Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvconstbi Structured version   Visualization version   GIF version

Theorem dvconstbi 41841
Description: The derivative of a function on 𝑆 is zero iff it is a constant function. Roughly a biconditional 𝑆 analogue of dvconst 24986 and dveq0 25069. Corresponds to integration formula "∫0 d𝑥 = 𝐶 " in section 4.1 of [LarsonHostetlerEdwards] p. 278. (Contributed by Steve Rodriguez, 11-Nov-2015.)
Hypotheses
Ref Expression
dvconstbi.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvconstbi.y (𝜑𝑌:𝑆⟶ℂ)
dvconstbi.dy (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
Assertion
Ref Expression
dvconstbi (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑆 × {𝑐})))
Distinct variable groups:   𝑆,𝑐   𝑌,𝑐
Allowed substitution hint:   𝜑(𝑐)

Proof of Theorem dvconstbi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvconstbi.y . . . . . . 7 (𝜑𝑌:𝑆⟶ℂ)
2 dvconstbi.s . . . . . . . . 9 (𝜑𝑆 ∈ {ℝ, ℂ})
3 elpri 4580 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
42, 3syl 17 . . . . . . . 8 (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ))
5 0re 10908 . . . . . . . . . 10 0 ∈ ℝ
6 eleq2 2827 . . . . . . . . . 10 (𝑆 = ℝ → (0 ∈ 𝑆 ↔ 0 ∈ ℝ))
75, 6mpbiri 257 . . . . . . . . 9 (𝑆 = ℝ → 0 ∈ 𝑆)
8 0cn 10898 . . . . . . . . . 10 0 ∈ ℂ
9 eleq2 2827 . . . . . . . . . 10 (𝑆 = ℂ → (0 ∈ 𝑆 ↔ 0 ∈ ℂ))
108, 9mpbiri 257 . . . . . . . . 9 (𝑆 = ℂ → 0 ∈ 𝑆)
117, 10jaoi 853 . . . . . . . 8 ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 0 ∈ 𝑆)
124, 11syl 17 . . . . . . 7 (𝜑 → 0 ∈ 𝑆)
13 ffvelrn 6941 . . . . . . 7 ((𝑌:𝑆⟶ℂ ∧ 0 ∈ 𝑆) → (𝑌‘0) ∈ ℂ)
141, 12, 13syl2anc 583 . . . . . 6 (𝜑 → (𝑌‘0) ∈ ℂ)
1514adantr 480 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (𝑌‘0) ∈ ℂ)
161ffnd 6585 . . . . . . 7 (𝜑𝑌 Fn 𝑆)
1716adantr 480 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑌 Fn 𝑆)
18 fvex 6769 . . . . . . 7 (𝑌‘0) ∈ V
19 fnconstg 6646 . . . . . . 7 ((𝑌‘0) ∈ V → (𝑆 × {(𝑌‘0)}) Fn 𝑆)
2018, 19mp1i 13 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (𝑆 × {(𝑌‘0)}) Fn 𝑆)
2118fvconst2 7061 . . . . . . . 8 (𝑦𝑆 → ((𝑆 × {(𝑌‘0)})‘𝑦) = (𝑌‘0))
2221adantl 481 . . . . . . 7 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑦𝑆) → ((𝑆 × {(𝑌‘0)})‘𝑦) = (𝑌‘0))
23 eqid 2738 . . . . . . . . . . . . . . . . . . 19 ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
242, 23sblpnf 41817 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ 0 ∈ 𝑆) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = 𝑆)
2512, 24mpdan 683 . . . . . . . . . . . . . . . . 17 (𝜑 → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = 𝑆)
2625eleq2d 2824 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ↔ 𝑦𝑆))
2726biimpar 477 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝑆) → 𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞))
2812, 25eleqtrrd 2842 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞))
292adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑆 ∈ {ℝ, ℂ})
30 ssidd 3940 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑆𝑆)
311adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑌:𝑆⟶ℂ)
3212adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 0 ∈ 𝑆)
33 pnfxr 10960 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
3433a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → +∞ ∈ ℝ*)
35 eqid 2738 . . . . . . . . . . . . . . . . . 18 (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)
3625adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = 𝑆)
37 dvconstbi.dy . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
3837adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → dom (𝑆 D 𝑌) = 𝑆)
3936, 38eqtr4d 2781 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = dom (𝑆 D 𝑌))
40 eqimss 3973 . . . . . . . . . . . . . . . . . . 19 ((0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = dom (𝑆 D 𝑌) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ⊆ dom (𝑆 D 𝑌))
4139, 40syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ⊆ dom (𝑆 D 𝑌))
425a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 0 ∈ ℝ)
4325eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ↔ 𝑥𝑆))
