Step | Hyp | Ref
| Expression |
1 | | dvconstbi.y |
. . . . . . 7
⊢ (𝜑 → 𝑌:𝑆⟶ℂ) |
2 | | dvconstbi.s |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
3 | | elpri 4583 |
. . . . . . . . 9
⊢ (𝑆 ∈ {ℝ, ℂ}
→ (𝑆 = ℝ ∨
𝑆 =
ℂ)) |
4 | 2, 3 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ)) |
5 | | 0re 10987 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
6 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (𝑆 = ℝ → (0 ∈
𝑆 ↔ 0 ∈
ℝ)) |
7 | 5, 6 | mpbiri 257 |
. . . . . . . . 9
⊢ (𝑆 = ℝ → 0 ∈ 𝑆) |
8 | | 0cn 10977 |
. . . . . . . . . 10
⊢ 0 ∈
ℂ |
9 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (𝑆 = ℂ → (0 ∈
𝑆 ↔ 0 ∈
ℂ)) |
10 | 8, 9 | mpbiri 257 |
. . . . . . . . 9
⊢ (𝑆 = ℂ → 0 ∈ 𝑆) |
11 | 7, 10 | jaoi 854 |
. . . . . . . 8
⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 0 ∈
𝑆) |
12 | 4, 11 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 0 ∈ 𝑆) |
13 | | ffvelrn 6951 |
. . . . . . 7
⊢ ((𝑌:𝑆⟶ℂ ∧ 0 ∈ 𝑆) → (𝑌‘0) ∈ ℂ) |
14 | 1, 12, 13 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝑌‘0) ∈ ℂ) |
15 | 14 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (𝑌‘0) ∈ ℂ) |
16 | 1 | ffnd 6593 |
. . . . . . 7
⊢ (𝜑 → 𝑌 Fn 𝑆) |
17 | 16 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑌 Fn 𝑆) |
18 | | fvex 6779 |
. . . . . . 7
⊢ (𝑌‘0) ∈
V |
19 | | fnconstg 6654 |
. . . . . . 7
⊢ ((𝑌‘0) ∈ V → (𝑆 × {(𝑌‘0)}) Fn 𝑆) |
20 | 18, 19 | mp1i 13 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (𝑆 × {(𝑌‘0)}) Fn 𝑆) |
21 | 18 | fvconst2 7071 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑆 → ((𝑆 × {(𝑌‘0)})‘𝑦) = (𝑌‘0)) |
22 | 21 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑦 ∈ 𝑆) → ((𝑆 × {(𝑌‘0)})‘𝑦) = (𝑌‘0)) |
23 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((abs
∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (𝑆 × 𝑆)) |
24 | 2, 23 | sblpnf 41909 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 0 ∈ 𝑆) → (0(ball‘((abs ∘ −
) ↾ (𝑆 × 𝑆)))+∞) = 𝑆) |
25 | 12, 24 | mpdan 684 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (0(ball‘((abs
∘ − ) ↾ (𝑆 × 𝑆)))+∞) = 𝑆) |
26 | 25 | eleq2d 2824 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑦 ∈ (0(ball‘((abs ∘ − )
↾ (𝑆 × 𝑆)))+∞) ↔ 𝑦 ∈ 𝑆)) |
27 | 26 | biimpar 478 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ (0(ball‘((abs ∘ − )
↾ (𝑆 × 𝑆)))+∞)) |
28 | 12, 25 | eleqtrrd 2842 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 0 ∈
(0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) |
29 | 2 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑆 ∈ {ℝ, ℂ}) |
30 | | ssidd 3943 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑆 ⊆ 𝑆) |
31 | 1 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑌:𝑆⟶ℂ) |
32 | 12 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 0 ∈ 𝑆) |
33 | | pnfxr 11039 |
. . . . . . . . . . . . . . . . . . 19
⊢ +∞
∈ ℝ* |
34 | 33 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → +∞ ∈
ℝ*) |
35 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢
(0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = (0(ball‘((abs ∘
− ) ↾ (𝑆
× 𝑆)))+∞) |
36 | 25 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (0(ball‘((abs
∘ − ) ↾ (𝑆 × 𝑆)))+∞) = 𝑆) |
37 | | dvconstbi.dy |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → dom (𝑆 D 𝑌) = 𝑆) |
