MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpvmasumlem Structured version   Visualization version   GIF version

Theorem rpvmasumlem 27448
Description: Lemma for rpvmasum 27487. Calculate the "trivial case" estimate Σ𝑛𝑥( 1 (𝑛)Λ(𝑛) / 𝑛) = log𝑥 + 𝑂(1), where 1 (𝑥) is the principal Dirichlet character. Equation 9.4.7 of [Shapiro], p. 376. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
Assertion
Ref Expression
rpvmasumlem (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑛, 1   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥   𝑛,𝑍,𝑥   𝐷,𝑛,𝑥   𝑛,𝐿,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑛)

Proof of Theorem rpvmasumlem
Dummy variables 𝑘 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 11218 . . . . . 6 ℝ ∈ V
2 rpssre 13014 . . . . . 6 + ⊆ ℝ
31, 2ssexi 5292 . . . . 5 + ∈ V
43a1i 11 . . . 4 (𝜑 → ℝ+ ∈ V)
5 fzfid 13989 . . . . . . 7 (𝜑 → (1...(⌊‘𝑥)) ∈ Fin)
6 elfznn 13568 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
76adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
8 vmacl 27078 . . . . . . . . . 10 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
97, 8syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
109, 7nndivred 12292 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
1110recnd 11261 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
125, 11fsumcl 15747 . . . . . 6 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ)
1312adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ)
14 relogcl 26534 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
1514adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
1615recnd 11261 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
1713, 16subcld 11592 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) ∈ ℂ)
18 1re 11233 . . . . . . . . 9 1 ∈ ℝ
19 rpvmasum.g . . . . . . . . . . . 12 𝐺 = (DChr‘𝑁)
20 rpvmasum.z . . . . . . . . . . . 12 𝑍 = (ℤ/nℤ‘𝑁)
21 rpvmasum.1 . . . . . . . . . . . 12 1 = (0g𝐺)
22 eqid 2735 . . . . . . . . . . . 12 (Base‘𝑍) = (Base‘𝑍)
23 rpvmasum.a . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
2419, 20, 21, 22, 23dchr1re 27224 . . . . . . . . . . 11 (𝜑1 :(Base‘𝑍)⟶ℝ)
2524adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → 1 :(Base‘𝑍)⟶ℝ)
2623nnnn0d 12560 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
27 rpvmasum.l . . . . . . . . . . . . 13 𝐿 = (ℤRHom‘𝑍)
2820, 22, 27znzrhfo 21506 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
29 fof 6789 . . . . . . . . . . . 12 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
3026, 28, 293syl 18 . . . . . . . . . . 11 (𝜑𝐿:ℤ⟶(Base‘𝑍))
31 elfzelz 13539 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℤ)
32 ffvelcdm 7070 . . . . . . . . . . 11 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑛 ∈ ℤ) → (𝐿𝑛) ∈ (Base‘𝑍))
3330, 31, 32syl2an 596 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (𝐿𝑛) ∈ (Base‘𝑍))
3425, 33ffvelcdmd 7074 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ( 1 ‘(𝐿𝑛)) ∈ ℝ)
35 resubcl 11545 . . . . . . . . 9 ((1 ∈ ℝ ∧ ( 1 ‘(𝐿𝑛)) ∈ ℝ) → (1 − ( 1 ‘(𝐿𝑛))) ∈ ℝ)
3618, 34, 35sylancr 587 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (1 − ( 1 ‘(𝐿𝑛))) ∈ ℝ)
3736, 10remulcld 11263 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℝ)
3837recnd 11261 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
395, 38fsumcl 15747 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
4039adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
41 eqidd 2736 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))))
42 eqidd 2736 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))))
434, 17, 40, 41, 42offval2 7689 . . 3 (𝜑 → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))))
4413, 16, 40sub32d 11624 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) − (log‘𝑥)))
455, 11, 38fsumsub 15802 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))))
46 1cnd 11228 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
4736recnd 11261 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (1 − ( 1 ‘(𝐿𝑛))) ∈ ℂ)
4846, 47, 11subdird 11692 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − (1 − ( 1 ‘(𝐿𝑛)))) · ((Λ‘𝑛) / 𝑛)) = ((1 · ((Λ‘𝑛) / 𝑛)) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))))
49 ax-1cn 11185 . . . . . . . . . . . 12 1 ∈ ℂ
5034recnd 11261 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ( 1 ‘(𝐿𝑛)) ∈ ℂ)
51 nncan 11510 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ ( 1 ‘(𝐿𝑛)) ∈ ℂ) → (1 − (1 − ( 1 ‘(𝐿𝑛)))) = ( 1 ‘(𝐿𝑛)))
5249, 50, 51sylancr 587 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (1 − (1 − ( 1 ‘(𝐿𝑛)))) = ( 1 ‘(𝐿𝑛)))
5352oveq1d 7418 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − (1 − ( 1 ‘(𝐿𝑛)))) · ((Λ‘𝑛) / 𝑛)) = (( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
