Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvconstbi Structured version   Visualization version   GIF version

Theorem dvconstbi 44042
Description: The derivative of a function on 𝑆 is zero iff it is a constant function. Roughly a biconditional 𝑆 analogue of dvconst 25931 and dveq0 26018. Corresponds to integration formula "∫0 d𝑥 = 𝐶 " in section 4.1 of [LarsonHostetlerEdwards] p. 278. (Contributed by Steve Rodriguez, 11-Nov-2015.)
Hypotheses
Ref Expression
dvconstbi.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvconstbi.y (𝜑𝑌:𝑆⟶ℂ)
dvconstbi.dy (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
Assertion
Ref Expression
dvconstbi (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑆 × {𝑐})))
Distinct variable groups:   𝑆,𝑐   𝑌,𝑐
Allowed substitution hint:   𝜑(𝑐)

Proof of Theorem dvconstbi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvconstbi.y . . . . . . 7 (𝜑𝑌:𝑆⟶ℂ)
2 dvconstbi.s . . . . . . . . 9 (𝜑𝑆 ∈ {ℝ, ℂ})
3 elpri 4646 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
42, 3syl 17 . . . . . . . 8 (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ))
5 0re 11254 . . . . . . . . . 10 0 ∈ ℝ
6 eleq2 2815 . . . . . . . . . 10 (𝑆 = ℝ → (0 ∈ 𝑆 ↔ 0 ∈ ℝ))
75, 6mpbiri 257 . . . . . . . . 9 (𝑆 = ℝ → 0 ∈ 𝑆)
8 0cn 11244 . . . . . . . . . 10 0 ∈ ℂ
9 eleq2 2815 . . . . . . . . . 10 (𝑆 = ℂ → (0 ∈ 𝑆 ↔ 0 ∈ ℂ))
108, 9mpbiri 257 . . . . . . . . 9 (𝑆 = ℂ → 0 ∈ 𝑆)
117, 10jaoi 855 . . . . . . . 8 ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 0 ∈ 𝑆)
124, 11syl 17 . . . . . . 7 (𝜑 → 0 ∈ 𝑆)
13 ffvelcdm 7084 . . . . . . 7 ((𝑌:𝑆⟶ℂ ∧ 0 ∈ 𝑆) → (𝑌‘0) ∈ ℂ)
141, 12, 13syl2anc 582 . . . . . 6 (𝜑 → (𝑌‘0) ∈ ℂ)
1514adantr 479 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (𝑌‘0) ∈ ℂ)
161ffnd 6718 . . . . . . 7 (𝜑𝑌 Fn 𝑆)
1716adantr 479 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑌 Fn 𝑆)
18 fvex 6903 . . . . . . 7 (𝑌‘0) ∈ V
19 fnconstg 6779 . . . . . . 7 ((𝑌‘0) ∈ V → (𝑆 × {(𝑌‘0)}) Fn 𝑆)
2018, 19mp1i 13 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (𝑆 × {(𝑌‘0)}) Fn 𝑆)
2118fvconst2 7210 . . . . . . . 8 (𝑦𝑆 → ((𝑆 × {(𝑌‘0)})‘𝑦) = (𝑌‘0))
2221adantl 480 . . . . . . 7 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑦𝑆) → ((𝑆 × {(𝑌‘0)})‘𝑦) = (𝑌‘0))
23 eqid 2726 . . . . . . . . . . . . . . . . . . 19 ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
242, 23sblpnf 44018 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ 0 ∈ 𝑆) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = 𝑆)
2512, 24mpdan 685 . . . . . . . . . . . . . . . . 17 (𝜑 → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = 𝑆)
2625eleq2d 2812 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ↔ 𝑦𝑆))
2726biimpar 476 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝑆) → 𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞))
2812, 25eleqtrrd 2829 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞))
292adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑆 ∈ {ℝ, ℂ})
30 ssidd 4002 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑆𝑆)
311adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑌:𝑆⟶ℂ)
3212adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 0 ∈ 𝑆)
33 pnfxr 11306 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
3433a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → +∞ ∈ ℝ*)
35 eqid 2726 . . . . . . . . . . . . . . . . . 18 (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)
3625adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = 𝑆)
37 dvconstbi.dy . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
3837adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → dom (𝑆 D 𝑌) = 𝑆)
