![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reccot | Structured version Visualization version GIF version |
Description: The reciprocal of cotangent is tangent. (Contributed by David A. Wheeler, 21-Mar-2014.) |
Ref | Expression |
---|---|
reccot | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0 ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (1 / (cot‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sincl 15227 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
2 | coscl 15228 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
3 | recdiv 11056 | . . . . . 6 ⊢ ((((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) ∧ ((sin‘𝐴) ∈ ℂ ∧ (sin‘𝐴) ≠ 0)) → (1 / ((cos‘𝐴) / (sin‘𝐴))) = ((sin‘𝐴) / (cos‘𝐴))) | |
4 | 2, 3 | sylanl1 672 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) ∧ ((sin‘𝐴) ∈ ℂ ∧ (sin‘𝐴) ≠ 0)) → (1 / ((cos‘𝐴) / (sin‘𝐴))) = ((sin‘𝐴) / (cos‘𝐴))) |
5 | 1, 4 | sylanr1 674 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) ∧ (𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0)) → (1 / ((cos‘𝐴) / (sin‘𝐴))) = ((sin‘𝐴) / (cos‘𝐴))) |
6 | 5 | 3impdi 1465 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0 ∧ (sin‘𝐴) ≠ 0) → (1 / ((cos‘𝐴) / (sin‘𝐴))) = ((sin‘𝐴) / (cos‘𝐴))) |
7 | 6 | 3com23 1162 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0 ∧ (cos‘𝐴) ≠ 0) → (1 / ((cos‘𝐴) / (sin‘𝐴))) = ((sin‘𝐴) / (cos‘𝐴))) |
8 | cotval 43387 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (cot‘𝐴) = ((cos‘𝐴) / (sin‘𝐴))) | |
9 | 8 | 3adant3 1168 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0 ∧ (cos‘𝐴) ≠ 0) → (cot‘𝐴) = ((cos‘𝐴) / (sin‘𝐴))) |
10 | 9 | oveq2d 6920 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0 ∧ (cos‘𝐴) ≠ 0) → (1 / (cot‘𝐴)) = (1 / ((cos‘𝐴) / (sin‘𝐴)))) |
11 | tanval 15229 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) | |
12 | 11 | 3adant2 1167 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0 ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) |
13 | 7, 10, 12 | 3eqtr4rd 2871 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0 ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (1 / (cot‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ≠ wne 2998 ‘cfv 6122 (class class class)co 6904 ℂcc 10249 0cc0 10251 1c1 10252 / cdiv 11008 sincsin 15165 cosccos 15166 tanctan 15167 cotccot 43381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-rep 4993 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-inf2 8814 ax-cnex 10307 ax-resscn 10308 ax-1cn 10309 ax-icn 10310 ax-addcl 10311 ax-addrcl 10312 ax-mulcl 10313 ax-mulrcl 10314 ax-mulcom 10315 ax-addass 10316 ax-mulass 10317 ax-distr 10318 ax-i2m1 10319 ax-1ne0 10320 ax-1rid 10321 ax-rnegex 10322 ax-rrecex 10323 ax-cnre 10324 ax-pre-lttri 10325 ax-pre-lttrn 10326 ax-pre-ltadd 10327 ax-pre-mulgt0 10328 ax-pre-sup 10329 ax-addf 10330 ax-mulf 10331 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-nel 3102 df-ral 3121 df-rex 3122 df-reu 3123 df-rmo 3124 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-int 4697 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-se 5301 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-isom 6131 df-riota 6865 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-om 7326 df-1st 7427 df-2nd 7428 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-1o 7825 df-oadd 7829 df-er 8008 df-pm 8124 df-en 8222 df-dom 8223 df-sdom 8224 df-fin 8225 df-sup 8616 df-inf 8617 df-oi 8683 df-card 9077 df-pnf 10392 df-mnf 10393 df-xr 10394 df-ltxr 10395 df-le 10396 df-sub 10586 df-neg 10587 df-div 11009 df-nn 11350 df-2 11413 df-3 11414 df-n0 11618 df-z 11704 df-uz 11968 df-rp 12112 df-ico 12468 df-fz 12619 df-fzo 12760 df-fl 12887 df-seq 13095 df-exp 13154 df-fac 13353 df-hash 13410 df-shft 14183 df-cj 14215 df-re 14216 df-im 14217 df-sqrt 14351 df-abs 14352 df-limsup 14578 df-clim 14595 df-rlim 14596 df-sum 14793 df-ef 15169 df-sin 15171 df-cos 15172 df-tan 15173 df-cot 43384 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |