Step | Hyp | Ref
| Expression |
1 | | reex 11197 |
. . . . . 6
β’ β
β V |
2 | | rpssre 12977 |
. . . . . 6
β’
β+ β β |
3 | 1, 2 | ssexi 5321 |
. . . . 5
β’
β+ β V |
4 | 3 | a1i 11 |
. . . 4
β’ (π β β+ β
V) |
5 | | fzfid 13934 |
. . . . . . 7
β’ (π β (1...(ββπ₯)) β Fin) |
6 | | elfznn 13526 |
. . . . . . . . . . 11
β’ (π β
(1...(ββπ₯))
β π β
β) |
7 | 6 | adantl 482 |
. . . . . . . . . 10
β’ ((π β§ π β (1...(ββπ₯))) β π β β) |
8 | | vmacl 26611 |
. . . . . . . . . 10
β’ (π β β β
(Ξβπ) β
β) |
9 | 7, 8 | syl 17 |
. . . . . . . . 9
β’ ((π β§ π β (1...(ββπ₯))) β (Ξβπ) β
β) |
10 | 9, 7 | nndivred 12262 |
. . . . . . . 8
β’ ((π β§ π β (1...(ββπ₯))) β
((Ξβπ) / π) β
β) |
11 | 10 | recnd 11238 |
. . . . . . 7
β’ ((π β§ π β (1...(ββπ₯))) β
((Ξβπ) / π) β
β) |
12 | 5, 11 | fsumcl 15675 |
. . . . . 6
β’ (π β Ξ£π β (1...(ββπ₯))((Ξβπ) / π) β β) |
13 | 12 | adantr 481 |
. . . . 5
β’ ((π β§ π₯ β β+) β
Ξ£π β
(1...(ββπ₯))((Ξβπ) / π) β β) |
14 | | relogcl 26075 |
. . . . . . 7
β’ (π₯ β β+
β (logβπ₯) β
β) |
15 | 14 | adantl 482 |
. . . . . 6
β’ ((π β§ π₯ β β+) β
(logβπ₯) β
β) |
16 | 15 | recnd 11238 |
. . . . 5
β’ ((π β§ π₯ β β+) β
(logβπ₯) β
β) |
17 | 13, 16 | subcld 11567 |
. . . 4
β’ ((π β§ π₯ β β+) β
(Ξ£π β
(1...(ββπ₯))((Ξβπ) / π) β (logβπ₯)) β β) |
18 | | 1re 11210 |
. . . . . . . . 9
β’ 1 β
β |
19 | | rpvmasum.g |
. . . . . . . . . . . 12
β’ πΊ = (DChrβπ) |
20 | | rpvmasum.z |
. . . . . . . . . . . 12
β’ π =
(β€/nβ€βπ) |
21 | | rpvmasum.1 |
. . . . . . . . . . . 12
β’ 1 =
(0gβπΊ) |
22 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(Baseβπ) =
(Baseβπ) |
23 | | rpvmasum.a |
. . . . . . . . . . . 12
β’ (π β π β β) |
24 | 19, 20, 21, 22, 23 | dchr1re 26755 |
. . . . . . . . . . 11
β’ (π β 1 :(Baseβπ)βΆβ) |
25 | 24 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ π β (1...(ββπ₯))) β 1 :(Baseβπ)βΆβ) |
26 | 23 | nnnn0d 12528 |
. . . . . . . . . . . 12
β’ (π β π β
β0) |
27 | | rpvmasum.l |
. . . . . . . . . . . . 13
β’ πΏ = (β€RHomβπ) |
28 | 20, 22, 27 | znzrhfo 21094 |
. . . . . . . . . . . 12
β’ (π β β0
β πΏ:β€βontoβ(Baseβπ)) |
29 | | fof 6802 |
. . . . . . . . . . . 12
β’ (πΏ:β€βontoβ(Baseβπ) β πΏ:β€βΆ(Baseβπ)) |
30 | 26, 28, 29 | 3syl 18 |
. . . . . . . . . . 11
β’ (π β πΏ:β€βΆ(Baseβπ)) |
31 | | elfzelz 13497 |
. . . . . . . . . . 11
β’ (π β
(1...(ββπ₯))
β π β
β€) |
32 | | ffvelcdm 7080 |
. . . . . . . . . . 11
β’ ((πΏ:β€βΆ(Baseβπ) β§ π β β€) β (πΏβπ) β (Baseβπ)) |
33 | 30, 31, 32 | syl2an 596 |
. . . . . . . . . 10
β’ ((π β§ π β (1...(ββπ₯))) β (πΏβπ) β (Baseβπ)) |
34 | 25, 33 | ffvelcdmd 7084 |
. . . . . . . . 9
β’ ((π β§ π β (1...(ββπ₯))) β ( 1 β(πΏβπ)) β β) |
35 | | resubcl 11520 |
. . . . . . . . 9
β’ ((1
β β β§ ( 1 β(πΏβπ)) β β) β (1 β ( 1 β(πΏβπ))) β β) |
36 | 18, 34, 35 | sylancr 587 |
. . . . . . . 8
β’ ((π β§ π β (1...(ββπ₯))) β (1 β ( 1 β(πΏβπ))) β β) |
37 | 36, 10 | remulcld 11240 |
. . . . . . 7
β’ ((π β§ π β (1...(ββπ₯))) β ((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)) β β) |
38 | 37 | recnd 11238 |
. . . . . 6
β’ ((π β§ π β (1...(ββπ₯))) β ((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)) β β) |
39 | 5, 38 | fsumcl 15675 |
. . . . 5
β’ (π β Ξ£π β (1...(ββπ₯))((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)) β β) |
40 | 39 | adantr 481 |
. . . 4
β’ ((π β§ π₯ β β+) β
Ξ£π β
(1...(ββπ₯))((1
β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)) β β) |
41 | | eqidd 2733 |
. . . 4
β’ (π β (π₯ β β+ β¦
(Ξ£π β
(1...(ββπ₯))((Ξβπ) / π) β (logβπ₯))) = (π₯ β β+ β¦
(Ξ£π β
(1...(ββπ₯))((Ξβπ) / π) β (logβπ₯)))) |
42 | | eqidd 2733 |
. . . 4
β’ (π β (π₯ β β+ β¦
Ξ£π β
(1...(ββπ₯))((1
β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π))) = (π₯ β β+ β¦
Ξ£π β
(1...(ββπ₯))((1
β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)))) |
43 | 4, 17, 40, 41, 42 | offval2 7686 |
. . 3
β’ (π β ((π₯ β β+ β¦
(Ξ£π β
(1...(ββπ₯))((Ξβπ) / π) β (logβπ₯))) βf β (π₯ β β+
β¦ Ξ£π β
(1...(ββπ₯))((1
β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)))) = (π₯ β β+ β¦
((Ξ£π β