3936, 38eqtr4d 2769 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = dom (𝑆 D 𝑌))
40 eqimss 4037 . . . . . . . . . . . . . . . . . . 19 ((0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) = dom (𝑆 D 𝑌) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ⊆ dom (𝑆 D 𝑌))
4139, 40syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ⊆ dom (𝑆 D 𝑌))
425a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 0 ∈ ℝ)
4325eleq2d 2812 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ↔ 𝑥𝑆))
4443biimpa 475 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → 𝑥𝑆)
45443adant2 1128 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → 𝑥𝑆)
46 fveq1 6889 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 D 𝑌) = (𝑆 × {0}) → ((𝑆 D 𝑌)‘𝑥) = ((𝑆 × {0})‘𝑥))
47 c0ex 11246 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ∈ V
4847fvconst2 7210 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑆 → ((𝑆 × {0})‘𝑥) = 0)
4946, 48sylan9eq 2786 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → ((𝑆 D 𝑌)‘𝑥) = 0)
5049, 8eqeltrdi 2834 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → ((𝑆 D 𝑌)‘𝑥) ∈ ℂ)
5150abscld 15433 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) ∈ ℝ)
5249abs00bd 15288 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) = 0)
53 eqle 11354 . . . . . . . . . . . . . . . . . . . . . 22 (((abs‘((𝑆 D 𝑌)‘𝑥)) ∈ ℝ ∧ (abs‘((𝑆 D 𝑌)‘𝑥)) = 0) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
5451, 52, 53syl2anc 582 . . . . . . . . . . . . . . . . . . . . 21 (((𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
55543adant1 1127 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥𝑆) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
5645, 55syld3an3 1406 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
57563expa 1115 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑥 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → (abs‘((𝑆 D 𝑌)‘𝑥)) ≤ 0)
5829, 23, 30, 31, 32, 34, 35, 41, 42, 57dvlip2 26013 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ (0 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞) ∧ 𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞))) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
5928, 58sylanr1 680 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ (𝜑𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞))) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
60593impdi 1347 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦 ∈ (0(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))+∞)) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
6127, 60syl3an3 1162 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ (𝜑𝑦𝑆)) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
62613expa 1115 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ (𝜑𝑦𝑆)) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
63623impdi 1347 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ (0 · (abs‘(0 − 𝑦))))
64 recnprss 25918 . . . . . . . . . . . . . . . . . . 19 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
652, 64syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 ⊆ ℂ)
6665sseld 3977 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑦𝑆𝑦 ∈ ℂ))
67 subcl 11497 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 − 𝑦) ∈ ℂ)
6867abscld 15433 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(0 − 𝑦)) ∈ ℝ)
698, 68mpan 688 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℂ → (abs‘(0 − 𝑦)) ∈ ℝ)
7066, 69syl6 35 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑦𝑆 → (abs‘(0 − 𝑦)) ∈ ℝ))
7170imp 405 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝑆) → (abs‘(0 − 𝑦)) ∈ ℝ)