5411mullidd 11251 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (1 · ((Λ‘𝑛) / 𝑛)) = ((Λ‘𝑛) / 𝑛))
5554oveq1d 7418 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((1 · ((Λ‘𝑛) / 𝑛)) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = (((Λ‘𝑛) / 𝑛) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))))
5648, 53, 553eqtr3rd 2779 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = (( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
5756sumeq2dv 15716 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
5845, 57eqtr3d 2772 . . . . . . 7 (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
5958oveq1d 7418 . . . . . 6 (𝜑 → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) − (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
6059adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) − (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
6144, 60eqtrd 2770 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
6261mpteq2dva 5214 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))))
6343, 62eqtrd 2770 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))))
64 vmadivsum 27443 . . 3 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)
652a1i 11 . . . 4 (𝜑 → ℝ+ ⊆ ℝ)
66 1red 11234 . . . 4 (𝜑 → 1 ∈ ℝ)
67 prmdvdsfi 27067 . . . . . 6 (𝑁 ∈ ℕ → {𝑞 ∈ ℙ ∣ 𝑞𝑁} ∈ Fin)
6823, 67syl 17 . . . . 5 (𝜑 → {𝑞 ∈ ℙ ∣ 𝑞𝑁} ∈ Fin)
69 elrabi 3666 . . . . . 6 (𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} → 𝑝 ∈ ℙ)
70 prmnn 16691 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
7170adantl 481 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℕ)
7271nnrpd 13047 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℝ+)
7372relogcld 26582 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (log‘𝑝) ∈ ℝ)
74 prmuz2 16713 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
7574adantl 481 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ (ℤ‘2))
76 uz2m1nn 12937 . . . . . . . 8 (𝑝 ∈ (ℤ‘2) → (𝑝 − 1) ∈ ℕ)
7775, 76syl 17 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (𝑝 − 1) ∈ ℕ)
7873, 77nndivred 12292 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
7969, 78sylan2 593 . . . . 5 ((𝜑𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁}) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
8068, 79fsumrecl 15748 . . . 4 (𝜑 → Σ𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
81 fzfid 13989 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
82 simpr 484 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) = 0) → ( 1 ‘(𝐿𝑛)) = 0)
83 0re 11235 . . . . . . . . . . 11 0 ∈ ℝ
8482, 83eqeltrdi 2842 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) = 0) → ( 1 ‘(𝐿𝑛)) ∈ ℝ)
85 eqid 2735 . . . . . . . . . . . 12 (Unit‘𝑍) = (Unit‘𝑍)
8623ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) ≠ 0) → 𝑁 ∈ ℕ)
87 rpvmasum.d . . . . . . . . . . . . . 14 𝐷 = (Base‘𝐺)
8819dchrabl 27215 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
89 ablgrp 19764 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
9087, 21grpidcl 18946 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → 1𝐷)
9123, 88, 89, 904syl 19 . . . . . . . . . . . . . . 15 (𝜑1𝐷)
9291ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1𝐷)
9333adantlr 715 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐿𝑛) ∈ (Base‘𝑍))
9419, 20, 87, 22, 85, 92, 93dchrn0 27211 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (( 1 ‘(𝐿𝑛)) ≠ 0 ↔ (𝐿𝑛) ∈ (Unit‘𝑍)))
9594biimpa 476 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) ≠ 0) → (𝐿𝑛) ∈ (Unit‘𝑍))
9619, 20, 21, 85, 86, 95dchr1 27218 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) ≠ 0) → ( 1 ‘(𝐿𝑛)) = 1)
9796, 18eqeltrdi 2842 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) ≠ 0) → ( 1 ‘(𝐿𝑛)) ∈ ℝ)
9884, 97pm2.61dane 3019 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ( 1 ‘(𝐿𝑛)) ∈ ℝ)
9918, 98, 35sylancr 587 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 − ( 1 ‘(𝐿𝑛))) ∈ ℝ)
10010adantlr 715 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
10199, 100remulcld 11263 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℝ)
10281, 101fsumrecl 15748 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℝ)
103 0le1 11758 . . . . . . . . . . 11 0 ≤ 1
10482, 103eqbrtrdi 5158 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) = 0) → ( 1 ‘(𝐿𝑛)) ≤ 1)
10518leidi 11769 . . . . . . . . . . 11 1 ≤ 1
10696, 105eqbrtrdi 5158 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) ≠ 0) → ( 1 ‘(𝐿𝑛)) ≤ 1)
107104, 106pm2.61dane 3019 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ( 1 ‘(𝐿𝑛)) ≤ 1)
108 subge0 11748 . . . . . . . . . 10 ((1 ∈ ℝ ∧ ( 1 ‘(𝐿𝑛)) ∈ ℝ) → (0 ≤ (1 − ( 1 ‘(𝐿𝑛))) ↔ ( 1 ‘(𝐿𝑛)) ≤ 1))