(1...(ββπ₯))((Ξβπ) / π) β (logβπ₯)) β Ξ£π β (1...(ββπ₯))((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π))))) |
44 | 13, 16, 40 | sub32d 11599 |
. . . . 5
β’ ((π β§ π₯ β β+) β
((Ξ£π β
(1...(ββπ₯))((Ξβπ) / π) β (logβπ₯)) β Ξ£π β (1...(ββπ₯))((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π))) = ((Ξ£π β (1...(ββπ₯))((Ξβπ) / π) β Ξ£π β (1...(ββπ₯))((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π))) β (logβπ₯))) |
45 | 5, 11, 38 | fsumsub 15730 |
. . . . . . . 8
β’ (π β Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) β ((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π))) = (Ξ£π β (1...(ββπ₯))((Ξβπ) / π) β Ξ£π β (1...(ββπ₯))((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)))) |
46 | | 1cnd 11205 |
. . . . . . . . . . 11
β’ ((π β§ π β (1...(ββπ₯))) β 1 β
β) |
47 | 36 | recnd 11238 |
. . . . . . . . . . 11
β’ ((π β§ π β (1...(ββπ₯))) β (1 β ( 1 β(πΏβπ))) β β) |
48 | 46, 47, 11 | subdird 11667 |
. . . . . . . . . 10
β’ ((π β§ π β (1...(ββπ₯))) β ((1 β (1
β ( 1 β(πΏβπ)))) Β· ((Ξβπ) / π)) = ((1 Β· ((Ξβπ) / π)) β ((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)))) |
49 | | ax-1cn 11164 |
. . . . . . . . . . . 12
β’ 1 β
β |
50 | 34 | recnd 11238 |
. . . . . . . . . . . 12
β’ ((π β§ π β (1...(ββπ₯))) β ( 1 β(πΏβπ)) β β) |
51 | | nncan 11485 |
. . . . . . . . . . . 12
β’ ((1
β β β§ ( 1 β(πΏβπ)) β β) β (1 β (1
β ( 1 β(πΏβπ)))) = ( 1 β(πΏβπ))) |
52 | 49, 50, 51 | sylancr 587 |
. . . . . . . . . . 11
β’ ((π β§ π β (1...(ββπ₯))) β (1 β (1 β
( 1
β(πΏβπ)))) = ( 1 β(πΏβπ))) |
53 | 52 | oveq1d 7420 |
. . . . . . . . . 10
β’ ((π β§ π β (1...(ββπ₯))) β ((1 β (1
β ( 1 β(πΏβπ)))) Β· ((Ξβπ) / π)) = (( 1 β(πΏβπ)) Β· ((Ξβπ) / π))) |
54 | 11 | mullidd 11228 |
. . . . . . . . . . 11
β’ ((π β§ π β (1...(ββπ₯))) β (1 Β·
((Ξβπ) / π)) = ((Ξβπ) / π)) |
55 | 54 | oveq1d 7420 |
. . . . . . . . . 10
β’ ((π β§ π β (1...(ββπ₯))) β ((1 Β·
((Ξβπ) / π)) β ((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π))) = (((Ξβπ) / π) β ((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)))) |
56 | 48, 53, 55 | 3eqtr3rd 2781 |
. . . . . . . . 9
β’ ((π β§ π β (1...(ββπ₯))) β
(((Ξβπ) /
π) β ((1 β (
1
β(πΏβπ))) Β·
((Ξβπ) / π))) = (( 1 β(πΏβπ)) Β· ((Ξβπ) / π))) |
57 | 56 | sumeq2dv 15645 |
. . . . . . . 8
β’ (π β Ξ£π β (1...(ββπ₯))(((Ξβπ) / π) β ((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π))) = Ξ£π β (1...(ββπ₯))(( 1 β(πΏβπ)) Β· ((Ξβπ) / π))) |
58 | 45, 57 | eqtr3d 2774 |
. . . . . . 7
β’ (π β (Ξ£π β (1...(ββπ₯))((Ξβπ) / π) β Ξ£π β (1...(ββπ₯))((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π))) = Ξ£π β (1...(ββπ₯))(( 1 β(πΏβπ)) Β· ((Ξβπ) / π))) |
59 | 58 | oveq1d 7420 |
. . . . . 6
β’ (π β ((Ξ£π β
(1...(ββπ₯))((Ξβπ) / π) β Ξ£π β (1...(ββπ₯))((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π))) β (logβπ₯)) = (Ξ£π β (1...(ββπ₯))(( 1 β(πΏβπ)) Β· ((Ξβπ) / π)) β (logβπ₯))) |
60 | 59 | adantr 481 |
. . . . 5
β’ ((π β§ π₯ β β+) β
((Ξ£π β
(1...(ββπ₯))((Ξβπ) / π) β Ξ£π β (1...(ββπ₯))((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π))) β (logβπ₯)) = (Ξ£π β (1...(ββπ₯))(( 1 β(πΏβπ)) Β· ((Ξβπ) / π)) β (logβπ₯))) |
61 | 44, 60 | eqtrd 2772 |
. . . 4
β’ ((π β§ π₯ β β+) β
((Ξ£π β
(1...(ββπ₯))((Ξβπ) / π) β (logβπ₯)) β Ξ£π β (1...(ββπ₯))((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π))) = (Ξ£π β (1...(ββπ₯))(( 1 β(πΏβπ)) Β· ((Ξβπ) / π)) β (logβπ₯))) |
62 | 61 | mpteq2dva 5247 |
. . 3
β’ (π β (π₯ β β+ β¦
((Ξ£π β
(1...(ββπ₯))((Ξβπ) / π) β (logβπ₯)) β Ξ£π β (1...(ββπ₯))((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)))) = (π₯ β β+ β¦
(Ξ£π β
(1...(ββπ₯))((
1
β(πΏβπ)) Β·
((Ξβπ) / π)) β (logβπ₯)))) |
63 | 43, 62 | eqtrd 2772 |
. 2
β’ (π β ((π₯ β β+ β¦
(Ξ£π β
(1...(ββπ₯))((Ξβπ) / π) β (logβπ₯))) βf β (π₯ β β+
β¦ Ξ£π β
(1...(ββπ₯))((1
β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)))) = (π₯ β β+ β¦
(Ξ£π β
(1...(ββπ₯))((
1
β(πΏβπ)) Β·
((Ξβπ) / π)) β (logβπ₯)))) |
64 | | vmadivsum 26974 |
. . 3
β’ (π₯ β β+
β¦ (Ξ£π β
(1...(ββπ₯))((Ξβπ) / π) β (logβπ₯))) β π(1) |
65 | 2 | a1i 11 |
. . . 4
β’ (π β β+
β β) |
66 | | 1red 11211 |