7271recnd 11280 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑆) → (abs‘(0 − 𝑦)) ∈ ℂ)
7372mul02d 11450 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → (0 · (abs‘(0 − 𝑦))) = 0)
74733adant2 1128 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (0 · (abs‘(0 − 𝑦))) = 0)
7563, 74breqtrd 5169 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (abs‘((𝑌‘0) − (𝑌𝑦))) ≤ 0)
76 ffvelcdm 7084 . . . . . . . . . . . . . . . . . . 19 ((𝑌:𝑆⟶ℂ ∧ 𝑦𝑆) → (𝑌𝑦) ∈ ℂ)
7713, 76anim12dan 617 . . . . . . . . . . . . . . . . . 18 ((𝑌:𝑆⟶ℂ ∧ (0 ∈ 𝑆𝑦𝑆)) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
781, 77sylan 578 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (0 ∈ 𝑆𝑦𝑆)) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
79783impb 1112 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 0 ∈ 𝑆𝑦𝑆) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
8012, 79syl3an2 1161 . . . . . . . . . . . . . . 15 ((𝜑𝜑𝑦𝑆) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
81803anidm12 1416 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑆) → ((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ))
82 subcl 11497 . . . . . . . . . . . . . 14 (((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ) → ((𝑌‘0) − (𝑌𝑦)) ∈ ℂ)
8381, 82syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → ((𝑌‘0) − (𝑌𝑦)) ∈ ℂ)
8483absge0d 15441 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))
85843adant2 1128 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))
8683abscld 15433 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → (abs‘((𝑌‘0) − (𝑌𝑦))) ∈ ℝ)
87 letri3 11337 . . . . . . . . . . . . 13 (((abs‘((𝑌‘0) − (𝑌𝑦))) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((abs‘((𝑌‘0) − (𝑌𝑦))) ≤ 0 ∧ 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))))
8886, 5, 87sylancl 584 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((abs‘((𝑌‘0) − (𝑌𝑦))) ≤ 0 ∧ 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))))
89883adant2 1128 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((abs‘((𝑌‘0) − (𝑌𝑦))) ≤ 0 ∧ 0 ≤ (abs‘((𝑌‘0) − (𝑌𝑦))))))
9075, 85, 89mpbir2and 711 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (abs‘((𝑌‘0) − (𝑌𝑦))) = 0)
9183abs00ad 15287 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((𝑌‘0) − (𝑌𝑦)) = 0))
92913adant2 1128 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → ((abs‘((𝑌‘0) − (𝑌𝑦))) = 0 ↔ ((𝑌‘0) − (𝑌𝑦)) = 0))
9390, 92mpbid 231 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → ((𝑌‘0) − (𝑌𝑦)) = 0)
94 subeq0 11524 . . . . . . . . . . 11 (((𝑌‘0) ∈ ℂ ∧ (𝑌𝑦) ∈ ℂ) → (((𝑌‘0) − (𝑌𝑦)) = 0 ↔ (𝑌‘0) = (𝑌𝑦)))
9581, 94syl 17 . . . . . . . . . 10 ((𝜑𝑦𝑆) → (((𝑌‘0) − (𝑌𝑦)) = 0 ↔ (𝑌‘0) = (𝑌𝑦)))
96953adant2 1128 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (((𝑌‘0) − (𝑌𝑦)) = 0 ↔ (𝑌‘0) = (𝑌𝑦)))
9793, 96mpbid 231 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0}) ∧ 𝑦𝑆) → (𝑌‘0) = (𝑌𝑦))
98973expa 1115 . . . . . . 7 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑦𝑆) → (𝑌‘0) = (𝑌𝑦))
9922, 98eqtr2d 2767 . . . . . 6 (((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) ∧ 𝑦𝑆) → (𝑌𝑦) = ((𝑆 × {(𝑌‘0)})‘𝑦))
10017, 20, 99eqfnfvd 7036 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → 𝑌 = (𝑆 × {(𝑌‘0)}))
101 sneq 4633 . . . . . . 7 (𝑥 = (𝑌‘0) → {𝑥} = {(𝑌‘0)})
102101xpeq2d 5702 . . . . . 6 (𝑥 = (𝑌‘0) → (𝑆 × {𝑥}) = (𝑆 × {(𝑌‘0)}))
103102rspceeqv 3629 . . . . 5 (((𝑌‘0) ∈ ℂ ∧ 𝑌 = (𝑆 × {(𝑌‘0)})) → ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}))
10415, 100, 103syl2anc 582 . . . 4 ((𝜑 ∧ (𝑆 D 𝑌) = (𝑆 × {0})) → ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}))