10918, 98, 108sylancr 587 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (0 ≤ (1 − ( 1 ‘(𝐿𝑛))) ↔ ( 1 ‘(𝐿𝑛)) ≤ 1))
110107, 109mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (1 − ( 1 ‘(𝐿𝑛))))
1119adantlr 715 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
1126adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
113 vmage0 27081 . . . . . . . . . 10 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
114112, 113syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑛))
115112nnred 12253 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
116112nngt0d 12287 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 < 𝑛)
117 divge0 12109 . . . . . . . . 9 ((((Λ‘𝑛) ∈ ℝ ∧ 0 ≤ (Λ‘𝑛)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → 0 ≤ ((Λ‘𝑛) / 𝑛))
118111, 114, 115, 116, 117syl22anc 838 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((Λ‘𝑛) / 𝑛))
11999, 100, 110, 118mulge0d 11812 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))
12081, 101, 119fsumge0 15809 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))
121102, 120absidd 15439 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))
12268adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → {𝑞 ∈ ℙ ∣ 𝑞𝑁} ∈ Fin)
123 inss2 4213 . . . . . . . . 9 ((0[,]𝑥) ∩ ℙ) ⊆ ℙ
124 rabss2 4053 . . . . . . . . 9 (((0[,]𝑥) ∩ ℙ) ⊆ ℙ → {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ⊆ {𝑞 ∈ ℙ ∣ 𝑞𝑁})
125123, 124mp1i 13 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ⊆ {𝑞 ∈ ℙ ∣ 𝑞𝑁})
126122, 125ssfid 9271 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ∈ Fin)
127 ssrab2 4055 . . . . . . . . . 10 {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ⊆ ((0[,]𝑥) ∩ ℙ)
128127, 123sstri 3968 . . . . . . . . 9 {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ⊆ ℙ
129128sseli 3954 . . . . . . . 8 (𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} → 𝑝 ∈ ℙ)
13078adantlr 715 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
131129, 130sylan2 593 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
132126, 131fsumrecl 15748 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
13380adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
134 2fveq3 6880 . . . . . . . . . . 11 (𝑛 = (𝑝𝑘) → ( 1 ‘(𝐿𝑛)) = ( 1 ‘(𝐿‘(𝑝𝑘))))
135134oveq2d 7419 . . . . . . . . . 10 (𝑛 = (𝑝𝑘) → (1 − ( 1 ‘(𝐿𝑛))) = (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))))
136 fveq2 6875 . . . . . . . . . . 11 (𝑛 = (𝑝𝑘) → (Λ‘𝑛) = (Λ‘(𝑝𝑘)))
137 id 22 . . . . . . . . . . 11 (𝑛 = (𝑝𝑘) → 𝑛 = (𝑝𝑘))
138136, 137oveq12d 7421 . . . . . . . . . 10 (𝑛 = (𝑝𝑘) → ((Λ‘𝑛) / 𝑛) = ((Λ‘(𝑝𝑘)) / (𝑝𝑘)))
139135, 138oveq12d 7421 . . . . . . . . 9 (𝑛 = (𝑝𝑘) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) = ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
140 rpre 13015 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
141140ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
14238adantlr 715 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
143 simprr 772 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → (Λ‘𝑛) = 0)
144143oveq1d 7418 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → ((Λ‘𝑛) / 𝑛) = (0 / 𝑛))
1456ad2antrl 728 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → 𝑛 ∈ ℕ)
146145nncnd 12254 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → 𝑛 ∈ ℂ)
147145nnne0d 12288 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → 𝑛 ≠ 0)
148146, 147div0d 12014 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → (0 / 𝑛) = 0)
149144, 148eqtrd 2770 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → ((Λ‘𝑛) / 𝑛) = 0)
150149oveq2d 7419 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) = ((1 − ( 1 ‘(𝐿𝑛))) · 0))
15147ad2ant2r 747 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → (1 − ( 1 ‘(𝐿𝑛))) ∈ ℂ)
152151mul01d 11432 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → ((1 − ( 1 ‘(𝐿𝑛))) · 0) = 0)
153150, 152eqtrd 2770 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) = 0)
154139, 141, 142, 153fsumvma2 27175 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) = Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
155127a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ⊆ ((0[,]𝑥) ∩ ℙ))
156 fzfid 13989 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ∈ Fin)
15724ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 1 :(Base‘𝑍)⟶ℝ)
15830ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝐿:ℤ⟶(Base‘𝑍))
15970ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑝 ∈ ℕ)
160 elfznn 13568 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) → 𝑘 ∈ ℕ)
161160ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑘 ∈ ℕ)
162161nnnn0d 12560 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑘 ∈ ℕ0)