. . . 4
β’ (π β 1 β
β) |
67 | | prmdvdsfi 26600 |
. . . . . 6
β’ (π β β β {π β β β£ π β₯ π} β Fin) |
68 | 23, 67 | syl 17 |
. . . . 5
β’ (π β {π β β β£ π β₯ π} β Fin) |
69 | | elrabi 3676 |
. . . . . 6
β’ (π β {π β β β£ π β₯ π} β π β β) |
70 | | prmnn 16607 |
. . . . . . . . . 10
β’ (π β β β π β
β) |
71 | 70 | adantl 482 |
. . . . . . . . 9
β’ ((π β§ π β β) β π β β) |
72 | 71 | nnrpd 13010 |
. . . . . . . 8
β’ ((π β§ π β β) β π β β+) |
73 | 72 | relogcld 26122 |
. . . . . . 7
β’ ((π β§ π β β) β (logβπ) β
β) |
74 | | prmuz2 16629 |
. . . . . . . . 9
β’ (π β β β π β
(β€β₯β2)) |
75 | 74 | adantl 482 |
. . . . . . . 8
β’ ((π β§ π β β) β π β
(β€β₯β2)) |
76 | | uz2m1nn 12903 |
. . . . . . . 8
β’ (π β
(β€β₯β2) β (π β 1) β β) |
77 | 75, 76 | syl 17 |
. . . . . . 7
β’ ((π β§ π β β) β (π β 1) β β) |
78 | 73, 77 | nndivred 12262 |
. . . . . 6
β’ ((π β§ π β β) β ((logβπ) / (π β 1)) β β) |
79 | 69, 78 | sylan2 593 |
. . . . 5
β’ ((π β§ π β {π β β β£ π β₯ π}) β ((logβπ) / (π β 1)) β β) |
80 | 68, 79 | fsumrecl 15676 |
. . . 4
β’ (π β Ξ£π β {π β β β£ π β₯ π} ((logβπ) / (π β 1)) β β) |
81 | | fzfid 13934 |
. . . . . . 7
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β
(1...(ββπ₯))
β Fin) |
82 | | simpr 485 |
. . . . . . . . . . 11
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β§ ( 1
β(πΏβπ)) = 0) β ( 1 β(πΏβπ)) = 0) |
83 | | 0re 11212 |
. . . . . . . . . . 11
β’ 0 β
β |
84 | 82, 83 | eqeltrdi 2841 |
. . . . . . . . . 10
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β§ ( 1
β(πΏβπ)) = 0) β ( 1 β(πΏβπ)) β β) |
85 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(Unitβπ) =
(Unitβπ) |
86 | 23 | ad3antrrr 728 |
. . . . . . . . . . . 12
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β§ ( 1
β(πΏβπ)) β 0) β π β
β) |
87 | | rpvmasum.d |
. . . . . . . . . . . . . 14
β’ π· = (BaseβπΊ) |
88 | 19 | dchrabl 26746 |
. . . . . . . . . . . . . . . 16
β’ (π β β β πΊ β Abel) |
89 | | ablgrp 19647 |
. . . . . . . . . . . . . . . 16
β’ (πΊ β Abel β πΊ β Grp) |
90 | 87, 21 | grpidcl 18846 |
. . . . . . . . . . . . . . . 16
β’ (πΊ β Grp β 1 β π·) |
91 | 23, 88, 89, 90 | 4syl 19 |
. . . . . . . . . . . . . . 15
β’ (π β 1 β π·) |
92 | 91 | ad2antrr 724 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β 1
β π·) |
93 | 33 | adantlr 713 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β (πΏβπ) β (Baseβπ)) |
94 | 19, 20, 87, 22, 85, 92, 93 | dchrn0 26742 |
. . . . . . . . . . . . 13
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β (( 1 β(πΏβπ)) β 0 β (πΏβπ) β (Unitβπ))) |
95 | 94 | biimpa 477 |
. . . . . . . . . . . 12
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β§ ( 1
β(πΏβπ)) β 0) β (πΏβπ) β (Unitβπ)) |
96 | 19, 20, 21, 85, 86, 95 | dchr1 26749 |
. . . . . . . . . . 11
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β§ ( 1
β(πΏβπ)) β 0) β ( 1 β(πΏβπ)) = 1) |
97 | 96, 18 | eqeltrdi 2841 |
. . . . . . . . . 10
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β§ ( 1
β(πΏβπ)) β 0) β ( 1 β(πΏβπ)) β β) |
98 | 84, 97 | pm2.61dane 3029 |
. . . . . . . . 9
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β ( 1 β(πΏβπ)) β β) |
99 | 18, 98, 35 | sylancr 587 |
. . . . . . . 8
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β (1 β ( 1 β(πΏβπ))) β β) |
100 | 10 | adantlr 713 |
. . . . . . . 8
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β ((Ξβπ)
/ π) β
β) |
101 | 99, 100 | remulcld 11240 |
. . . . . . 7
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β ((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)) β β) |
102 | 81, 101 | fsumrecl 15676 |
. . . . . 6
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β Ξ£π β
(1...(ββπ₯))((1
β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)) β β) |
103 | | 0le1 11733 |
. . . . . . . . . . 11
β’ 0 β€
1 |
104 | 82, 103 | eqbrtrdi 5186 |
. . . . . . . . . 10
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β§ ( 1
β(πΏβπ)) = 0) β ( 1 β(πΏβπ)) β€ 1) |
105 | 18 | leidi 11744 |
. . . . . . . . . . 11
β’ 1 β€
1 |
106 | 96, 105 | eqbrtrdi 5186 |
