Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvconstbi Structured version   Visualization version   GIF version

Theorem dvconstbi 42604
Description: The derivative of a function on 𝑆 is zero iff it is a constant function. Roughly a biconditional 𝑆 analogue of dvconst 25281 and dveq0 25364. Corresponds to integration formula "∫0 d𝑥 = 𝐶 " in section 4.1 of [LarsonHostetlerEdwards] p. 278. (Contributed by Steve Rodriguez, 11-Nov-2015.)
Hypotheses
Ref Expression
dvconstbi.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvconstbi.y (𝜑𝑌:𝑆⟶ℂ)
dvconstbi.dy (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
Assertion
Ref Expression
dvconstbi (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑆 × {𝑐})))
Distinct variable groups:   𝑆,𝑐   𝑌,𝑐
Allowed substitution hint:   𝜑(𝑐)

Proof of Theorem dvconstbi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvconstbi.y . . . . . . 7 (𝜑𝑌:𝑆⟶ℂ)
2 dvconstbi.s . . . . . . . . 9 (𝜑𝑆 ∈ {ℝ, ℂ})
3 elpri 4608 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
42, 3syl 17 . . . . . . . 8 (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ))
5 0re 11157 . . . . . . . . . 10 0 ∈ ℝ
6 eleq2 2826 . . . . . . . . . 10 (𝑆 = ℝ → (0 ∈ 𝑆 ↔ 0 ∈ ℝ))
75, 6mpbiri 257 . . . . . . . . 9 (𝑆 = ℝ → 0 ∈ 𝑆)
8 0cn 11147 . . . . . . . . . 10 0 ∈ ℂ
9 eleq2 2826 . . . . . . . . . 10 (𝑆 = ℂ → (0 ∈ 𝑆 ↔ 0 ∈ ℂ))
108, 9mpbiri 257 . . . . . . . . 9 (𝑆 = ℂ → 0 ∈ 𝑆)
117, 10jaoi 855 . . . . . . . 8 ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 0 ∈ 𝑆)
124, 11syl 17 . . . . . . 7 (𝜑 → 0 ∈ 𝑆)
13 ffvelcdm 7032 . . . . . . 7 ((𝑌:𝑆⟶ℂ ∧ 0 ∈ 𝑆) → (𝑌‘0) ∈ ℂ)
141, 12, 13syl2anc 584 . . . . . 6 (𝜑 → (𝑌‘0) ∈ ℂ)
1514adantr 481 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (𝑌‘0) ∈ ℂ)
161ffnd 6669 . . . . . . 7 (𝜑𝑌 Fn 𝑆)
1716adantr 481 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑌 Fn 𝑆)
18 fvex 6855 . . . . . . 7 (𝑌‘0) ∈ V
19 fnconstg 6730 . . . . . . 7 ((𝑌‘0) ∈ V → (𝑆 × {(𝑌‘0)}) Fn 𝑆)
2018, 19mp1i 13 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (𝑆 × {(𝑌‘0)}) Fn 𝑆)
2118fvconst2 7153 . . . . . . . 8 (𝑦𝑆 → ((𝑆 × {(𝑌‘0)})‘𝑦) = (𝑌‘0))
2221adantl 482 . . . . . . 7 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑦𝑆) → ((𝑆 × {(𝑌‘0)})‘𝑦) = (𝑌‘0))
23 eqid 2736 . . . . . . . . . . . . . . . . . . 19 ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
242, 23sblpnf 42580 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ 0 ∈ 𝑆) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = 𝑆)
2512, 24mpdan 685 . . . . . . . . . . . . . . . . 17 (𝜑 → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = 𝑆)
2625eleq2d 2823 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ↔ 𝑦𝑆))
2726biimpar 478 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝑆) → 𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞))
2812, 25eleqtrrd 2841 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞))
292adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑆 ∈ {ℝ, ℂ})
30 ssidd 3967 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑆𝑆)
311adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑌:𝑆⟶ℂ)
3212adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 0 ∈ 𝑆)
33 pnfxr 11209 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
3433a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → +∞ ∈ ℝ*)
35 eqid 2736 . . . . . . . . . . . . . . . . . 18 (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)
3625adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = 𝑆)
37 dvconstbi.dy . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
3837adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → dom (𝑆 D 𝑌) = 𝑆)
3936, 38eqtr4d 2779 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = dom (𝑆 D 𝑌))
40 eqimss 4000 . . . . . . . . . . . . . . . . . . 19 ((0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = dom (𝑆 D 𝑌) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ⊆ dom (𝑆 D 𝑌))
4139, 40syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ⊆ dom (𝑆 D 𝑌))
425a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 0 ∈ ℝ)
4325eleq2d 2823 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ↔ 𝑥𝑆))