38 | 37 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → dom (𝑆 D 𝑌) = 𝑆) |
39 | 36, 38 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (0(ball‘((abs
∘ − ) ↾ (𝑆 × 𝑆)))+∞) = dom (𝑆 D 𝑌)) |
40 | | eqimss 3976 |
. . . . . . . . . . . . . . . . . . 19
⊢
((0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = dom (𝑆 D 𝑌) → (0(ball‘((abs ∘ −
) ↾ (𝑆 × 𝑆)))+∞) ⊆ dom (𝑆 D 𝑌)) |
41 | 39, 40 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (0(ball‘((abs
∘ − ) ↾ (𝑆 × 𝑆)))+∞) ⊆ dom (𝑆 D 𝑌)) |
42 | 5 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 0 ∈
ℝ) |
43 | 25 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑥 ∈ (0(ball‘((abs ∘ − )
↾ (𝑆 × 𝑆)))+∞) ↔ 𝑥 ∈ 𝑆)) |
44 | 43 | biimpa 477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (0(ball‘((abs ∘ − )
↾ (𝑆 × 𝑆)))+∞)) → 𝑥 ∈ 𝑆) |
45 | 44 | 3adant2 1130 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥 ∈ (0(ball‘((abs ∘ − )
↾ (𝑆 × 𝑆)))+∞)) → 𝑥 ∈ 𝑆) |
46 | | fveq1 6765 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑆 D 𝑌) = (𝑆 × {0}) → ((𝑆 D 𝑌)‘𝑥) = ((𝑆 × {0})‘𝑥)) |
47 | | c0ex 10979 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 0 ∈
V |
48 | 47 | fvconst2 7071 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ 𝑆 → ((𝑆 × {0})‘𝑥) = 0) |
49 | 46, 48 | sylan9eq 2798 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥 ∈ 𝑆) → ((𝑆 D 𝑌)‘𝑥) = 0) |
50 | 49, 8 | eqeltrdi 2847 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥 ∈ 𝑆) → ((𝑆 D 𝑌)‘𝑥) ∈ ℂ) |
51 | 50 | abscld 15158 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥 ∈ 𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) ∈ ℝ) |
52 | 49 | abs00bd 15013 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥 ∈ 𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) = 0) |
53 | | eqle 11087 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((abs‘((𝑆 D
𝑌)‘𝑥)) ∈ ℝ ∧ (abs‘((𝑆 D 𝑌)‘𝑥)) = 0) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0) |
54 | 51, 52, 53 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥 ∈ 𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0) |
55 | 54 | 3adant1 1129 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥 ∈ 𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0) |
56 | 45, 55 | syld3an3 1408 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥 ∈ (0(ball‘((abs ∘ − )
↾ (𝑆 × 𝑆)))+∞)) →
(abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0) |
57 | 56 | 3expa 1117 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑥 ∈ (0(ball‘((abs ∘ − )
↾ (𝑆 × 𝑆)))+∞)) →
(abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0) |
58 | 29, 23, 30, 31, 32, 34, 35, 41, 42, 57 | dvlip2 25169 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ (0 ∈
(0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ∧ 𝑦 ∈ (0(ball‘((abs ∘ − )
↾ (𝑆 × 𝑆)))+∞))) →
(abs‘((𝑌‘0)
− (𝑌‘𝑦))) ≤ (0 ·
(abs‘(0 − 𝑦)))) |
59 | 28, 58 | sylanr1 679 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ (𝜑 ∧ 𝑦 ∈ (0(ball‘((abs ∘ − )
↾ (𝑆 × 𝑆)))+∞))) →
(abs‘((𝑌‘0)
− (𝑌‘𝑦))) ≤ (0 ·
(abs‘(0 − 𝑦)))) |
60 | 59 | 3impdi 1349 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦 ∈ (0(ball‘((abs ∘ − )
↾ (𝑆 × 𝑆)))+∞)) →
(abs‘((𝑌‘0)
− (𝑌‘𝑦))) ≤ (0 ·
(abs‘(0 − 𝑦)))) |
61 | 27, 60 | syl3an3 1164 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ (𝜑 ∧ 𝑦 ∈ 𝑆)) → (abs‘((𝑌‘0) − (𝑌‘𝑦))) ≤ (0 · (abs‘(0 −