163159, 162nnexpcld 14261 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝑝𝑘) ∈ ℕ)
164163nnzd 12613 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝑝𝑘) ∈ ℤ)
165158, 164ffvelcdmd 7074 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝐿‘(𝑝𝑘)) ∈ (Base‘𝑍))
166157, 165ffvelcdmd 7074 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ( 1 ‘(𝐿‘(𝑝𝑘))) ∈ ℝ)
167 resubcl 11545 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ∈ ℝ) → (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) ∈ ℝ)
16818, 166, 167sylancr 587 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) ∈ ℝ)
169 vmacl 27078 . . . . . . . . . . . . . . . 16 ((𝑝𝑘) ∈ ℕ → (Λ‘(𝑝𝑘)) ∈ ℝ)
170163, 169syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (Λ‘(𝑝𝑘)) ∈ ℝ)
171170, 163nndivred 12292 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) ∈ ℝ)
172168, 171remulcld 11263 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℝ)
173172anassrs 467 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℝ)
174173recnd 11261 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℂ)
175156, 174fsumcl 15747 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℂ)
176129, 175sylan2 593 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℂ)
177 breq1 5122 . . . . . . . . . . . 12 (𝑞 = 𝑝 → (𝑞𝑁𝑝𝑁))
178177notbid 318 . . . . . . . . . . 11 (𝑞 = 𝑝 → (¬ 𝑞𝑁 ↔ ¬ 𝑝𝑁))
179 notrab 4297 . . . . . . . . . . 11 (((0[,]𝑥) ∩ ℙ) ∖ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) = {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ ¬ 𝑞𝑁}
180178, 179elrab2 3674 . . . . . . . . . 10 (𝑝 ∈ (((0[,]𝑥) ∩ ℙ) ∖ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) ↔ (𝑝 ∈ ((0[,]𝑥) ∩ ℙ) ∧ ¬ 𝑝𝑁))
181123sseli 3954 . . . . . . . . . . 11 (𝑝 ∈ ((0[,]𝑥) ∩ ℙ) → 𝑝 ∈ ℙ)
18223ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑁 ∈ ℕ)
183 simplrr 777 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ¬ 𝑝𝑁)
184 simplrl 776 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑝 ∈ ℙ)
185182nnzd 12613 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑁 ∈ ℤ)
186 coprm 16728 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑝𝑁 ↔ (𝑝 gcd 𝑁) = 1))
187184, 185, 186syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (¬ 𝑝𝑁 ↔ (𝑝 gcd 𝑁) = 1))
188183, 187mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (𝑝 gcd 𝑁) = 1)
189 prmz 16692 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
190184, 189syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑝 ∈ ℤ)
191160adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑘 ∈ ℕ)
192191nnnn0d 12560 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑘 ∈ ℕ0)
193 rpexp1i 16740 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → ((𝑝 gcd 𝑁) = 1 → ((𝑝𝑘) gcd 𝑁) = 1))
194190, 185, 192, 193syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((𝑝 gcd 𝑁) = 1 → ((𝑝𝑘) gcd 𝑁) = 1))
195188, 194mpd 15 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((𝑝𝑘) gcd 𝑁) = 1)
196182nnnn0d 12560 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑁 ∈ ℕ0)
197164anassrs 467 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (𝑝𝑘) ∈ ℤ)
198197adantlrr 721 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (𝑝𝑘) ∈ ℤ)
19920, 85, 27znunit 21522 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0 ∧ (𝑝𝑘) ∈ ℤ) → ((𝐿‘(𝑝𝑘)) ∈ (Unit‘𝑍) ↔ ((𝑝𝑘) gcd 𝑁) = 1))
200196, 198, 199syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((𝐿‘(𝑝𝑘)) ∈ (Unit‘𝑍) ↔ ((𝑝𝑘) gcd 𝑁) = 1))
201195, 200mpbird 257 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (𝐿‘(𝑝𝑘)) ∈ (Unit‘𝑍))
20219, 20, 21, 85, 182, 201dchr1 27218 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ( 1 ‘(𝐿‘(𝑝𝑘))) = 1)
203202oveq2d 7419 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) = (1 − 1))
204 1m1e0 12310 . . . . . . . . . . . . . . . 16 (1 − 1) = 0
205203, 204eqtrdi 2786 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) = 0)
206205oveq1d 7418 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = (0 · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
207171recnd 11261 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) ∈ ℂ)
208207anassrs 467 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) ∈ ℂ)
209208adantlrr 721 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) ∈ ℂ)
210209mul02d 11431 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (0 · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = 0)
211206, 210eqtrd 2770 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = 0)
212211sumeq2dv 15716 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))0)
213 fzfid 13989 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) → (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ∈ Fin)