4443biimpa 477 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → 𝑥𝑆)
45443adant2 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → 𝑥𝑆)
46 fveq1 6841 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 D 𝑌) = (𝑆 × {0}) → ((𝑆 D 𝑌)‘𝑥) = ((𝑆 × {0})‘𝑥))
47 c0ex 11149 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ∈ V
4847fvconst2 7153 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑆 → ((𝑆 × {0})‘𝑥) = 0)
4946, 48sylan9eq 2796 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → ((𝑆 D 𝑌)‘𝑥) = 0)
5049, 8eqeltrdi 2846 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → ((𝑆 D 𝑌)‘𝑥) ∈ ℂ)
5150abscld 15321 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) ∈ ℝ)
5249abs00bd 15176 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) = 0)
53 eqle 11257 . . . . . . . . . . . . . . . . . . . . . 22 (((abs‘((𝑆 D 𝑌)‘𝑥)) ∈ ℝ ∧ (abs‘((𝑆 D 𝑌)‘𝑥)) = 0) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
5451, 52, 53syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
55543adant1 1130 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
5645, 55syld3an3 1409 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
57563expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
5829, 23, 30, 31, 32, 34, 35, 41, 42, 57dvlip2 25359 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ (0 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ∧ 𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞))) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
5928, 58sylanr1 680 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ (𝜑𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞))) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
60593impdi 1350 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
6127, 60syl3an3 1165 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ (𝜑𝑦𝑆)) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
62613expa 1118 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ (𝜑𝑦𝑆)) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
63623impdi 1350 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
64 recnprss 25268 . . . . . . . . . . . . . . . . . . 19 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
652, 64syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 ⊆ ℂ)
6665sseld 3943 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑦𝑆𝑦 ∈ ℂ))
67 subcl 11400 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 − 𝑦) ∈ ℂ)
6867abscld 15321 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(0 − 𝑦)) ∈ ℝ)
698, 68mpan 688 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℂ → (abs‘(0 − 𝑦)) ∈ ℝ)
7066, 69syl6 35 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑦𝑆 → (abs‘(0 − 𝑦)) ∈ ℝ))
7170imp 407 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝑆) → (abs‘(0 − 𝑦)) ∈ ℝ)
7271recnd 11183 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑆) → (abs‘(0 − 𝑦)) ∈ ℂ)
7372mul02d 11353 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → (0 · (abs‘(0 − 𝑦))) = 0)
74733adant2 1131 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (0 · (abs‘(0 − 𝑦))) = 0)
7563, 74breqtrd 5131 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ 0)
76 ffvelcdm 7032 . . . . . . . . . . . . . . . . . . 19 ((𝑌:𝑆⟶ℂ ∧ 𝑦𝑆) → (𝑌𝑦) ∈ ℂ)
7713, 76anim12dan 619 . . . . . . . . . . . . . . . . . 18 ((𝑌:𝑆⟶ℂ ∧ (0 ∈ 𝑆𝑦𝑆)) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
781, 77sylan 580 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (0 ∈ 𝑆𝑦𝑆)) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
79783impb 1115 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 0 ∈ 𝑆𝑦𝑆) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
8012, 79syl3an2 1164 . . . . . . . . . . . . . . 15 ((𝜑𝜑𝑦𝑆) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
81803anidm12 1419 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑆) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
82 subcl 11400 . . . . . . . . . . . . . 14 (((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ) → ((𝑌‘0) − (𝑌𝑦)) ∈ ℂ)
8381, 82syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → ((𝑌‘0) − (𝑌𝑦)) ∈ ℂ)