𝑦)))) |
62 | 61 | 3expa 1117 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ (𝜑 ∧ 𝑦 ∈ 𝑆)) → (abs‘((𝑌‘0) − (𝑌‘𝑦))) ≤ (0 · (abs‘(0 −
𝑦)))) |
63 | 62 | 3impdi 1349 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦 ∈ 𝑆) → (abs‘((𝑌‘0) − (𝑌‘𝑦))) ≤ (0 · (abs‘(0 −
𝑦)))) |
64 | | recnprss 25078 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) |
65 | 2, 64 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
66 | 65 | sseld 3919 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑦 ∈ 𝑆 → 𝑦 ∈ ℂ)) |
67 | | subcl 11230 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ ℂ ∧ 𝑦
∈ ℂ) → (0 − 𝑦) ∈ ℂ) |
68 | 67 | abscld 15158 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ ℂ ∧ 𝑦
∈ ℂ) → (abs‘(0 − 𝑦)) ∈ ℝ) |
69 | 8, 68 | mpan 687 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℂ →
(abs‘(0 − 𝑦))
∈ ℝ) |
70 | 66, 69 | syl6 35 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑦 ∈ 𝑆 → (abs‘(0 − 𝑦)) ∈
ℝ)) |
71 | 70 | imp 407 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (abs‘(0 − 𝑦)) ∈
ℝ) |
72 | 71 | recnd 11013 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (abs‘(0 − 𝑦)) ∈
ℂ) |
73 | 72 | mul02d 11183 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (0 · (abs‘(0 −
𝑦))) = 0) |
74 | 73 | 3adant2 1130 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦 ∈ 𝑆) → (0 · (abs‘(0 −
𝑦))) = 0) |
75 | 63, 74 | breqtrd 5099 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦 ∈ 𝑆) → (abs‘((𝑌‘0) − (𝑌‘𝑦))) ≤ 0) |
76 | | ffvelrn 6951 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑌:𝑆⟶ℂ ∧ 𝑦 ∈ 𝑆) → (𝑌‘𝑦) ∈ ℂ) |
77 | 13, 76 | anim12dan 619 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑌:𝑆⟶ℂ ∧ (0 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑌‘0) ∈ ℂ ∧ (𝑌‘𝑦) ∈ ℂ)) |
78 | 1, 77 | sylan 580 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (0 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑌‘0) ∈ ℂ ∧ (𝑌‘𝑦) ∈ ℂ)) |
79 | 78 | 3impb 1114 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 0 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑌‘0) ∈ ℂ ∧ (𝑌‘𝑦) ∈ ℂ)) |
80 | 12, 79 | syl3an2 1163 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝑌‘0) ∈ ℂ ∧ (𝑌‘𝑦) ∈ ℂ)) |
81 | 80 | 3anidm12 1418 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝑌‘0) ∈ ℂ ∧ (𝑌‘𝑦) ∈ ℂ)) |
82 | | subcl 11230 |
. . . . . . . . . . . . . 14
⊢ (((𝑌‘0) ∈ ℂ ∧
(𝑌‘𝑦) ∈ ℂ) → ((𝑌‘0) − (𝑌‘𝑦)) ∈ ℂ) |
83 | 81, 82 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝑌‘0) − (𝑌‘𝑦)) ∈ ℂ) |
84 | 83 | absge0d 15166 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 0 ≤ (abs‘((𝑌‘0) − (𝑌‘𝑦)))) |
85 | 84 | 3adant2 1130 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦 ∈ 𝑆) → 0 ≤ (abs‘((𝑌‘0) − (𝑌‘𝑦)))) |
86 | 83 | abscld 15158 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (abs‘((𝑌‘0) − (𝑌‘𝑦))) ∈ ℝ) |
87 | | letri3 11070 |
. . . . . . . . . . . . 13
⊢
(((abs‘((𝑌‘0) − (𝑌‘𝑦))) ∈ ℝ ∧ 0 ∈ ℝ)
→ ((abs‘((𝑌‘0) − (𝑌‘𝑦))) = 0 ↔ ((abs‘((𝑌‘0) − (𝑌‘𝑦))) ≤ 0 ∧ 0 ≤ (abs‘((𝑌‘0) − (𝑌‘𝑦)))))) |
88 | 86, 5, 87 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((abs‘((𝑌‘0) − (𝑌‘𝑦))) = 0 ↔ ((abs‘((𝑌‘0) − (𝑌‘𝑦))) ≤ 0 ∧ 0 ≤ (abs‘((𝑌‘0) − (𝑌‘𝑦)))))) |
89 | 88 | 3adant2 1130 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦 ∈ 𝑆) → ((abs‘((𝑌‘0) − (𝑌‘𝑦))) = 0 ↔ ((abs‘((𝑌‘0) − (𝑌‘𝑦))) ≤ 0 ∧ 0 ≤ (abs‘((𝑌‘0) − (𝑌‘𝑦)))))) |