214213olcd 874 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) → ((1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ⊆ (ℤ‘1) ∨ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ∈ Fin))
215 sumz 15736 . . . . . . . . . . . . 13 (((1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ⊆ (ℤ‘1) ∨ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ∈ Fin) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))0 = 0)
216214, 215syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))0 = 0)
217212, 216eqtrd 2770 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = 0)
218181, 217sylanr1 682 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ((0[,]𝑥) ∩ ℙ) ∧ ¬ 𝑝𝑁)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = 0)
219180, 218sylan2b 594 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ (((0[,]𝑥) ∩ ℙ) ∖ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁})) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = 0)
220 ppifi 27066 . . . . . . . . . 10 (𝑥 ∈ ℝ → ((0[,]𝑥) ∩ ℙ) ∈ Fin)
221141, 220syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((0[,]𝑥) ∩ ℙ) ∈ Fin)
222155, 176, 219, 221fsumss 15739 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
223154, 222eqtr4d 2773 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) = Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
224156, 173fsumrecl 15748 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℝ)
225129, 224sylan2 593 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℝ)
22673adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (log‘𝑝) ∈ ℝ)
22770adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℕ)
228227nnrecred 12289 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / 𝑝) ∈ ℝ)
229227nnrpd 13047 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℝ+)
230229rpreccld 13059 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / 𝑝) ∈ ℝ+)
231 simplrl 776 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑥 ∈ ℝ+)
232231relogcld 26582 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (log‘𝑥) ∈ ℝ)
233227nnred 12253 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℝ)
23474adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ (ℤ‘2))
235 eluz2gt1 12934 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
236234, 235syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 1 < 𝑝)
237233, 236rplogcld 26588 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (log‘𝑝) ∈ ℝ+)
238232, 237rerpdivcld 13080 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑥) / (log‘𝑝)) ∈ ℝ)
239238flcld 13813 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (⌊‘((log‘𝑥) / (log‘𝑝))) ∈ ℤ)
240239peano2zd 12698 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((⌊‘((log‘𝑥) / (log‘𝑝))) + 1) ∈ ℤ)
241230, 240rpexpcld 14263 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)) ∈ ℝ+)
242241rpred 13049 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)) ∈ ℝ)
243228, 242resubcld 11663 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) ∈ ℝ)
244234, 76syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 − 1) ∈ ℕ)
245244nnrpd 13047 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 − 1) ∈ ℝ+)
246245, 229rpdivcld 13066 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((𝑝 − 1) / 𝑝) ∈ ℝ+)
247243, 246rerpdivcld 13080 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)) ∈ ℝ)
248226, 247remulcld 11263 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))) ∈ ℝ)
249170recnd 11261 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (Λ‘(𝑝𝑘)) ∈ ℂ)
250163nncnd 12254 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝑝𝑘) ∈ ℂ)
251163nnne0d 12288 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝑝𝑘) ≠ 0)
252249, 250, 251divrecd 12018 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) = ((Λ‘(𝑝𝑘)) · (1 / (𝑝𝑘))))
253 simprl 770 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑝 ∈ ℙ)
254 vmappw 27076 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
255253, 161, 254syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
256159nncnd 12254 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑝 ∈ ℂ)
257159nnne0d 12288 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑝 ≠ 0)
258 elfzelz 13539 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) → 𝑘 ∈ ℤ)
259258ad2antll 729 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑘 ∈ ℤ)
260256, 257, 259exprecd 14170 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 / 𝑝)↑𝑘) = (1 / (𝑝𝑘)))
261260eqcomd 2741 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 / (𝑝𝑘)) = ((1 / 𝑝)↑𝑘))
262255, 261oveq12d 7421 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((Λ‘(𝑝𝑘)) · (1 / (𝑝𝑘))) = ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