8483absge0d 15329 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))
85843adant2 1131 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))
8683abscld 15321 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → (abs‘((𝑌‘0) − (𝑌𝑦))) ∈ ℝ)
87 letri3 11240 . . . . . . . . . . . . 13 (((abs‘((𝑌‘0) − (𝑌𝑦))) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((abs‘((𝑌‘0) − (𝑌𝑦))) ≤ 0 ∧ 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))))
8886, 5, 87sylancl 586 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((abs‘((𝑌‘0) − (𝑌𝑦))) ≤ 0 ∧ 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))))
89883adant2 1131 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((abs‘((𝑌‘0) − (𝑌𝑦))) ≤ 0 ∧ 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))))
9075, 85, 89mpbir2and 711 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (abs‘((𝑌‘0) − (𝑌𝑦))) = 0)
9183abs00ad 15175 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((𝑌‘0) − (𝑌𝑦)) = 0))
92913adant2 1131 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((𝑌‘0) − (𝑌𝑦)) = 0))
9390, 92mpbid 231 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → ((𝑌‘0) − (𝑌𝑦)) = 0)
94 subeq0 11427 . . . . . . . . . . 11 (((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ) → (((𝑌‘0) − (𝑌𝑦)) = 0 ↔ (𝑌‘0) = (𝑌𝑦)))
9581, 94syl 17 . . . . . . . . . 10 ((𝜑𝑦𝑆) → (((𝑌‘0) − (𝑌𝑦)) = 0 ↔ (𝑌‘0) = (𝑌𝑦)))
96953adant2 1131 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (((𝑌‘0) − (𝑌𝑦)) = 0 ↔ (𝑌‘0) = (𝑌𝑦)))
9793, 96mpbid 231 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (𝑌‘0) = (𝑌𝑦))
98973expa 1118 . . . . . . 7 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑦𝑆) → (𝑌‘0) = (𝑌𝑦))
9922, 98eqtr2d 2777 . . . . . 6 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑦𝑆) → (𝑌𝑦) = ((𝑆 × {(𝑌‘0)})‘𝑦))
10017, 20, 99eqfnfvd 6985 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑌 = (𝑆 × {(𝑌‘0)}))
101 sneq 4596 . . . . . . 7 (𝑥 = (𝑌‘0) → {𝑥} = {(𝑌‘0)})
102101xpeq2d 5663 . . . . . 6 (𝑥 = (𝑌‘0) → (𝑆 × {𝑥}) = (𝑆 × {(𝑌‘0)}))
103102rspceeqv 3595 . . . . 5 (((𝑌‘0) ∈ ℂ ∧ 𝑌 = (𝑆 × {(𝑌‘0)})) → ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}))
10415, 100, 103syl2anc 584 . . . 4 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}))
105104ex 413 . . 3 (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) → ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥})))
106 oveq2 7365 . . . . . 6 (𝑌 = (𝑆 × {𝑥}) → (𝑆 D 𝑌) = (𝑆 D (𝑆 × {𝑥})))
1071063ad2ant3 1135 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑆 × {𝑥})) → (𝑆 D 𝑌) = (𝑆 D (𝑆 × {𝑥})))
108 dvsconst 42600 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑥 ∈ ℂ) → (𝑆 D (𝑆 × {𝑥})) = (𝑆 × {0}))
1092, 108sylan 580 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (𝑆 D (𝑆 × {𝑥})) = (𝑆 × {0}))
1101093adant3 1132 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑆 × {𝑥})) → (𝑆 D (𝑆 × {𝑥})) = (𝑆 × {0}))
111107, 110eqtrd 2776 . . . 4 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑆 × {𝑥})) → (𝑆 D 𝑌) = (𝑆 × {0}))
112111rexlimdv3a 3156 . . 3 (𝜑 → (∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}) → (𝑆 D 𝑌) = (𝑆 × {0})))
113105, 112impbid 211 . 2 (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) ↔ ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥})))
114 sneq 4596 . . . . 5 (𝑐 = 𝑥 → {𝑐} = {𝑥})
115114xpeq2d 5663 . . . 4 (𝑐 = 𝑥 → (𝑆 × {𝑐}) = (𝑆 × {𝑥}))
116115eqeq2d 2747 . . 3 (𝑐 = 𝑥 → (𝑌 = (𝑆 × {𝑐}) ↔ 𝑌 = (𝑆 × {𝑥})))
117116cbvrexvw 3226 . 2 (∃𝑐 ∈ ℂ 𝑌 = (𝑆 × {𝑐}) ↔ ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}))
118113, 117bitr4di 288 1 (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑆 × {𝑐})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  Vcvv 3445  wss 3910  {csn 4586  {cpr 4588   class class class wbr 5105   × cxp 5631  dom cdm 5633  cres 5635  ccom 5637   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051   · cmul 11056  +∞cpnf 11186  *cxr 11188  cle 11190  cmin 11385  abscabs 15119  ballcbl 20783   D cdv 25227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231
This theorem is referenced by:  expgrowth  42605
  Copyright terms: Public domain W3C validator