105104ex 411 . . 3 (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) → ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥})))
106 oveq2 7421 . . . . . 6 (𝑌 = (𝑆 × {𝑥}) → (𝑆 D 𝑌) = (𝑆 D (𝑆 × {𝑥})))
1071063ad2ant3 1132 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑆 × {𝑥})) → (𝑆 D 𝑌) = (𝑆 D (𝑆 × {𝑥})))
108 dvsconst 44038 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑥 ∈ ℂ) → (𝑆 D (𝑆 × {𝑥})) = (𝑆 × {0}))
1092, 108sylan 578 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (𝑆 D (𝑆 × {𝑥})) = (𝑆 × {0}))
1101093adant3 1129 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑆 × {𝑥})) → (𝑆 D (𝑆 × {𝑥})) = (𝑆 × {0}))
111107, 110eqtrd 2766 . . . 4 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑆 × {𝑥})) → (𝑆 D 𝑌) = (𝑆 × {0}))
112111rexlimdv3a 3149 . . 3 (𝜑 → (∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}) → (𝑆 D 𝑌) = (𝑆 × {0})))
113105, 112impbid 211 . 2 (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) ↔ ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥})))
114 sneq 4633 . . . . 5 (𝑐 = 𝑥 → {𝑐} = {𝑥})
115114xpeq2d 5702 . . . 4 (𝑐 = 𝑥 → (𝑆 × {𝑐}) = (𝑆 × {𝑥}))
116115eqeq2d 2737 . . 3 (𝑐 = 𝑥 → (𝑌 = (𝑆 × {𝑐}) ↔ 𝑌 = (𝑆 × {𝑥})))
117116cbvrexvw 3226 . 2 (∃𝑐 ∈ ℂ 𝑌 = (𝑆 × {𝑐}) ↔ ∃𝑥 ∈ ℂ 𝑌 = (𝑆 × {𝑥}))
118113, 117bitr4di 288 1 (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑆 × {𝑐})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  wrex 3060  Vcvv 3462  wss 3946  {csn 4623  {cpr 4625   class class class wbr 5143   × cxp 5670  dom cdm 5672  cres 5674  ccom 5676   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7413  cc 11144  cr 11145  0cc0 11146   · cmul 11151  +∞cpnf 11283  *cxr 11285  cle 11287  cmin 11482  abscabs 15231  ballcbl 21323   D cdv 25877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7866  df-1st 7992  df-2nd 7993  df-supp 8164  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8723  df-map 8846  df-pm 8847  df-ixp 8916  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-fsupp 9396  df-fi 9444  df-sup 9475  df-inf 9476  df-oi 9543  df-card 9972  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12256  df-2 12318  df-3 12319  df-4 12320  df-5 12321  df-6 12322  df-7 12323  df-8 12324  df-9 12325  df-n0 12516  df-z 12602  df-dec 12721  df-uz 12866  df-q 12976  df-rp 13020  df-xneg 13137  df-xadd 13138  df-xmul 13139  df-ioo 13373  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13673  df-seq 14013  df-exp 14073  df-hash 14340  df-cj 15096  df-re 15097  df-im 15098  df-sqrt 15232  df-abs 15233  df-struct 17141  df-sets 17158  df-slot 17176  df-ndx 17188  df-base 17206  df-ress 17235  df-plusg 17271  df-mulr 17272  df-starv 17273  df-sca 17274  df-vsca 17275  df-ip 17276  df-tset 17277  df-ple 17278  df-ds 17280  df-unif 17281  df-hom 17282  df-cco 17283  df-rest 17429  df-topn 17430  df-0g 17448  df-gsum 17449  df-topgen 17450  df-pt 17451  df-prds 17454  df-xrs 17509  df-qtop 17514  df-imas 17515  df-xps 17517  df-mre 17591  df-mrc 17592  df-acs 17594  df-mgm 18625  df-sgrp 18704  df-mnd 18720  df-submnd 18766  df-mulg 19055  df-cntz 19304  df-cmn 19773  df-psmet 21328  df-xmet 21329  df-met 21330  df-bl 21331  df-mopn 21332  df-fbas 21333  df-fg 21334  df-cnfld 21337  df-top 22881  df-topon 22898  df-topsp 22920  df-bases 22934  df-cld 23008  df-ntr 23009  df-cls 23010  df-nei 23087  df-lp 23125  df-perf 23126  df-cn 23216  df-cnp 23217  df-haus 23304  df-cmp 23376  df-tx 23551  df-hmeo 23744  df-fil 23835  df-fm 23927  df-flim 23928  df-flf 23929  df-xms 24311  df-ms 24312  df-tms 24313  df-cncf 24883  df-limc 25880  df-dv 25881
This theorem is referenced by:  expgrowth  44043
  Copyright terms: Public domain W3C validator