263252, 262eqtrd 2770 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) = ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
264263, 171eqeltrrd 2835 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((log‘𝑝) · ((1 / 𝑝)↑𝑘)) ∈ ℝ)
265264anassrs 467 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((log‘𝑝) · ((1 / 𝑝)↑𝑘)) ∈ ℝ)
266 1red 11234 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 1 ∈ ℝ)
267 vmage0 27081 . . . . . . . . . . . . . . . . 17 ((𝑝𝑘) ∈ ℕ → 0 ≤ (Λ‘(𝑝𝑘)))
268163, 267syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 0 ≤ (Λ‘(𝑝𝑘)))
269163nnred 12253 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝑝𝑘) ∈ ℝ)
270163nngt0d 12287 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 0 < (𝑝𝑘))
271 divge0 12109 . . . . . . . . . . . . . . . 16 ((((Λ‘(𝑝𝑘)) ∈ ℝ ∧ 0 ≤ (Λ‘(𝑝𝑘))) ∧ ((𝑝𝑘) ∈ ℝ ∧ 0 < (𝑝𝑘))) → 0 ≤ ((Λ‘(𝑝𝑘)) / (𝑝𝑘)))
272170, 268, 269, 270, 271syl22anc 838 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 0 ≤ ((Λ‘(𝑝𝑘)) / (𝑝𝑘)))
27383leidi 11769 . . . . . . . . . . . . . . . . . 18 0 ≤ 0
274 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) = 0) → ( 1 ‘(𝐿‘(𝑝𝑘))) = 0)
275273, 274breqtrrid 5157 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) = 0) → 0 ≤ ( 1 ‘(𝐿‘(𝑝𝑘))))
27623ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ≠ 0) → 𝑁 ∈ ℕ)
27791ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 1𝐷)
27819, 20, 87, 22, 85, 277, 165dchrn0 27211 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (( 1 ‘(𝐿‘(𝑝𝑘))) ≠ 0 ↔ (𝐿‘(𝑝𝑘)) ∈ (Unit‘𝑍)))
279278biimpa 476 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ≠ 0) → (𝐿‘(𝑝𝑘)) ∈ (Unit‘𝑍))
28019, 20, 21, 85, 276, 279dchr1 27218 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ≠ 0) → ( 1 ‘(𝐿‘(𝑝𝑘))) = 1)
281103, 280breqtrrid 5157 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ≠ 0) → 0 ≤ ( 1 ‘(𝐿‘(𝑝𝑘))))
282275, 281pm2.61dane 3019 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 0 ≤ ( 1 ‘(𝐿‘(𝑝𝑘))))
283 subge02 11751 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ∈ ℝ) → (0 ≤ ( 1 ‘(𝐿‘(𝑝𝑘))) ↔ (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) ≤ 1))
28418, 166, 283sylancr 587 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (0 ≤ ( 1 ‘(𝐿‘(𝑝𝑘))) ↔ (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) ≤ 1))
285282, 284mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) ≤ 1)
286168, 266, 171, 272, 285lemul1ad 12179 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ (1 · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
287207mullidd 11251 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = ((Λ‘(𝑝𝑘)) / (𝑝𝑘)))
288287, 263eqtrd 2770 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
289286, 288breqtrd 5145 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
290289anassrs 467 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
291156, 173, 265, 290fsumle 15813 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
292226recnd 11261 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (log‘𝑝) ∈ ℂ)
293159nnrecred 12289 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 / 𝑝) ∈ ℝ)
294293, 162reexpcld 14179 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 / 𝑝)↑𝑘) ∈ ℝ)
295294recnd 11261 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 / 𝑝)↑𝑘) ∈ ℂ)
296295anassrs 467 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 / 𝑝)↑𝑘) ∈ ℂ)
297156, 292, 296fsummulc2 15798 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) · Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 / 𝑝)↑𝑘)) = Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
298 fzval3 13748 . . . . . . . . . . . . . . . 16 ((⌊‘((log‘𝑥) / (log‘𝑝))) ∈ ℤ → (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) = (1..^((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)))
299239, 298syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) = (1..^((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)))
300299sumeq1d 15714 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 / 𝑝)↑𝑘) = Σ𝑘 ∈ (1..^((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))((1 / 𝑝)↑𝑘))
301228recnd 11261 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / 𝑝) ∈ ℂ)
302227nngt0d 12287 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 0 < 𝑝)
303 recgt1 12136 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℝ ∧ 0 < 𝑝) → (1 < 𝑝 ↔ (1 / 𝑝) < 1))
304233, 302, 303syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 < 𝑝 ↔ (1 / 𝑝) < 1))
305236, 304mpbid 232 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / 𝑝) < 1)
306228, 305ltned 11369 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / 𝑝) ≠ 1)
307 1nn0 12515 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
308307a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 1 ∈ ℕ0)
309 log1 26544 . . . . . . . . . . . . . . . . . . . . 21 (log‘1) = 0
310 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
311 1rp 13010 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ+
312 simprl 770 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
313 logleb 26562 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
314311, 312, 313sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
315310, 314mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
316309, 315eqbrtrrid 5155 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
317316adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 0 ≤ (log‘𝑥))
318232, 237, 317divge0d 13089 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 0 ≤ ((log‘𝑥) / (log‘𝑝)))
319 flge0nn0 13835 . . . . . . . . . . . . . . . . . 18 ((((log‘𝑥) / (log‘𝑝)) ∈ ℝ ∧ 0 ≤ ((log‘𝑥) / (log‘𝑝))) → (⌊‘((log‘𝑥) / (log‘𝑝))) ∈ ℕ0)
320238, 318, 319syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (⌊‘((log‘𝑥) / (log‘𝑝))) ∈ ℕ0)
321 nn0p1nn 12538 . . . . . . . . . . . . . . . . 17 ((⌊‘((log‘𝑥) / (log‘𝑝))) ∈ ℕ0 → ((⌊‘((log‘𝑥) / (log‘𝑝))) + 1) ∈ ℕ)
322320, 321syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((⌊‘((log‘𝑥) / (log‘𝑝))) + 1) ∈ ℕ)
323 nnuz 12893 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
324322, 323eleqtrdi 2844 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((⌊‘((log‘𝑥) / (log‘𝑝))) + 1) ∈ (ℤ‘1))
325301, 306, 308, 324geoserg 15880 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1..^((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))((1 / 𝑝)↑𝑘) = ((((1 / 𝑝)↑1) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝))))
326301exp1d 14157 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝)↑1) = (1 / 𝑝))
327326oveq1d 7418 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (((1 / 𝑝)↑1) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) = ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))))
328227nncnd 12254 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℂ)
329 1cnd 11228 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 1 ∈ ℂ)
330229rpcnne0d 13058 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0))
331 divsubdir 11933 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0)) → ((𝑝 − 1) / 𝑝) = ((𝑝 / 𝑝) − (1 / 𝑝)))
332328, 329, 330, 331syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((𝑝 − 1) / 𝑝) = ((𝑝 / 𝑝) − (1 / 𝑝)))
333 divid 11925 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) → (𝑝 / 𝑝) = 1)
334330, 333syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 / 𝑝) = 1)
335334oveq1d 7418 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((𝑝 / 𝑝) − (1 / 𝑝)) = (1 − (1 / 𝑝)))
336332, 335eqtr2d 2771 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 − (1 / 𝑝)) = ((𝑝 − 1) / 𝑝))
337327, 336oveq12d 7421 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((((1 / 𝑝)↑1) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝))) = (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)))
338300, 325, 3373eqtrd 2774 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 / 𝑝)↑𝑘) = (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)))
339338oveq2d 7419 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) · Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 / 𝑝)↑𝑘)) = ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))))
340297, 339eqtr3d 2772 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((log‘𝑝) · ((1 / 𝑝)↑𝑘)) = ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))))
341291, 340breqtrd 5145 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))))
342241rpge0d 13053 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 0 ≤ ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)))
343228, 242subge02d 11827 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (0 ≤ ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)) ↔ ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) ≤ (1 / 𝑝)))
344342, 343mpbid 232 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) ≤ (1 / 𝑝))
345245rpcnne0d 13058 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((𝑝 − 1) ∈ ℂ ∧ (𝑝 − 1) ≠ 0))
346 dmdcan 11949 . . . . . . . . . . . . . . 15 ((((𝑝 − 1) ∈ ℂ ∧ (𝑝 − 1) ≠ 0) ∧ (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) ∧ 1 ∈ ℂ) → (((𝑝 − 1) / 𝑝) · (1 / (𝑝 − 1))) = (1 / 𝑝))
347345, 330, 329, 346syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (((𝑝 − 1) / 𝑝) · (1 / (𝑝 − 1))) = (1 / 𝑝))
348344, 347breqtrrd 5147 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) ≤ (((𝑝 − 1) / 𝑝) · (1 / (𝑝 − 1))))
349244nnrecred 12289 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / (𝑝 − 1)) ∈ ℝ)
