MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpvmasumlem Structured version   Visualization version   GIF version

Theorem rpvmasumlem 27398
Description: Lemma for rpvmasum 27437. Calculate the "trivial case" estimate Σ𝑛𝑥( 1 (𝑛)Λ(𝑛) / 𝑛) = log𝑥 + 𝑂(1), where 1 (𝑥) is the principal Dirichlet character. Equation 9.4.7 of [Shapiro], p. 376. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
Assertion
Ref Expression
rpvmasumlem (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑛, 1   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥   𝑛,𝑍,𝑥   𝐷,𝑛,𝑥   𝑛,𝐿,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑛)

Proof of Theorem rpvmasumlem
Dummy variables 𝑘 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 11159 . . . . . 6 ℝ ∈ V
2 rpssre 12959 . . . . . 6 + ⊆ ℝ
31, 2ssexi 5277 . . . . 5 + ∈ V
43a1i 11 . . . 4 (𝜑 → ℝ+ ∈ V)
5 fzfid 13938 . . . . . . 7 (𝜑 → (1...(⌊‘𝑥)) ∈ Fin)
6 elfznn 13514 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
76adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
8 vmacl 27028 . . . . . . . . . 10 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
97, 8syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
109, 7nndivred 12240 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
1110recnd 11202 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
125, 11fsumcl 15699 . . . . . 6 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ)
1312adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ)
14 relogcl 26484 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
1514adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
1615recnd 11202 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
1713, 16subcld 11533 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) ∈ ℂ)
18 1re 11174 . . . . . . . . 9 1 ∈ ℝ
19 rpvmasum.g . . . . . . . . . . . 12 𝐺 = (DChr‘𝑁)
20 rpvmasum.z . . . . . . . . . . . 12 𝑍 = (ℤ/nℤ‘𝑁)
21 rpvmasum.1 . . . . . . . . . . . 12 1 = (0g𝐺)
22 eqid 2729 . . . . . . . . . . . 12 (Base‘𝑍) = (Base‘𝑍)
23 rpvmasum.a . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
2419, 20, 21, 22, 23dchr1re 27174 . . . . . . . . . . 11 (𝜑1 :(Base‘𝑍)⟶ℝ)
2524adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → 1 :(Base‘𝑍)⟶ℝ)
2623nnnn0d 12503 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
27 rpvmasum.l . . . . . . . . . . . . 13 𝐿 = (ℤRHom‘𝑍)
2820, 22, 27znzrhfo 21457 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
29 fof 6772 . . . . . . . . . . . 12 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
3026, 28, 293syl 18 . . . . . . . . . . 11 (𝜑𝐿:ℤ⟶(Base‘𝑍))
31 elfzelz 13485 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℤ)
32 ffvelcdm 7053 . . . . . . . . . . 11 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑛 ∈ ℤ) → (𝐿𝑛) ∈ (Base‘𝑍))
3330, 31, 32syl2an 596 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (𝐿𝑛) ∈ (Base‘𝑍))
3425, 33ffvelcdmd 7057 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ( 1 ‘(𝐿𝑛)) ∈ ℝ)
35 resubcl 11486 . . . . . . . . 9 ((1 ∈ ℝ ∧ ( 1 ‘(𝐿𝑛)) ∈ ℝ) → (1 − ( 1 ‘(𝐿𝑛))) ∈ ℝ)
3618, 34, 35sylancr 587 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (1 − ( 1 ‘(𝐿𝑛))) ∈ ℝ)
3736, 10remulcld 11204 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℝ)
3837recnd 11202 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
395, 38fsumcl 15699 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
4039adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
41 eqidd 2730 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))))
42 eqidd 2730 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))))
434, 17, 40, 41, 42offval2 7673 . . 3 (𝜑 → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))))
4413, 16, 40sub32d 11565 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) − (log‘𝑥)))
455, 11, 38fsumsub 15754 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))))
46 1cnd 11169 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
4736recnd 11202 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (1 − ( 1 ‘(𝐿𝑛))) ∈ ℂ)
4846, 47, 11subdird 11635 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − (1 − ( 1 ‘(𝐿𝑛)))) · ((Λ‘𝑛) / 𝑛)) = ((1 · ((Λ‘𝑛) / 𝑛)) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))))
49 ax-1cn 11126 . . . . . . . . . . . 12 1 ∈ ℂ
5034recnd 11202 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ( 1 ‘(𝐿𝑛)) ∈ ℂ)
51 nncan 11451 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ ( 1 ‘(𝐿𝑛)) ∈ ℂ) → (1 − (1 − ( 1 ‘(𝐿𝑛)))) = ( 1 ‘(𝐿𝑛)))
5249, 50, 51sylancr 587 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (1 − (1 − ( 1 ‘(𝐿𝑛)))) = ( 1 ‘(𝐿𝑛)))