. . . . . . . . . 10
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β§ ( 1
β(πΏβπ)) β 0) β ( 1 β(πΏβπ)) β€ 1) |
107 | 104, 106 | pm2.61dane 3029 |
. . . . . . . . 9
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β ( 1 β(πΏβπ)) β€ 1) |
108 | | subge0 11723 |
. . . . . . . . . 10
β’ ((1
β β β§ ( 1 β(πΏβπ)) β β) β (0 β€ (1 β
( 1
β(πΏβπ))) β ( 1 β(πΏβπ)) β€ 1)) |
109 | 18, 98, 108 | sylancr 587 |
. . . . . . . . 9
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β (0 β€ (1 β ( 1 β(πΏβπ))) β ( 1 β(πΏβπ)) β€ 1)) |
110 | 107, 109 | mpbird 256 |
. . . . . . . 8
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β 0 β€ (1 β ( 1 β(πΏβπ)))) |
111 | 9 | adantlr 713 |
. . . . . . . . 9
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β (Ξβπ)
β β) |
112 | 6 | adantl 482 |
. . . . . . . . . 10
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β π β
β) |
113 | | vmage0 26614 |
. . . . . . . . . 10
β’ (π β β β 0 β€
(Ξβπ)) |
114 | 112, 113 | syl 17 |
. . . . . . . . 9
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β 0 β€ (Ξβπ)) |
115 | 112 | nnred 12223 |
. . . . . . . . 9
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β π β
β) |
116 | 112 | nngt0d 12257 |
. . . . . . . . 9
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β 0 < π) |
117 | | divge0 12079 |
. . . . . . . . 9
β’
((((Ξβπ) β β β§ 0 β€
(Ξβπ)) β§
(π β β β§ 0
< π)) β 0 β€
((Ξβπ) / π)) |
118 | 111, 114,
115, 116, 117 | syl22anc 837 |
. . . . . . . 8
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β 0 β€ ((Ξβπ) / π)) |
119 | 99, 100, 110, 118 | mulge0d 11787 |
. . . . . . 7
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β 0 β€ ((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π))) |
120 | 81, 101, 119 | fsumge0 15737 |
. . . . . 6
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β 0 β€
Ξ£π β
(1...(ββπ₯))((1
β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π))) |
121 | 102, 120 | absidd 15365 |
. . . . 5
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β
(absβΞ£π β
(1...(ββπ₯))((1
β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π))) = Ξ£π β (1...(ββπ₯))((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π))) |
122 | 68 | adantr 481 |
. . . . . . . 8
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β {π β β β£ π β₯ π} β Fin) |
123 | | inss2 4228 |
. . . . . . . . 9
β’
((0[,]π₯) β©
β) β β |
124 | | rabss2 4074 |
. . . . . . . . 9
β’
(((0[,]π₯) β©
β) β β β {π β ((0[,]π₯) β© β) β£ π β₯ π} β {π β β β£ π β₯ π}) |
125 | 123, 124 | mp1i 13 |
. . . . . . . 8
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β {π β ((0[,]π₯) β© β) β£ π β₯ π} β {π β β β£ π β₯ π}) |
126 | 122, 125 | ssfid 9263 |
. . . . . . 7
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β {π β ((0[,]π₯) β© β) β£ π β₯ π} β Fin) |
127 | | ssrab2 4076 |
. . . . . . . . . 10
β’ {π β ((0[,]π₯) β© β) β£ π β₯ π} β ((0[,]π₯) β© β) |
128 | 127, 123 | sstri 3990 |
. . . . . . . . 9
β’ {π β ((0[,]π₯) β© β) β£ π β₯ π} β β |
129 | 128 | sseli 3977 |
. . . . . . . 8
β’ (π β {π β ((0[,]π₯) β© β) β£ π β₯ π} β π β β) |
130 | 78 | adantlr 713 |
. . . . . . . 8
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
((logβπ) / (π β 1)) β
β) |
131 | 129, 130 | sylan2 593 |
. . . . . . 7
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β {π β ((0[,]π₯) β© β) β£ π β₯ π}) β ((logβπ) / (π β 1)) β β) |
132 | 126, 131 | fsumrecl 15676 |
. . . . . 6
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β Ξ£π β {π β ((0[,]π₯) β© β) β£ π β₯ π} ((logβπ) / (π β 1)) β β) |
133 | 80 | adantr 481 |
. . . . . 6
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β Ξ£π β {π β β β£ π β₯ π} ((logβπ) / (π β 1)) β β) |
134 | | 2fveq3 6893 |
. . . . . . . . . . 11
β’ (π = (πβπ) β ( 1 β(πΏβπ)) = ( 1 β(πΏβ(πβπ)))) |
135 | 134 | oveq2d 7421 |
. . . . . . . . . 10
β’ (π = (πβπ) β (1 β ( 1 β(πΏβπ))) = (1 β ( 1 β(πΏβ(πβπ))))) |
136 | | fveq2 6888 |
. . . . . . . . . . 11
β’ (π = (πβπ) β (Ξβπ) = (Ξβ(πβπ))) |
137 | | id 22 |
. . . . . . . . . . 11
β’ (π = (πβπ) β π = (πβπ)) |