90 | 75, 85, 89 | mpbir2and 710 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦 ∈ 𝑆) → (abs‘((𝑌‘0) − (𝑌‘𝑦))) = 0) |
91 | 83 | abs00ad 15012 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((abs‘((𝑌‘0) − (𝑌‘𝑦))) = 0 ↔ ((𝑌‘0) − (𝑌‘𝑦)) = 0)) |
92 | 91 | 3adant2 1130 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦 ∈ 𝑆) → ((abs‘((𝑌‘0) − (𝑌‘𝑦))) = 0 ↔ ((𝑌‘0) − (𝑌‘𝑦)) = 0)) |
93 | 90, 92 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦 ∈ 𝑆) → ((𝑌‘0) − (𝑌‘𝑦)) = 0) |
94 | | subeq0 11257 |
. . . . . . . . . . 11
⊢ (((𝑌‘0) ∈ ℂ ∧
(𝑌‘𝑦) ∈ ℂ) → (((𝑌‘0) − (𝑌‘𝑦)) = 0 ↔ (𝑌‘0) = (𝑌‘𝑦))) |
95 | 81, 94 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((𝑌‘0) − (𝑌‘𝑦)) = 0 ↔ (𝑌‘0) = (𝑌‘𝑦))) |
96 | 95 | 3adant2 1130 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦 ∈ 𝑆) → (((𝑌‘0) − (𝑌‘𝑦)) = 0 ↔ (𝑌‘0) = (𝑌‘𝑦))) |
97 | 93, 96 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦 ∈ 𝑆) → (𝑌‘0) = (𝑌‘𝑦)) |
98 | 97 | 3expa 1117 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑦 ∈ 𝑆) → (𝑌‘0) = (𝑌‘𝑦)) |
99 | 22, 98 | eqtr2d 2779 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑦 ∈ 𝑆) → (𝑌‘𝑦) = ((𝑆 × {(𝑌‘0)})‘𝑦)) |
100 | 17, 20, 99 | eqfnfvd 6904 |
. . . . 5
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑌 = (𝑆 × {(𝑌‘0)})) |
101 | | sneq 4571 |
. . . . . . 7
⊢ (𝑥 = (𝑌‘0) → {𝑥} = {(𝑌‘0)}) |
102 | 101 | xpeq2d 5614 |
. . . . . 6
⊢ (𝑥 = (𝑌‘0) → (𝑆 × {𝑥}) = (𝑆 × {(𝑌‘0)})) |
103 | 102 | rspceeqv 3574 |
. . . . 5
⊢ (((𝑌‘0) ∈ ℂ ∧
𝑌 = (𝑆 × {(𝑌‘0)})) → ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥})) |
104 | 15, 100, 103 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥})) |
105 | 104 | ex 413 |
. . 3
⊢ (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) → ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}))) |
106 | | oveq2 7275 |
. . . . . 6
⊢ (𝑌 = (𝑆 × {𝑥}) → (𝑆 D 𝑌) = (𝑆 D (𝑆 × {𝑥}))) |
107 | 106 | 3ad2ant3 1134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ 𝑌 = (𝑆 × {𝑥})) → (𝑆 D 𝑌) = (𝑆 D (𝑆 × {𝑥}))) |
108 | | dvsconst 41929 |
. . . . . . 7
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝑥 ∈ ℂ) →
(𝑆 D (𝑆 × {𝑥})) = (𝑆 × {0})) |
109 | 2, 108 | sylan 580 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑆 D (𝑆 × {𝑥})) = (𝑆 × {0})) |
110 | 109 | 3adant3 1131 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ 𝑌 = (𝑆 × {𝑥})) → (𝑆 D (𝑆 × {𝑥})) = (𝑆 × {0})) |
111 | 107, 110 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ 𝑌 = (𝑆 × {𝑥})) → (𝑆 D 𝑌) = (𝑆 × {0})) |
112 | 111 | rexlimdv3a 3213 |
. . 3
⊢ (𝜑 → (∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}) → (𝑆 D 𝑌) = (𝑆 × {0}))) |
113 | 105, 112 | impbid 211 |
. 2
⊢ (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) ↔ ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}))) |
114 | | sneq 4571 |
. . . . 5
⊢ (𝑐 = 𝑥 → {𝑐} = {𝑥}) |
115 | 114 | xpeq2d 5614 |
. . . 4
⊢ (𝑐 = 𝑥 → (𝑆 × {𝑐}) = (𝑆 × {𝑥})) |
116 | 115 | eqeq2d 2749 |
. . 3
⊢ (𝑐 = 𝑥 → (𝑌 = (𝑆 × {𝑐}) ↔ 𝑌 = (𝑆 × {𝑥}))) |
117 | 116 | cbvrexvw 3381 |
. 2
⊢
(∃𝑐 ∈
ℂ 𝑌 = (𝑆 × {𝑐}) ↔ ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥})) |
118 | 113, 117 | bitr4di 289 |
1
⊢ (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑆 × {𝑐}))) |