5352oveq1d 7402 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − (1 − ( 1 ‘(𝐿𝑛)))) · ((Λ‘𝑛) / 𝑛)) = (( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
5411mullidd 11192 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (1 · ((Λ‘𝑛) / 𝑛)) = ((Λ‘𝑛) / 𝑛))
5554oveq1d 7402 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((1 · ((Λ‘𝑛) / 𝑛)) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = (((Λ‘𝑛) / 𝑛) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))))
5648, 53, 553eqtr3rd 2773 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = (( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
5756sumeq2dv 15668 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
5845, 57eqtr3d 2766 . . . . . . 7 (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
5958oveq1d 7402 . . . . . 6 (𝜑 → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) − (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
6059adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) − (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
6144, 60eqtrd 2764 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
6261mpteq2dva 5200 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))))
6343, 62eqtrd 2764 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))))
64 vmadivsum 27393 . . 3 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)
652a1i 11 . . . 4 (𝜑 → ℝ+ ⊆ ℝ)
66 1red 11175 . . . 4 (𝜑 → 1 ∈ ℝ)
67 prmdvdsfi 27017 . . . . . 6 (𝑁 ∈ ℕ → {𝑞 ∈ ℙ ∣ 𝑞𝑁} ∈ Fin)
6823, 67syl 17 . . . . 5 (𝜑 → {𝑞 ∈ ℙ ∣ 𝑞𝑁} ∈ Fin)
69 elrabi 3654 . . . . . 6 (𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} → 𝑝 ∈ ℙ)
70 prmnn 16644 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
7170adantl 481 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℕ)
7271nnrpd 12993 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℝ+)
7372relogcld 26532 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (log‘𝑝) ∈ ℝ)
74 prmuz2 16666 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
7574adantl 481 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ (ℤ‘2))
76 uz2m1nn 12882 . . . . . . . 8 (𝑝 ∈ (ℤ‘2) → (𝑝 − 1) ∈ ℕ)
7775, 76syl 17 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (𝑝 − 1) ∈ ℕ)
7873, 77nndivred 12240 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
7969, 78sylan2 593 . . . . 5 ((𝜑𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁}) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
8068, 79fsumrecl 15700 . . . 4 (𝜑 → Σ𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
81 fzfid 13938 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
82 simpr 484 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) = 0) → ( 1 ‘(𝐿𝑛)) = 0)
83 0re 11176 . . . . . . . . . . 11 0 ∈ ℝ
8482, 83eqeltrdi 2836 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) = 0) → ( 1 ‘(𝐿𝑛)) ∈ ℝ)
85 eqid 2729 . . . . . . . . . . . 12 (Unit‘𝑍) = (Unit‘𝑍)
8623ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) ≠ 0) → 𝑁 ∈ ℕ)
87 rpvmasum.d . . . . . . . . . . . . . 14 𝐷 = (Base‘𝐺)
8819dchrabl 27165 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
89 ablgrp 19715 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
9087, 21grpidcl 18897 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → 1𝐷)
9123, 88, 89, 904syl 19 . . . . . . . . . . . . . . 15 (𝜑1𝐷)
9291ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1𝐷)
9333adantlr 715 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐿𝑛) ∈ (Base‘𝑍))
9419, 20, 87, 22, 85, 92, 93dchrn0 27161 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (( 1 ‘(𝐿𝑛)) ≠ 0 ↔ (𝐿𝑛) ∈ (Unit‘𝑍)))
9594biimpa 476 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) ≠ 0) → (𝐿𝑛) ∈ (Unit‘𝑍))
9619, 20, 21, 85, 86, 95dchr1 27168 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) ≠ 0) → ( 1 ‘(𝐿𝑛)) = 1)
9796, 18eqeltrdi 2836 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) ≠ 0) → ( 1 ‘(𝐿𝑛)) ∈ ℝ)
9884, 97pm2.61dane 3012 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ( 1 ‘(𝐿𝑛)) ∈ ℝ)
9918, 98, 35sylancr 587 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 − ( 1 ‘(𝐿𝑛))) ∈ ℝ)
10010adantlr 715 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
10199, 100remulcld 11204 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℝ)
10281, 101fsumrecl 15700 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℝ)
103 0le1 11701 . . . . . . . . . . 11 0 ≤ 1
10482, 103eqbrtrdi 5146 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) = 0) → ( 1 ‘(𝐿𝑛)) ≤ 1)
10518leidi 11712 . . . . . . . . . . 11 1 ≤ 1
10696, 105eqbrtrdi 5146 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) ≠ 0) → ( 1 ‘(𝐿𝑛)) ≤ 1)