138 | 136, 137 | oveq12d 7423 |
. . . . . . . . . 10
β’ (π = (πβπ) β ((Ξβπ) / π) = ((Ξβ(πβπ)) / (πβπ))) |
139 | 135, 138 | oveq12d 7423 |
. . . . . . . . 9
β’ (π = (πβπ) β ((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)) = ((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ)))) |
140 | | rpre 12978 |
. . . . . . . . . 10
β’ (π₯ β β+
β π₯ β
β) |
141 | 140 | ad2antrl 726 |
. . . . . . . . 9
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β π₯ β
β) |
142 | 38 | adantlr 713 |
. . . . . . . . 9
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β
(1...(ββπ₯)))
β ((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)) β β) |
143 | | simprr 771 |
. . . . . . . . . . . . 13
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β
(1...(ββπ₯))
β§ (Ξβπ) =
0)) β (Ξβπ) = 0) |
144 | 143 | oveq1d 7420 |
. . . . . . . . . . . 12
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β
(1...(ββπ₯))
β§ (Ξβπ) =
0)) β ((Ξβπ) / π) = (0 / π)) |
145 | 6 | ad2antrl 726 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β
(1...(ββπ₯))
β§ (Ξβπ) =
0)) β π β
β) |
146 | 145 | nncnd 12224 |
. . . . . . . . . . . . 13
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β
(1...(ββπ₯))
β§ (Ξβπ) =
0)) β π β
β) |
147 | 145 | nnne0d 12258 |
. . . . . . . . . . . . 13
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β
(1...(ββπ₯))
β§ (Ξβπ) =
0)) β π β
0) |
148 | 146, 147 | div0d 11985 |
. . . . . . . . . . . 12
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β
(1...(ββπ₯))
β§ (Ξβπ) =
0)) β (0 / π) =
0) |
149 | 144, 148 | eqtrd 2772 |
. . . . . . . . . . 11
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β
(1...(ββπ₯))
β§ (Ξβπ) =
0)) β ((Ξβπ) / π) = 0) |
150 | 149 | oveq2d 7421 |
. . . . . . . . . 10
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β
(1...(ββπ₯))
β§ (Ξβπ) =
0)) β ((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)) = ((1 β ( 1 β(πΏβπ))) Β· 0)) |
151 | 47 | ad2ant2r 745 |
. . . . . . . . . . 11
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β
(1...(ββπ₯))
β§ (Ξβπ) =
0)) β (1 β ( 1 β(πΏβπ))) β β) |
152 | 151 | mul01d 11409 |
. . . . . . . . . 10
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β
(1...(ββπ₯))
β§ (Ξβπ) =
0)) β ((1 β ( 1 β(πΏβπ))) Β· 0) = 0) |
153 | 150, 152 | eqtrd 2772 |
. . . . . . . . 9
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β
(1...(ββπ₯))
β§ (Ξβπ) =
0)) β ((1 β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)) = 0) |
154 | 139, 141,
142, 153 | fsumvma2 26706 |
. . . . . . . 8
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β Ξ£π β
(1...(ββπ₯))((1
β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)) = Ξ£π β ((0[,]π₯) β© β)Ξ£π β (1...(ββ((logβπ₯) / (logβπ))))((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ)))) |
155 | 127 | a1i 11 |
. . . . . . . . 9
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β {π β ((0[,]π₯) β© β) β£ π β₯ π} β ((0[,]π₯) β© β)) |
156 | | fzfid 13934 |
. . . . . . . . . . 11
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
(1...(ββ((logβπ₯) / (logβπ)))) β Fin) |
157 | 24 | ad2antrr 724 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β 1 :(Baseβπ)βΆβ) |
158 | 30 | ad2antrr 724 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β πΏ:β€βΆ(Baseβπ)) |
159 | 70 | ad2antrl 726 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β π β β) |
160 | | elfznn 13526 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β
(1...(ββ((logβπ₯) / (logβπ)))) β π β β) |
161 | 160 | ad2antll 727 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β π β β) |
162 | 161 | nnnn0d 12528 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β π β β0) |
163 | 159, 162 | nnexpcld 14204 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β (πβπ) β β) |
164 | 163 | nnzd 12581 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β (πβπ) β β€) |
165 | 158, 164 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β (πΏβ(πβπ)) β (Baseβπ)) |
166 | 157, 165 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β ( 1 β(πΏβ(πβπ))) β β) |
