋𝑞 𝑋)))
3433necon3abid 3021 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) ≠ 𝑋 ↔ ¬ (𝑝 𝑋𝑞 𝑋)))
35 ianor 995 . . . . . . . 8 (¬ (𝑝 𝑋𝑞 𝑋) ↔ (¬ 𝑝 𝑋 ∨ ¬ 𝑞 𝑋))
3634, 35syl6bb 278 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) ≠ 𝑋 ↔ (¬ 𝑝 𝑋 ∨ ¬ 𝑞 𝑋)))
37 simpl11 1322 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝐾 ∈ HL)
3822adantr 468 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝑋𝑁)
39 simp122 1398 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → 𝑌𝑁)
4039adantr 468 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝑌𝑁)
41 simpl2l 1290 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝑝𝐴)
42 simpl2r 1292 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → 𝑞𝐴)
43 simpr 473 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → ¬ 𝑝 𝑋)
44 simp13l 1380 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (𝑋 𝑌) ∈ 𝐴)
4544adantr 468 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → (𝑋 𝑌) ∈ 𝐴)
46 llnexch.m . . . . . . . . . . 11 = (meet‘𝐾)
4725, 7, 46, 8, 4llnexchb2lem 35650 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑝𝐴𝑞𝐴 ∧ ¬ 𝑝 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))
4837, 38, 40, 41, 42, 43, 45, 47syl331anc 1507 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑝 𝑋) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))
4948ex 399 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (¬ 𝑝 𝑋 → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
50 simpl11 1322 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝐾 ∈ HL)
5122adantr 468 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝑋𝑁)
5239adantr 468 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝑌𝑁)
53 simpl2r 1292 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝑞𝐴)
54 simpl2l 1290 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → 𝑝𝐴)
55 simpr 473 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ¬ 𝑞 𝑋)
5644adantr 468 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → (𝑋 𝑌) ∈ 𝐴)
5725, 7, 46, 8, 4llnexchb2lem 35650 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑞𝐴𝑝𝐴 ∧ ¬ 𝑞 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) (𝑞 𝑝) ↔ (𝑋 𝑌) = (𝑋 (𝑞 𝑝))))
5850, 51, 52, 53, 54, 55, 56, 57syl331anc 1507 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ((𝑋 𝑌) (𝑞 𝑝) ↔ (𝑋 𝑌) = (𝑋 (𝑞 𝑝))))
597, 8hlatjcom 35150 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝 𝑞) = (𝑞 𝑝))
6050, 54, 53, 59syl3anc 1483 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → (𝑝 𝑞) = (𝑞 𝑝))
6160breq2d 4863 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) (𝑞 𝑝)))
6260oveq2d 6893 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → (𝑋 (𝑝 𝑞)) = (𝑋 (𝑞 𝑝)))
6362eqeq2d 2823 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ((𝑋 𝑌) = (𝑋 (𝑝 𝑞)) ↔ (𝑋 𝑌) = (𝑋 (𝑞 𝑝))))
6458, 61, 633bitr4d 302 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) ∧ ¬ 𝑞 𝑋) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))
6564ex 399 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (¬ 𝑞 𝑋 → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
6649, 65jaod 877 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((¬ 𝑝 𝑋 ∨ ¬ 𝑞 𝑋) → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
6736, 66sylbid 231 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → ((𝑝 𝑞) ≠ 𝑋 → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
68 neeq1 3047 . . . . . . 7 (𝑍 = (𝑝 𝑞) → (𝑍𝑋 ↔ (𝑝 𝑞) ≠ 𝑋))
69 breq2 4855 . . . . . . . 8 (𝑍 = (𝑝 𝑞) → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) (𝑝 𝑞)))
70 oveq2 6885 . . . . . . . . 9 (𝑍 = (𝑝 𝑞) → (𝑋 𝑍) = (𝑋 (𝑝 𝑞)))
7170eqeq2d 2823 . . . . . . . 8 (𝑍 = (𝑝 𝑞) → ((𝑋 𝑌) = (𝑋 𝑍) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))
7269, 71bibi12d 336 . . . . . . 7 (𝑍 = (𝑝 𝑞) → (((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)) ↔ ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞)))))
7368, 72imbi12d 335 . . . . . 6 (𝑍 = (𝑝 𝑞) → ((𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍))) ↔ ((𝑝 𝑞) ≠ 𝑋 → ((𝑋 𝑌) (𝑝 𝑞) ↔ (𝑋 𝑌) = (𝑋 (𝑝 𝑞))))))
7467, 73syl5ibrcom 238 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) ∧ (𝑝𝐴𝑞𝐴) ∧ 𝑝𝑞) → (𝑍 = (𝑝 𝑞) → (𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))))
75743exp 1141 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ((𝑝𝐴𝑞𝐴) → (𝑝𝑞 → (𝑍 = (𝑝 𝑞) → (𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))))))
7675imp4a 411 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ((𝑝𝐴𝑞𝐴) → ((𝑝𝑞𝑍 = (𝑝 𝑞)) → (𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍))))))
7776rexlimdvv 3232 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → (∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑍 = (𝑝 𝑞)) → (𝑍𝑋 → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))))
7811, 13, 77mp2d 49 1 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 865  w3a 1100   = wceq 1637  wcel 2157  wne 2985  wrex 3104   class class class wbr 4851  cfv 6104  (class class class)co 6877  Basecbs 16071  lecple 16163  joincjn 17152  meetcmee 17153  Latclat 17253  Atomscatm 35045  HLchlt 35132  LLinesclln 35273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-ral 3108  df-rex 3109  df-reu 3110  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-op 4384  df-uni 4638  df-iun 4721  df-iin 4722  df-br 4852  df-opab 4914  df-mpt 4931  df-id 5226  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-1st 7401  df-2nd 7402  df-proset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-lat 17254  df-clat 17316  df-oposet 34958  df-ol 34960  df-oml 34961  df-covers 35048  df-ats 35049  df-atl 35080  df-cvlat 35104  df-hlat 35133  df-llines 35280  df-psubsp 35285  df-pmap 35286  df-padd 35578
This theorem is referenced by:  llnexch2N  35652  cdleme20l  36104
  Copyright terms: Public domain W3C validator