107104, 106pm2.61dane 3012 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ( 1 ‘(𝐿𝑛)) ≤ 1)
108 subge0 11691 . . . . . . . . . 10 ((1 ∈ ℝ ∧ ( 1 ‘(𝐿𝑛)) ∈ ℝ) → (0 ≤ (1 − ( 1 ‘(𝐿𝑛))) ↔ ( 1 ‘(𝐿𝑛)) ≤ 1))
10918, 98, 108sylancr 587 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (0 ≤ (1 − ( 1 ‘(𝐿𝑛))) ↔ ( 1 ‘(𝐿𝑛)) ≤ 1))
110107, 109mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (1 − ( 1 ‘(𝐿𝑛))))
1119adantlr 715 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
1126adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
113 vmage0 27031 . . . . . . . . . 10 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
114112, 113syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑛))
115112nnred 12201 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
116112nngt0d 12235 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 < 𝑛)
117 divge0 12052 . . . . . . . . 9 ((((Λ‘𝑛) ∈ ℝ ∧ 0 ≤ (Λ‘𝑛)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → 0 ≤ ((Λ‘𝑛) / 𝑛))
118111, 114, 115, 116, 117syl22anc 838 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((Λ‘𝑛) / 𝑛))
11999, 100, 110, 118mulge0d 11755 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))
12081, 101, 119fsumge0 15761 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))
121102, 120absidd 15389 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))
12268adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → {𝑞 ∈ ℙ ∣ 𝑞𝑁} ∈ Fin)
123 inss2 4201 . . . . . . . . 9 ((0[,]𝑥) ∩ ℙ) ⊆ ℙ
124 rabss2 4041 . . . . . . . . 9 (((0[,]𝑥) ∩ ℙ) ⊆ ℙ → {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ⊆ {𝑞 ∈ ℙ ∣ 𝑞𝑁})
125123, 124mp1i 13 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ⊆ {𝑞 ∈ ℙ ∣ 𝑞𝑁})
126122, 125ssfid 9212 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ∈ Fin)
127 ssrab2 4043 . . . . . . . . . 10 {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ⊆ ((0[,]𝑥) ∩ ℙ)
128127, 123sstri 3956 . . . . . . . . 9 {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ⊆ ℙ
129128sseli 3942 . . . . . . . 8 (𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} → 𝑝 ∈ ℙ)
13078adantlr 715 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
131129, 130sylan2 593 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
132126, 131fsumrecl 15700 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
13380adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
134 2fveq3 6863 . . . . . . . . . . 11 (𝑛 = (𝑝𝑘) → ( 1 ‘(𝐿𝑛)) = ( 1 ‘(𝐿‘(𝑝𝑘))))
135134oveq2d 7403 . . . . . . . . . 10 (𝑛 = (𝑝𝑘) → (1 − ( 1 ‘(𝐿𝑛))) = (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))))
136 fveq2 6858 . . . . . . . . . . 11 (𝑛 = (𝑝𝑘) → (Λ‘𝑛) = (Λ‘(𝑝𝑘)))
137 id 22 . . . . . . . . . . 11 (𝑛 = (𝑝𝑘) → 𝑛 = (𝑝𝑘))
138136, 137oveq12d 7405 . . . . . . . . . 10 (𝑛 = (𝑝𝑘) → ((Λ‘𝑛) / 𝑛) = ((Λ‘(𝑝𝑘)) / (𝑝𝑘)))
139135, 138oveq12d 7405 . . . . . . . . 9 (𝑛 = (𝑝𝑘) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) = ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
140 rpre 12960 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
141140ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
14238adantlr 715 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
143 simprr 772 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → (Λ‘𝑛) = 0)
144143oveq1d 7402 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → ((Λ‘𝑛) / 𝑛) = (0 / 𝑛))
1456ad2antrl 728 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → 𝑛 ∈ ℕ)
146145nncnd 12202 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → 𝑛 ∈ ℂ)
147145nnne0d 12236 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → 𝑛 ≠ 0)
148146, 147div0d 11957 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → (0 / 𝑛) = 0)
149144, 148eqtrd 2764 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → ((Λ‘𝑛) / 𝑛) = 0)
150149oveq2d 7403 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) = ((1 − ( 1 ‘(𝐿𝑛))) · 0))
15147ad2ant2r 747 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → (1 − ( 1 ‘(𝐿𝑛))) ∈ ℂ)
152151mul01d 11373 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → ((1 − ( 1 ‘(𝐿𝑛))) · 0) = 0)
153150, 152eqtrd 2764 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) = 0)
154139, 141, 142, 153fsumvma2 27125 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) = Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
155127a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ⊆ ((0[,]𝑥) ∩ ℙ))
156 fzfid 13938 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ∈ Fin)
15724ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 1 :(Base‘𝑍)⟶ℝ)
15830ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝐿:ℤ⟶(Base‘𝑍))
15970ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑝 ∈ ℕ)
160 elfznn 13514 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) → 𝑘 ∈ ℕ)
161160ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑘 ∈ ℕ)
162161nnnn0d 12503 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑘 ∈ ℕ0)
163159, 162nnexpcld 14210 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝑝𝑘) ∈ ℕ)
164163nnzd 12556 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝑝𝑘) ∈ ℤ)
165158, 164ffvelcdmd 7057 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝐿‘(𝑝𝑘)) ∈ (Base‘𝑍))
166157, 165ffvelcdmd 7057 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ( 1 ‘(𝐿‘(𝑝𝑘))) ∈ ℝ)
167 resubcl 11486 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ∈ ℝ) → (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) ∈ ℝ)
16818, 166, 167sylancr 587 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) ∈ ℝ)
169 vmacl 27028 . . . . . . . . . . . . . . . 16 ((𝑝𝑘) ∈ ℕ → (Λ‘(𝑝𝑘)) ∈ ℝ)
170163, 169syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (Λ‘(𝑝𝑘)) ∈ ℝ)
171170, 163nndivred 12240 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) ∈ ℝ)
172168, 171remulcld 11204 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℝ)
173172anassrs 467 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℝ)
174173recnd 11202 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℂ)
175156, 174fsumcl 15699 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℂ)
176129, 175sylan2 593 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℂ)
177 breq1 5110 . . . . . . . . . . . 12 (𝑞 = 𝑝 → (𝑞𝑁𝑝𝑁))
178177notbid 318 . . . . . . . . . . 11 (𝑞 = 𝑝 → (¬ 𝑞𝑁 ↔ ¬ 𝑝𝑁))
179 notrab 4285 . . . . . . . . . . 11 (((0[,]𝑥) ∩ ℙ) ∖ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) = {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ ¬ 𝑞𝑁}
180178, 179elrab2 3662 . . . . . . . . . 10 (𝑝 ∈ (((0[,]𝑥) ∩ ℙ) ∖ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) ↔ (𝑝 ∈ ((0[,]𝑥) ∩ ℙ) ∧ ¬ 𝑝𝑁))
181123sseli 3942 . . . . . . . . . . 11 (𝑝 ∈ ((0[,]𝑥) ∩ ℙ) → 𝑝 ∈ ℙ)
18223ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑁 ∈ ℕ)
183 simplrr 777 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ¬ 𝑝𝑁)
184 simplrl 776 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑝 ∈ ℙ)
185182nnzd 12556 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑁 ∈ ℤ)
186 coprm 16681 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑝𝑁 ↔ (𝑝 gcd 𝑁) = 1))
187184, 185, 186syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (¬ 𝑝𝑁 ↔ (𝑝 gcd 𝑁) = 1))
188183, 187mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (𝑝 gcd 𝑁) = 1)
189 prmz 16645 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
190184, 189syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑝 ∈ ℤ)
191160adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑘 ∈ ℕ)
192191nnnn0d 12503 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑘 ∈ ℕ0)
193 rpexp1i 16693 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → ((𝑝 gcd 𝑁) = 1 → ((𝑝𝑘) gcd 𝑁) = 1))
194190, 185, 192, 193syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((𝑝 gcd 𝑁) = 1 → ((𝑝𝑘) gcd 𝑁) = 1))
195188, 194mpd 15 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((𝑝𝑘) gcd 𝑁) = 1)
196182nnnn0d 12503 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑁 ∈ ℕ0)
197164anassrs 467 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (𝑝𝑘) ∈ ℤ)
198197adantlrr 721 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (𝑝𝑘) ∈ ℤ)
19920, 85, 27znunit 21473 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0 ∧ (𝑝𝑘) ∈ ℤ) → ((𝐿‘(𝑝𝑘)) ∈ (Unit‘𝑍) ↔ ((𝑝𝑘) gcd 𝑁) = 1))
200196, 198, 199syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((𝐿‘(𝑝𝑘)) ∈ (Unit‘𝑍) ↔ ((𝑝𝑘) gcd 𝑁) = 1))
201195, 200mpbird 257 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (𝐿‘(𝑝𝑘)) ∈ (Unit‘𝑍))
20219, 20, 21, 85, 182, 201dchr1 27168 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ( 1 ‘(𝐿‘(𝑝𝑘))) = 1)
203202oveq2d 7403 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) = (1 − 1))
204 1m1e0 12258 . . . . . . . . . . . . . . . 16 (1 − 1) = 0
205203, 204eqtrdi 2780 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) = 0)
206205oveq1d 7402 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = (0 · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
207171recnd 11202 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) ∈ ℂ)
208207anassrs 467 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) ∈ ℂ)
209208adantlrr 721 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) ∈ ℂ)