167 | | resubcl 11520 |
. . . . . . . . . . . . . . 15
β’ ((1
β β β§ ( 1 β(πΏβ(πβπ))) β β) β (1 β ( 1 β(πΏβ(πβπ)))) β β) |
168 | 18, 166, 167 | sylancr 587 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β (1 β ( 1 β(πΏβ(πβπ)))) β β) |
169 | | vmacl 26611 |
. . . . . . . . . . . . . . . 16
β’ ((πβπ) β β β
(Ξβ(πβπ)) β β) |
170 | 163, 169 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β (Ξβ(πβπ)) β β) |
171 | 170, 163 | nndivred 12262 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β ((Ξβ(πβπ)) / (πβπ)) β β) |
172 | 168, 171 | remulcld 11240 |
. . . . . . . . . . . . 13
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β ((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ))) β β) |
173 | 172 | anassrs 468 |
. . . . . . . . . . . 12
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β§ π β
(1...(ββ((logβπ₯) / (logβπ))))) β ((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ))) β β) |
174 | 173 | recnd 11238 |
. . . . . . . . . . 11
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β§ π β
(1...(ββ((logβπ₯) / (logβπ))))) β ((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ))) β β) |
175 | 156, 174 | fsumcl 15675 |
. . . . . . . . . 10
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
Ξ£π β
(1...(ββ((logβπ₯) / (logβπ))))((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ))) β β) |
176 | 129, 175 | sylan2 593 |
. . . . . . . . 9
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β {π β ((0[,]π₯) β© β) β£ π β₯ π}) β Ξ£π β (1...(ββ((logβπ₯) / (logβπ))))((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ))) β β) |
177 | | breq1 5150 |
. . . . . . . . . . . 12
β’ (π = π β (π β₯ π β π β₯ π)) |
178 | 177 | notbid 317 |
. . . . . . . . . . 11
β’ (π = π β (Β¬ π β₯ π β Β¬ π β₯ π)) |
179 | | notrab 4310 |
. . . . . . . . . . 11
β’
(((0[,]π₯) β©
β) β {π β
((0[,]π₯) β© β)
β£ π β₯ π}) = {π β ((0[,]π₯) β© β) β£ Β¬ π β₯ π} |
180 | 178, 179 | elrab2 3685 |
. . . . . . . . . 10
β’ (π β (((0[,]π₯) β© β) β {π β ((0[,]π₯) β© β) β£ π β₯ π}) β (π β ((0[,]π₯) β© β) β§ Β¬ π β₯ π)) |
181 | 123 | sseli 3977 |
. . . . . . . . . . 11
β’ (π β ((0[,]π₯) β© β) β π β β) |
182 | 23 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β§ π β (1...(ββ((logβπ₯) / (logβπ))))) β π β β) |
183 | | simplrr 776 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β§ π β (1...(ββ((logβπ₯) / (logβπ))))) β Β¬ π β₯ π) |
184 | | simplrl 775 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β§ π β (1...(ββ((logβπ₯) / (logβπ))))) β π β β) |
185 | 182 | nnzd 12581 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β§ π β (1...(ββ((logβπ₯) / (logβπ))))) β π β β€) |
186 | | coprm 16644 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β β β§ π β β€) β (Β¬
π β₯ π β (π gcd π) = 1)) |
187 | 184, 185,
186 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β§ π β (1...(ββ((logβπ₯) / (logβπ))))) β (Β¬ π β₯ π β (π gcd π) = 1)) |
188 | 183, 187 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β§ π β (1...(ββ((logβπ₯) / (logβπ))))) β (π gcd π) = 1) |
189 | | prmz 16608 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β β β π β
β€) |
190 | 184, 189 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β§ π β (1...(ββ((logβπ₯) / (logβπ))))) β π β β€) |
191 | 160 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β§ π β (1...(ββ((logβπ₯) / (logβπ))))) β π β β) |
192 | 191 | nnnn0d 12528 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β§ π β (1...(ββ((logβπ₯) / (logβπ))))) β π β β0) |
193 | | rpexp1i 16656 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β β€ β§ π β β€ β§ π β β0)
β ((π gcd π) = 1 β ((πβπ) gcd π) = 1)) |
194 | 190, 185,
192, 193 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β§ π β (1...(ββ((logβπ₯) / (logβπ))))) β ((π gcd π) = 1 β ((πβπ) gcd π) = 1)) |
195 | 188, 194 | mpd 15 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β§ π β (1...(ββ((logβπ₯) / (logβπ))))) β ((πβπ) gcd π) = 1) |
196 | 182 | nnnn0d 12528 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β§ π β (1...(ββ((logβπ₯) / (logβπ))))) β π β
