MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem9 Structured version   Visualization version   GIF version

Theorem sbthlem9 9036
Description: Lemma for sbth 9038. (Contributed by NM, 28-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlem9 ((𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlem9
StepHypRef Expression
1 sbthlem.1 . . . . . . . 8 𝐴 ∈ V
2 sbthlem.2 . . . . . . . 8 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
3 sbthlem.3 . . . . . . . 8 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
41, 2, 3sbthlem7 9034 . . . . . . 7 ((Fun 𝑓 ∧ Fun 𝑔) → Fun 𝐻)
51, 2, 3sbthlem5 9032 . . . . . . . 8 ((dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴) → dom 𝐻 = 𝐴)
65adantrl 716 . . . . . . 7 ((dom 𝑓 = 𝐴 ∧ ((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴)) → dom 𝐻 = 𝐴)
74, 6anim12i 613 . . . . . 6 (((Fun 𝑓 ∧ Fun 𝑔) ∧ (dom 𝑓 = 𝐴 ∧ ((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴))) → (Fun 𝐻 ∧ dom 𝐻 = 𝐴))
87an42s 661 . . . . 5 (((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → (Fun 𝐻 ∧ dom 𝐻 = 𝐴))
98adantlr 715 . . . 4 ((((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ ran 𝑓𝐵) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → (Fun 𝐻 ∧ dom 𝐻 = 𝐴))
109adantlr 715 . . 3 (((((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ ran 𝑓𝐵) ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → (Fun 𝐻 ∧ dom 𝐻 = 𝐴))
111, 2, 3sbthlem8 9035 . . . 4 ((Fun 𝑓 ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝐻)
1211adantll 714 . . 3 (((((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ ran 𝑓𝐵) ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝐻)
13 simpr 484 . . . . . . 7 ((Fun 𝑔 ∧ dom 𝑔 = 𝐵) → dom 𝑔 = 𝐵)
1413anim1i 615 . . . . . 6 (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) → (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴))
15 df-rn 5642 . . . . . . 7 ran 𝐻 = dom 𝐻
161, 2, 3sbthlem6 9033 . . . . . . 7 ((ran 𝑓𝐵 ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝐻 = 𝐵)
1715, 16eqtr3id 2778 . . . . . 6 ((ran 𝑓𝐵 ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → dom 𝐻 = 𝐵)
1814, 17sylanr1 682 . . . . 5 ((ran 𝑓𝐵 ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → dom 𝐻 = 𝐵)
1918adantll 714 . . . 4 ((((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ ran 𝑓𝐵) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → dom 𝐻 = 𝐵)
2019adantlr 715 . . 3 (((((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ ran 𝑓𝐵) ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → dom 𝐻 = 𝐵)
2110, 12, 20jca32 515 . 2 (((((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ ran 𝑓𝐵) ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ((Fun 𝐻 ∧ dom 𝐻 = 𝐴) ∧ (Fun 𝐻 ∧ dom 𝐻 = 𝐵)))
22 df-f1 6504 . . . 4 (𝑓:𝐴1-1𝐵 ↔ (𝑓:𝐴𝐵 ∧ Fun 𝑓))
23 df-f 6503 . . . . . 6 (𝑓:𝐴𝐵 ↔ (𝑓 Fn 𝐴 ∧ ran 𝑓𝐵))
24 df-fn 6502 . . . . . . 7 (𝑓 Fn 𝐴 ↔ (Fun 𝑓 ∧ dom 𝑓 = 𝐴))
2524anbi1i 624 . . . . . 6 ((𝑓 Fn 𝐴 ∧ ran 𝑓𝐵) ↔ ((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ ran 𝑓𝐵))
2623, 25bitri 275 . . . . 5 (𝑓:𝐴𝐵 ↔ ((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ ran 𝑓𝐵))
2726anbi1i 624 . . . 4 ((𝑓:𝐴𝐵 ∧ Fun 𝑓) ↔ (((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ ran 𝑓𝐵) ∧ Fun 𝑓))
2822, 27bitri 275 . . 3 (𝑓:𝐴1-1𝐵 ↔ (((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ ran 𝑓𝐵) ∧ Fun 𝑓))
29 df-f1 6504 . . . 4 (𝑔:𝐵1-1𝐴 ↔ (𝑔:𝐵𝐴 ∧ Fun 𝑔))
30 df-f 6503 . . . . . 6 (𝑔:𝐵𝐴 ↔ (𝑔 Fn 𝐵 ∧ ran 𝑔𝐴))
31 df-fn 6502 . . . . . . 7 (𝑔 Fn 𝐵 ↔ (Fun 𝑔 ∧ dom 𝑔 = 𝐵))
3231anbi1i 624 . . . . . 6 ((𝑔 Fn 𝐵 ∧ ran 𝑔𝐴) ↔ ((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴))
3330, 32bitri 275 . . . . 5 (𝑔:𝐵𝐴 ↔ ((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴))
3433anbi1i 624 . . . 4 ((𝑔:𝐵𝐴 ∧ Fun 𝑔) ↔ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔))
3529, 34bitri 275 . . 3 (𝑔:𝐵1-1𝐴 ↔ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔))
3628, 35anbi12i 628 . 2 ((𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) ↔ ((((Fun 𝑓 ∧ dom 𝑓 = 𝐴) ∧ ran 𝑓𝐵) ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)))
37 dff1o4 6790 . . 3 (𝐻:𝐴1-1-onto𝐵 ↔ (𝐻 Fn 𝐴𝐻 Fn 𝐵))
38 df-fn 6502 . . . 4 (𝐻 Fn 𝐴 ↔ (Fun 𝐻 ∧ dom 𝐻 = 𝐴))
39 df-fn 6502 . . . 4 (𝐻 Fn 𝐵 ↔ (Fun 𝐻 ∧ dom 𝐻 = 𝐵))
4038, 39anbi12i 628 . . 3 ((𝐻 Fn 𝐴𝐻 Fn 𝐵) ↔ ((Fun 𝐻 ∧ dom 𝐻 = 𝐴) ∧ (Fun 𝐻 ∧ dom 𝐻 = 𝐵)))
4137, 40bitri 275 . 2 (𝐻:𝐴1-1-onto𝐵 ↔ ((Fun 𝐻 ∧ dom 𝐻 = 𝐴) ∧ (Fun 𝐻 ∧ dom 𝐻 = 𝐵)))
4221, 36, 413imtr4i 292 1 ((𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3444  cdif 3908  cun 3909  wss 3911   cuni 4867  ccnv 5630  dom cdm 5631  ran crn 5632  cres 5633  cima 5634  Fun wfun 6493   Fn wfn 6494  wf 6495  1-1wf1 6496  1-1-ontowf1o 6498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506
This theorem is referenced by:  sbthlem10  9037  sbthfilem  9139
  Copyright terms: Public domain W3C validator