210209mul02d 11372 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (0 · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = 0)
211206, 210eqtrd 2764 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = 0)
212211sumeq2dv 15668 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))0)
213 fzfid 13938 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) → (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ∈ Fin)
214213olcd 874 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) → ((1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ⊆ (ℤ‘1) ∨ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ∈ Fin))
215 sumz 15688 . . . . . . . . . . . . 13 (((1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ⊆ (ℤ‘1) ∨ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ∈ Fin) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))0 = 0)
216214, 215syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))0 = 0)
217212, 216eqtrd 2764 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = 0)
218181, 217sylanr1 682 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ((0[,]𝑥) ∩ ℙ) ∧ ¬ 𝑝𝑁)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = 0)
219180, 218sylan2b 594 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ (((0[,]𝑥) ∩ ℙ) ∖ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁})) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = 0)
220 ppifi 27016 . . . . . . . . . 10 (𝑥 ∈ ℝ → ((0[,]𝑥) ∩ ℙ) ∈ Fin)
221141, 220syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((0[,]𝑥) ∩ ℙ) ∈ Fin)
222155, 176, 219, 221fsumss 15691 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
223154, 222eqtr4d 2767 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) = Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
224156, 173fsumrecl 15700 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℝ)
225129, 224sylan2 593 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℝ)
22673adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (log‘𝑝) ∈ ℝ)
22770adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℕ)
228227nnrecred 12237 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / 𝑝) ∈ ℝ)
229227nnrpd 12993 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℝ+)
230229rpreccld 13005 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / 𝑝) ∈ ℝ+)
231 simplrl 776 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑥 ∈ ℝ+)
232231relogcld 26532 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (log‘𝑥) ∈ ℝ)
233227nnred 12201 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℝ)
23474adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ (ℤ‘2))
235 eluz2gt1 12879 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
236234, 235syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 1 < 𝑝)
237233, 236rplogcld 26538 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (log‘𝑝) ∈ ℝ+)
238232, 237rerpdivcld 13026 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑥) / (log‘𝑝)) ∈ ℝ)
239238flcld 13760 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (⌊‘((log‘𝑥) / (log‘𝑝))) ∈ ℤ)
240239peano2zd 12641 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((⌊‘((log‘𝑥) / (log‘𝑝))) + 1) ∈ ℤ)
241230, 240rpexpcld 14212 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)) ∈ ℝ+)
242241rpred 12995 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)) ∈ ℝ)
243228, 242resubcld 11606 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) ∈ ℝ)
244234, 76syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 − 1) ∈ ℕ)
245244nnrpd 12993 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 − 1) ∈ ℝ+)
246245, 229rpdivcld 13012 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((𝑝 − 1) / 𝑝) ∈ ℝ+)
247243, 246rerpdivcld 13026 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)) ∈ ℝ)
248226, 247remulcld 11204 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))) ∈ ℝ)
249170recnd 11202 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (Λ‘(𝑝𝑘)) ∈ ℂ)
250163nncnd 12202 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝑝𝑘) ∈ ℂ)
251163nnne0d 12236 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝑝𝑘) ≠ 0)
252249, 250, 251divrecd 11961 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) = ((Λ‘(𝑝𝑘)) · (1 / (𝑝𝑘))))
253 simprl 770 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑝 ∈ ℙ)
254 vmappw 27026 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
255253, 161, 254syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
256159nncnd 12202 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑝 ∈ ℂ)
257159nnne0d 12236 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑝 ≠ 0)
258 elfzelz 13485 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) → 𝑘 ∈ ℤ)
259258ad2antll 729 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑘 ∈ ℤ)
260256, 257, 259exprecd 14119 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 / 𝑝)↑𝑘) = (1 / (𝑝𝑘)))
261260eqcomd 2735 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 / (𝑝𝑘)) = ((1 / 𝑝)↑𝑘))
262255, 261oveq12d 7405 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((Λ‘(𝑝𝑘)) · (1 / (𝑝𝑘))) = ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
263252, 262eqtrd 2764 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) = ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
264263, 171eqeltrrd 2829 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((log‘𝑝) · ((1 / 𝑝)↑𝑘)) ∈ ℝ)
265264anassrs 467 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((log‘𝑝) · ((1 / 𝑝)↑𝑘)) ∈ ℝ)
266 1red 11175 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 1 ∈ ℝ)
267 vmage0 27031 . . . . . . . . . . . . . . . . 17 ((𝑝𝑘) ∈ ℕ → 0 ≤ (Λ‘(𝑝𝑘)))
268163, 267syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 0 ≤ (Λ‘(𝑝𝑘)))
269163nnred 12201 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝑝𝑘) ∈ ℝ)
270163nngt0d 12235 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 0 < (𝑝𝑘))
271 divge0 12052 . . . . . . . . . . . . . . . 16 ((((Λ‘(𝑝𝑘)) ∈ ℝ ∧ 0 ≤ (Λ‘(𝑝𝑘))) ∧ ((𝑝𝑘) ∈ ℝ ∧ 0 < (𝑝𝑘))) → 0 ≤ ((Λ‘(𝑝𝑘)) / (𝑝𝑘)))
272170, 268, 269, 270, 271syl22anc 838 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 0 ≤ ((Λ‘(𝑝𝑘)) / (𝑝𝑘)))
27383leidi 11712 . . . . . . . . . . . . . . . . . 18 0 ≤ 0
274 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) = 0) → ( 1 ‘(𝐿‘(𝑝𝑘))) = 0)
275273, 274breqtrrid 5145 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) = 0) → 0 ≤ ( 1 ‘(𝐿‘(𝑝𝑘))))
27623ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ≠ 0) → 𝑁 ∈ ℕ)
27791ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 1𝐷)
27819, 20, 87, 22, 85, 277, 165dchrn0 27161 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (( 1 ‘(𝐿‘(𝑝𝑘))) ≠ 0 ↔ (𝐿‘(𝑝𝑘)) ∈ (Unit‘𝑍)))
279278biimpa 476 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ≠ 0) → (𝐿‘(𝑝𝑘)) ∈ (Unit‘𝑍))
28019, 20, 21, 85, 276, 279dchr1 27168 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ≠ 0) → ( 1 ‘(𝐿‘(𝑝𝑘))) = 1)
281103, 280breqtrrid 5145 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ≠ 0) → 0 ≤ ( 1 ‘(𝐿‘(𝑝𝑘))))
282275, 281pm2.61dane 3012 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 0 ≤ ( 1 ‘(𝐿‘(𝑝𝑘))))
283 subge02 11694 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ∈ ℝ) → (0 ≤ ( 1 ‘(𝐿‘(𝑝𝑘))) ↔ (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) ≤ 1))
28418, 166, 283sylancr 587 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (0 ≤ ( 1 ‘(𝐿‘(𝑝𝑘))) ↔ (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) ≤ 1))
285282, 284mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) ≤ 1)
286168, 266, 171, 272, 285lemul1ad 12122 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ (1 · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
287207mullidd 11192 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = ((Λ‘(𝑝𝑘)) / (𝑝𝑘)))
288287, 263eqtrd 2764 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
289286, 288breqtrd 5133 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
290289anassrs 467 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
291156, 173, 265, 290fsumle 15765 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
292226recnd 11202 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (log‘𝑝) ∈ ℂ)
293159nnrecred 12237 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 / 𝑝) ∈ ℝ)
294293, 162reexpcld 14128 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 / 𝑝)↑𝑘) ∈ ℝ)
295294recnd 11202 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 / 𝑝)↑𝑘) ∈ ℂ)
296295anassrs 467 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 / 𝑝)↑𝑘) ∈ ℂ)
297156, 292, 296fsummulc2 15750 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) · Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 / 𝑝)↑𝑘)) = Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
298 fzval3 13695 . . . . . . . . . . . . . . . 16 ((⌊‘((log‘𝑥) / (log‘𝑝))) ∈ ℤ → (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) = (1..^((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)))
299239, 298syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) = (1..^((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)))
300299sumeq1d 15666 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 / 𝑝)↑𝑘) = Σ𝑘 ∈ (1..^((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))((1 / 𝑝)↑𝑘))
301228recnd 11202 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / 𝑝) ∈ ℂ)
302227nngt0d 12235 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 0 < 𝑝)
303 recgt1 12079 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℝ ∧ 0 < 𝑝) → (1 < 𝑝 ↔ (1 / 𝑝) < 1))
304233, 302, 303syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 < 𝑝 ↔ (1 / 𝑝) < 1))
305236, 304mpbid 232 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / 𝑝) < 1)
306228, 305ltned 11310 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / 𝑝) ≠ 1)
307 1nn0 12458 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
308307a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 1 ∈ ℕ0)
309 log1 26494 . . . . . . . . . . . . . . . . . . . . 21 (log‘1) = 0
310 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
311 1rp 12955 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ+
312 simprl 770 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
313 logleb 26512 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
314311, 312, 313sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
315310, 314mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
316309, 315eqbrtrrid 5143 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
317316adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 0 ≤ (log‘𝑥))
318232, 237, 317divge0d 13035 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 0 ≤ ((log‘𝑥) / (log‘𝑝)))
319 flge0nn0 13782 . . . . . . . . . . . . . . . . . 18 ((((log‘𝑥) / (log‘𝑝)) ∈ ℝ ∧ 0 ≤ ((log‘𝑥) / (log‘𝑝))) → (⌊‘((log‘𝑥) / (log‘𝑝))) ∈ ℕ0)
320238, 318, 319syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (⌊‘((log‘𝑥) / (log‘𝑝))) ∈ ℕ0)
321 nn0p1nn 12481 . . . . . . . . . . . . . . . . 17 ((⌊‘((log‘𝑥) / (log‘𝑝))) ∈ ℕ0 → ((⌊‘((log‘𝑥) / (log‘𝑝))) + 1) ∈ ℕ)
322320, 321syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((⌊‘((log‘𝑥) / (log‘𝑝))) + 1) ∈ ℕ)
323 nnuz 12836 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
324322, 323eleqtrdi 2838 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((⌊‘((log‘𝑥) / (log‘𝑝))) + 1) ∈ (ℤ‘1))
325301, 306, 308, 324geoserg 15832 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1..^((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))((1 / 𝑝)↑𝑘) = ((((1 / 𝑝)↑1) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝))))
326301exp1d 14106 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝)↑1) = (1 / 𝑝))
327326oveq1d 7402 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (((1 / 𝑝)↑1) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) = ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))))
328227nncnd 12202 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℂ)
329 1cnd 11169 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 1 ∈ ℂ)
330229rpcnne0d 13004 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0))
331 divsubdir 11876 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0)) → ((𝑝 − 1) / 𝑝) = ((𝑝 / 𝑝) − (1 / 𝑝)))
332328, 329, 330, 331syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((𝑝 − 1) / 𝑝) = ((𝑝 / 𝑝) − (1 / 𝑝)))
333 divid 11868 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) → (𝑝 / 𝑝) = 1)
334330, 333syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 / 𝑝) = 1)
335334oveq1d 7402 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((𝑝 / 𝑝) − (1 / 𝑝)) = (1 − (1 / 𝑝)))
336332, 335eqtr2d 2765 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 − (1 / 𝑝)) = ((𝑝 − 1) / 𝑝))
337327, 336oveq12d 7405 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((((1 / 𝑝)↑1) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝))) = (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)))
338300, 325, 3373eqtrd 2768 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 / 𝑝)↑𝑘) = (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)))
339338oveq2d 7403 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) · Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 / 𝑝)↑𝑘)) = ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))))
340297, 339eqtr3d 2766 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((log‘𝑝) · ((1 / 𝑝)↑𝑘)) = ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))))
341291, 340breqtrd 5133 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))))
342241rpge0d 12999 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 0 ≤ ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)))
343228, 242subge02d 11770 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (0 ≤ ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)) ↔ ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) ≤ (1 / 𝑝)))
344342, 343mpbid 232 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) ≤ (1 / 𝑝))
345245rpcnne0d 13004 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((𝑝 − 1) ∈ ℂ ∧ (𝑝 − 1) ≠ 0))
346 dmdcan 11892 . . . . . . . . . . . . . . 15 ((((𝑝 − 1) ∈ ℂ ∧ (𝑝 − 1) ≠ 0) ∧ (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) ∧ 1 ∈ ℂ) → (((𝑝 − 1) / 𝑝) · (1 / (𝑝 − 1))) = (1 / 𝑝))
347345, 330, 329, 346syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (((𝑝 − 1) / 𝑝) · (1 / (𝑝 − 1))) = (1 / 𝑝))
348344, 347breqtrrd 5135 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) ≤ (((𝑝 − 1) / 𝑝) · (1 / (𝑝 − 1))))
349244nnrecred 12237 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / (𝑝 − 1)) ∈ ℝ)
350243, 349, 246ledivmuld 13048 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)) ≤ (1 / (𝑝 − 1)) ↔ ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) ≤ (((𝑝 − 1) / 𝑝) · (1 / (𝑝 − 1)))))
351348, 350mpbird 257 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)) ≤ (1 / (𝑝 − 1)))
352247, 349, 237lemul2d 13039 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)) ≤ (1 / (𝑝 − 1)) ↔ ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))) ≤ ((log‘𝑝) · (1 / (𝑝 − 1)))))
353351, 352mpbid 232 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))) ≤ ((log‘𝑝) · (1 / (𝑝 − 1))))
354244nncnd 12202 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 − 1) ∈ ℂ)
355244nnne0d 12236 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 − 1) ≠ 0)
356292, 354, 355divrecd 11961 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) / (𝑝 − 1)) = ((log‘𝑝) · (1 / (𝑝 − 1))))
357353, 356breqtrrd 5135 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))) ≤ ((log‘𝑝) / (𝑝 − 1)))
358224, 248, 130, 341, 357letrd 11331 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ ((log‘𝑝) / (𝑝 − 1)))
359129, 358sylan2 593 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ ((log‘𝑝) / (𝑝 − 1)))
360126, 225, 131, 359fsumle 15765 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)))
361223, 360eqbrtrd 5129 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ≤ Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)))
36279adantlr 715 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁}) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
363237, 245rpdivcld 13012 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ+)
364363rpge0d 12999 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 0 ≤ ((log‘𝑝) / (𝑝 − 1)))
36569, 364sylan2 593 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁}) → 0 ≤ ((log‘𝑝) / (𝑝 − 1)))
366122, 362, 365, 125fsumless 15762 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)) ≤ Σ𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)))
367102, 132, 133, 361, 366letrd 11331 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ≤ Σ𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)))
368121, 367eqbrtrd 5129 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) ≤ Σ𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)))
36965, 40, 66, 80, 368elo1d 15502 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) ∈ 𝑂(1))
370 o1sub 15582 . . 3 (((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))) ∈ 𝑂(1))
37164, 369, 370sylancr 587 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))) ∈ 𝑂(1))
37263, 371eqeltrrd 2829 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  {crab 3405  Vcvv 3447  cdif 3911  cin 3913  wss 3914   class class class wbr 5107  cmpt 5188  wf 6507  ontowfo 6509  cfv 6511  (class class class)co 7387  f cof 7651  Fincfn 8918  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cz 12529  cuz 12793  +crp 12951  [,]cicc 13309  ...cfz 13468  ..^cfzo 13615  cfl 13752  cexp 14026  abscabs 15200  𝑂(1)co1 15452  Σcsu 15652  cdvds 16222   gcd cgcd 16464  cprime 16641  Basecbs 17179  0gc0g 17402  Grpcgrp 18865  Abelcabl 19711  Unitcui 20264  ℤRHomczrh 21409  ℤ/nczn 21412  logclog 26463  Λcvma 27002  DChrcdchr 27143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-o1 15456  df-lo1 15457  df-sum 15653  df-ef 16033  df-e 16034  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-qus 17472  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-nsg 19056  df-eqg 19057  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-2idl 21160  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-zn 21416  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466  df-cht 27007  df-vma 27008  df-chp 27009  df-ppi 27010  df-dchr 27144
This theorem is referenced by:  rpvmasum2  27423
  Copyright terms: Public domain W3C validator