β0) |
197 | 164 | anassrs 468 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β§ π β
(1...(ββ((logβπ₯) / (logβπ))))) β (πβπ) β β€) |
198 | 197 | adantlrr 719 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β§ π β (1...(ββ((logβπ₯) / (logβπ))))) β (πβπ) β β€) |
199 | 20, 85, 27 | znunit 21110 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β β0
β§ (πβπ) β β€) β ((πΏβ(πβπ)) β (Unitβπ) β ((πβπ) gcd π) = 1)) |
200 | 196, 198,
199 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β§ π β (1...(ββ((logβπ₯) / (logβπ))))) β ((πΏβ(πβπ)) β (Unitβπ) β ((πβπ) gcd π) = 1)) |
201 | 195, 200 | mpbird 256 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β§ π β (1...(ββ((logβπ₯) / (logβπ))))) β (πΏβ(πβπ)) β (Unitβπ)) |
202 | 19, 20, 21, 85, 182, 201 | dchr1 26749 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β§ π β (1...(ββ((logβπ₯) / (logβπ))))) β ( 1 β(πΏβ(πβπ))) = 1) |
203 | 202 | oveq2d 7421 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β§ π β (1...(ββ((logβπ₯) / (logβπ))))) β (1 β ( 1 β(πΏβ(πβπ)))) = (1 β 1)) |
204 | | 1m1e0 12280 |
. . . . . . . . . . . . . . . 16
β’ (1
β 1) = 0 |
205 | 203, 204 | eqtrdi 2788 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β§ π β (1...(ββ((logβπ₯) / (logβπ))))) β (1 β ( 1 β(πΏβ(πβπ)))) = 0) |
206 | 205 | oveq1d 7420 |
. . . . . . . . . . . . . 14
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β§ π β (1...(ββ((logβπ₯) / (logβπ))))) β ((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ))) = (0 Β· ((Ξβ(πβπ)) / (πβπ)))) |
207 | 171 | recnd 11238 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β ((Ξβ(πβπ)) / (πβπ)) β β) |
208 | 207 | anassrs 468 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β§ π β
(1...(ββ((logβπ₯) / (logβπ))))) β ((Ξβ(πβπ)) / (πβπ)) β β) |
209 | 208 | adantlrr 719 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β§ π β (1...(ββ((logβπ₯) / (logβπ))))) β
((Ξβ(πβπ)) / (πβπ)) β β) |
210 | 209 | mul02d 11408 |
. . . . . . . . . . . . . 14
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β§ π β (1...(ββ((logβπ₯) / (logβπ))))) β (0 Β·
((Ξβ(πβπ)) / (πβπ))) = 0) |
211 | 206, 210 | eqtrd 2772 |
. . . . . . . . . . . . 13
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β§ π β (1...(ββ((logβπ₯) / (logβπ))))) β ((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ))) = 0) |
212 | 211 | sumeq2dv 15645 |
. . . . . . . . . . . 12
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β Ξ£π β (1...(ββ((logβπ₯) / (logβπ))))((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ))) = Ξ£π β (1...(ββ((logβπ₯) / (logβπ))))0) |
213 | | fzfid 13934 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β
(1...(ββ((logβπ₯) / (logβπ)))) β Fin) |
214 | 213 | olcd 872 |
. . . . . . . . . . . . 13
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β
((1...(ββ((logβπ₯) / (logβπ)))) β (β€β₯β1)
β¨ (1...(ββ((logβπ₯) / (logβπ)))) β Fin)) |
215 | | sumz 15664 |
. . . . . . . . . . . . 13
β’
(((1...(ββ((logβπ₯) / (logβπ)))) β (β€β₯β1)
β¨ (1...(ββ((logβπ₯) / (logβπ)))) β Fin) β Ξ£π β
(1...(ββ((logβπ₯) / (logβπ))))0 = 0) |
216 | 214, 215 | syl 17 |
. . . . . . . . . . . 12
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β Ξ£π β (1...(ββ((logβπ₯) / (logβπ))))0 = 0) |
217 | 212, 216 | eqtrd 2772 |
. . . . . . . . . . 11
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ Β¬
π β₯ π)) β Ξ£π β (1...(ββ((logβπ₯) / (logβπ))))((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ))) = 0) |
218 | 181, 217 | sylanr1 680 |
. . . . . . . . . 10
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β ((0[,]π₯) β© β) β§ Β¬ π β₯ π)) β Ξ£π β (1...(ββ((logβπ₯) / (logβπ))))((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ))) = 0) |
219 | 180, 218 | sylan2b 594 |
. . . . . . . . 9
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β (((0[,]π₯) β© β) β {π β ((0[,]π₯) β© β) β£ π β₯ π})) β Ξ£π β (1...(ββ((logβπ₯) / (logβπ))))((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ))) = 0) |
220 | | ppifi 26599 |
. . . . . . . . . 10