4443biimpa 476 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → 𝑥𝑆)
45443adant2 1129 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → 𝑥𝑆)
46 fveq1 6755 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 D 𝑌) = (𝑆 × {0}) → ((𝑆 D 𝑌)‘𝑥) = ((𝑆 × {0})‘𝑥))
47 c0ex 10900 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ∈ V
4847fvconst2 7061 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑆 → ((𝑆 × {0})‘𝑥) = 0)
4946, 48sylan9eq 2799 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → ((𝑆 D 𝑌)‘𝑥) = 0)
5049, 8eqeltrdi 2847 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → ((𝑆 D 𝑌)‘𝑥) ∈ ℂ)
5150abscld 15076 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) ∈ ℝ)
5249abs00bd 14931 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) = 0)
53 eqle 11007 . . . . . . . . . . . . . . . . . . . . . 22 (((abs‘((𝑆 D 𝑌)‘𝑥)) ∈ ℝ ∧ (abs‘((𝑆 D 𝑌)‘𝑥)) = 0) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
5451, 52, 53syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
55543adant1 1128 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
5645, 55syld3an3 1407 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
57563expa 1116 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
5829, 23, 30, 31, 32, 34, 35, 41, 42, 57dvlip2 25064 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ (0 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ∧ 𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞))) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
5928, 58sylanr1 678 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ (𝜑𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞))) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
60593impdi 1348 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
6127, 60syl3an3 1163 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ (𝜑𝑦𝑆)) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
62613expa 1116 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ (𝜑𝑦𝑆)) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
63623impdi 1348 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
64 recnprss 24973 . . . . . . . . . . . . . . . . . . 19 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
652, 64syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 ⊆ ℂ)
6665sseld 3916 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑦𝑆𝑦 ∈ ℂ))
67 subcl 11150 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 − 𝑦) ∈ ℂ)
6867abscld 15076 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(0 − 𝑦)) ∈ ℝ)
698, 68mpan 686 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℂ → (abs‘(0 − 𝑦)) ∈ ℝ)
7066, 69syl6 35 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑦𝑆 → (abs‘(0 − 𝑦)) ∈ ℝ))
7170imp 406 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝑆) → (abs‘(0 − 𝑦)) ∈ ℝ)
7271recnd 10934 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑆) → (abs‘(0 − 𝑦)) ∈ ℂ)
7372mul02d 11103 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → (0 · (abs‘(0 − 𝑦))) = 0)
74733adant2 1129 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (0 · (abs‘(0 − 𝑦))) = 0)
7563, 74breqtrd 5096 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ 0)
76 ffvelrn 6941 . . . . . . . . . . . . . . . . . . 19 ((𝑌:𝑆⟶ℂ ∧ 𝑦𝑆) → (𝑌𝑦) ∈ ℂ)
7713, 76anim12dan 618 . . . . . . . . . . . . . . . . . 18 ((𝑌:𝑆⟶ℂ ∧ (0 ∈ 𝑆𝑦𝑆)) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
781, 77sylan 579 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (0 ∈ 𝑆𝑦𝑆)) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
79783impb 1113 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 0 ∈ 𝑆𝑦𝑆) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
8012, 79syl3an2 1162 . . . . . . . . . . . . . . 15 ((𝜑𝜑𝑦𝑆) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
81803anidm12 1417 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑆) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
82 subcl 11150 . . . . . . . . . . . . . 14 (((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ) → ((𝑌‘0) − (𝑌𝑦)) ∈ ℂ)
8381, 82syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → ((𝑌‘0) − (𝑌𝑦)) ∈ ℂ)