350243, 349, 246ledivmuld 13102 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)) ≤ (1 / (𝑝 − 1)) ↔ ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) ≤ (((𝑝 − 1) / 𝑝) · (1 / (𝑝 − 1)))))
351348, 350mpbird 257 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)) ≤ (1 / (𝑝 − 1)))
352247, 349, 237lemul2d 13093 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)) ≤ (1 / (𝑝 − 1)) ↔ ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))) ≤ ((log‘𝑝) · (1 / (𝑝 − 1)))))
353351, 352mpbid 232 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))) ≤ ((log‘𝑝) · (1 / (𝑝 − 1))))
354244nncnd 12254 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 − 1) ∈ ℂ)
355244nnne0d 12288 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 − 1) ≠ 0)
356292, 354, 355divrecd 12018 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) / (𝑝 − 1)) = ((log‘𝑝) · (1 / (𝑝 − 1))))
357353, 356breqtrrd 5147 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))) ≤ ((log‘𝑝) / (𝑝 − 1)))
358224, 248, 130, 341, 357letrd 11390 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ ((log‘𝑝) / (𝑝 − 1)))
359129, 358sylan2 593 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ ((log‘𝑝) / (𝑝 − 1)))
360126, 225, 131, 359fsumle 15813 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)))
361223, 360eqbrtrd 5141 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ≤ Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)))
36279adantlr 715 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁}) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
363237, 245rpdivcld 13066 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ+)
364363rpge0d 13053 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 0 ≤ ((log‘𝑝) / (𝑝 − 1)))
36569, 364sylan2 593 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁}) → 0 ≤ ((log‘𝑝) / (𝑝 − 1)))
366122, 362, 365, 125fsumless 15810 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)) ≤ Σ𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)))
367102, 132, 133, 361, 366letrd 11390 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ≤ Σ𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)))
368121, 367eqbrtrd 5141 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) ≤ Σ𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)))
36965, 40, 66, 80, 368elo1d 15550 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) ∈ 𝑂(1))
370 o1sub 15630 . . 3 (((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))) ∈ 𝑂(1))
37164, 369, 370sylancr 587 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))) ∈ 𝑂(1))
37263, 371eqeltrrd 2835 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  {crab 3415  Vcvv 3459  cdif 3923  cin 3925  wss 3926   class class class wbr 5119  cmpt 5201  wf 6526  ontowfo 6528  cfv 6530  (class class class)co 7403  f cof 7667  Fincfn 8957  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132   < clt 11267  cle 11268  cmin 11464   / cdiv 11892  cn 12238  2c2 12293  0cn0 12499  cz 12586  cuz 12850  +crp 13006  [,]cicc 13363  ...cfz 13522  ..^cfzo 13669  cfl 13805  cexp 14077  abscabs 15251  𝑂(1)co1 15500  Σcsu 15700  cdvds 16270   gcd cgcd 16511  cprime 16688  Basecbs 17226  0gc0g 17451  Grpcgrp 18914  Abelcabl 19760  Unitcui 20313  ℤRHomczrh 21458  ℤ/nczn 21461  logclog 26513  Λcvma 27052  DChrcdchr 27193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206  ax-mulf 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8717  df-ec 8719  df-qs 8723  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-fac 14290  df-bc 14319  df-hash 14347  df-shft 15084  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-clim 15502  df-rlim 15503  df-o1 15504  df-lo1 15505  df-sum 15701  df-ef 16081  df-e 16082  df-sin 16083  df-cos 16084  df-pi 16086  df-dvds 16271  df-gcd 16512  df-prm 16689  df-pc 16855  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-qus 17521  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-nsg 19105  df-eqg 19106  df-ghm 19194  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-cring 20194  df-oppr 20295  df-dvdsr 20315  df-unit 20316  df-invr 20346  df-rhm 20430  df-subrng 20504  df-subrg 20528  df-lmod 20817  df-lss 20887  df-lsp 20927  df-sra 21129  df-rgmod 21130  df-lidl 21167  df-rsp 21168  df-2idl 21209  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-zring 21406  df-zrh 21462  df-zn 21465  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-lp 23072  df-perf 23073  df-cn 23163  df-cnp 23164  df-haus 23251  df-cmp 23323  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cncf 24820  df-limc 25817  df-dv 25818  df-log 26515  df-cxp 26516  df-cht 27057  df-vma 27058  df-chp 27059  df-ppi 27060  df-dchr 27194
This theorem is referenced by:  rpvmasum2  27473
  Copyright terms: Public domain W3C validator