8483absge0d 15084 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))
85843adant2 1129 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))
8683abscld 15076 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → (abs‘((𝑌‘0) − (𝑌𝑦))) ∈ ℝ)
87 letri3 10991 . . . . . . . . . . . . 13 (((abs‘((𝑌‘0) − (𝑌𝑦))) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((abs‘((𝑌‘0) − (𝑌𝑦))) ≤ 0 ∧ 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))))
8886, 5, 87sylancl 585 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((abs‘((𝑌‘0) − (𝑌𝑦))) ≤ 0 ∧ 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))))
89883adant2 1129 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((abs‘((𝑌‘0) − (𝑌𝑦))) ≤ 0 ∧ 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))))
9075, 85, 89mpbir2and 709 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (abs‘((𝑌‘0) − (𝑌𝑦))) = 0)
9183abs00ad 14930 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((𝑌‘0) − (𝑌𝑦)) = 0))
92913adant2 1129 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((𝑌‘0) − (𝑌𝑦)) = 0))
9390, 92mpbid 231 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → ((𝑌‘0) − (𝑌𝑦)) = 0)
94 subeq0 11177 . . . . . . . . . . 11 (((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ) → (((𝑌‘0) − (𝑌𝑦)) = 0 ↔ (𝑌‘0) = (𝑌𝑦)))
9581, 94syl 17 . . . . . . . . . 10 ((𝜑𝑦𝑆) → (((𝑌‘0) − (𝑌𝑦)) = 0 ↔ (𝑌‘0) = (𝑌𝑦)))
96953adant2 1129 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (((𝑌‘0) − (𝑌𝑦)) = 0 ↔ (𝑌‘0) = (𝑌𝑦)))
9793, 96mpbid 231 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (𝑌‘0) = (𝑌𝑦))
98973expa 1116 . . . . . . 7 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑦𝑆) → (𝑌‘0) = (𝑌𝑦))
9922, 98eqtr2d 2779 . . . . . 6 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑦𝑆) → (𝑌𝑦) = ((𝑆 × {(𝑌‘0)})‘𝑦))
10017, 20, 99eqfnfvd 6894 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑌 = (𝑆 × {(𝑌‘0)}))
101 sneq 4568 . . . . . . 7 (𝑥 = (𝑌‘0) → {𝑥} = {(𝑌‘0)})
102101xpeq2d 5610 . . . . . 6 (𝑥 = (𝑌‘0) → (𝑆 × {𝑥}) = (𝑆 × {(𝑌‘0)}))
103102rspceeqv 3567 . . . . 5 (((𝑌‘0) ∈ ℂ ∧ 𝑌 = (𝑆 × {(𝑌‘0)})) → ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}))
10415, 100, 103syl2anc 583 . . . 4 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}))
105104ex 412 . . 3 (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) → ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥})))
106 oveq2 7263 . . . . . 6 (𝑌 = (𝑆 × {𝑥}) → (𝑆 D 𝑌) = (𝑆 D (𝑆 × {𝑥})))
1071063ad2ant3 1133 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑆 × {𝑥})) → (𝑆 D 𝑌) = (𝑆 D (𝑆 × {𝑥})))
108 dvsconst 41837 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑥 ∈ ℂ) → (𝑆 D (𝑆 × {𝑥})) = (𝑆 × {0}))
1092, 108sylan 579 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (𝑆 D (𝑆 × {𝑥})) = (𝑆 × {0}))
1101093adant3 1130 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑆 × {𝑥})) → (𝑆 D (𝑆 × {𝑥})) = (𝑆 × {0}))
111107, 110eqtrd 2778 . . . 4 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑆 × {𝑥})) → (𝑆 D 𝑌) = (𝑆 × {0}))
112111rexlimdv3a 3214 . . 3 (𝜑 → (∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}) → (𝑆 D 𝑌) = (𝑆 × {0})))
113105, 112impbid 211 . 2 (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) ↔ ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥})))
114 sneq 4568 . . . . 5 (𝑐 = 𝑥 → {𝑐} = {𝑥})
115114xpeq2d 5610 . . . 4 (𝑐 = 𝑥 → (𝑆 × {𝑐}) = (𝑆 × {𝑥}))
116115eqeq2d 2749 . . 3 (𝑐 = 𝑥 → (𝑌 = (𝑆 × {𝑐}) ↔ 𝑌 = (𝑆 × {𝑥})))
117116cbvrexvw 3373 . 2 (∃𝑐 ∈ ℂ 𝑌 = (𝑆 × {𝑐}) ↔ ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}))
118113, 117bitr4di 288 1 (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑆 × {𝑐})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  Vcvv 3422  wss 3883  {csn 4558  {cpr 4560   class class class wbr 5070   × cxp 5578  dom cdm 5580  cres 5582  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   · cmul 10807  +∞cpnf 10937  *cxr 10939  cle 10941  cmin 11135  abscabs 14873  ballcbl 20497   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  expgrowth  41842
  Copyright terms: Public domain W3C validator