β’ (π₯ β β β
((0[,]π₯) β© β)
β Fin) |
221 | 141, 220 | syl 17 |
. . . . . . . . 9
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β ((0[,]π₯) β© β) β
Fin) |
222 | 155, 176,
219, 221 | fsumss 15667 |
. . . . . . . 8
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β Ξ£π β {π β ((0[,]π₯) β© β) β£ π β₯ π}Ξ£π β (1...(ββ((logβπ₯) / (logβπ))))((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ))) = Ξ£π β ((0[,]π₯) β© β)Ξ£π β (1...(ββ((logβπ₯) / (logβπ))))((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ)))) |
223 | 154, 222 | eqtr4d 2775 |
. . . . . . 7
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β Ξ£π β
(1...(ββπ₯))((1
β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)) = Ξ£π β {π β ((0[,]π₯) β© β) β£ π β₯ π}Ξ£π β (1...(ββ((logβπ₯) / (logβπ))))((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ)))) |
224 | 156, 173 | fsumrecl 15676 |
. . . . . . . . 9
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
Ξ£π β
(1...(ββ((logβπ₯) / (logβπ))))((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ))) β β) |
225 | 129, 224 | sylan2 593 |
. . . . . . . 8
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β {π β ((0[,]π₯) β© β) β£ π β₯ π}) β Ξ£π β (1...(ββ((logβπ₯) / (logβπ))))((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ))) β β) |
226 | 73 | adantlr 713 |
. . . . . . . . . . 11
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
(logβπ) β
β) |
227 | 70 | adantl 482 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β π β
β) |
228 | 227 | nnrecred 12259 |
. . . . . . . . . . . . 13
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β (1 /
π) β
β) |
229 | 227 | nnrpd 13010 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β π β
β+) |
230 | 229 | rpreccld 13022 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β (1 /
π) β
β+) |
231 | | simplrl 775 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β π₯ β
β+) |
232 | 231 | relogcld 26122 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
(logβπ₯) β
β) |
233 | 227 | nnred 12223 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β π β
β) |
234 | 74 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β π β
(β€β₯β2)) |
235 | | eluz2gt1 12900 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β
(β€β₯β2) β 1 < π) |
236 | 234, 235 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β 1 <
π) |
237 | 233, 236 | rplogcld 26128 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
(logβπ) β
β+) |
238 | 232, 237 | rerpdivcld 13043 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
((logβπ₯) /
(logβπ)) β
β) |
239 | 238 | flcld 13759 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
(ββ((logβπ₯) / (logβπ))) β β€) |
240 | 239 | peano2zd 12665 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
((ββ((logβπ₯) / (logβπ))) + 1) β β€) |
241 | 230, 240 | rpexpcld 14206 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β ((1 /
π)β((ββ((logβπ₯) / (logβπ))) + 1)) β
β+) |
242 | 241 | rpred 13012 |
. . . . . . . . . . . . 13
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β ((1 /
π)β((ββ((logβπ₯) / (logβπ))) + 1)) β
β) |
243 | 228, 242 | resubcld 11638 |
. . . . . . . . . . . 12
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β ((1 /
π) β ((1 / π)β((ββ((logβπ₯) / (logβπ))) + 1))) β
β) |
244 | 234, 76 | syl 17 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β (π β 1) β
β) |
245 | 244 | nnrpd 13010 |
. . . . . . . . . . . . 13
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β (π β 1) β
β+) |
246 | 245, 229 | rpdivcld 13029 |
. . . . . . . . . . . 12
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β ((π β 1) / π) β
β+) |
247 | 243, 246 | rerpdivcld 13043 |
. . . . . . . . . . 11
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β (((1 /
π) β ((1 / π)β((ββ((logβπ₯) / (logβπ))) + 1))) / ((π β 1) / π)) β β) |
248 | 226, 247 | remulcld 11240 |
. . . . . . . . . 10
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
((logβπ) Β·
(((1 / π) β ((1 /
π)β((ββ((logβπ₯) / (logβπ))) + 1))) / ((π β 1) / π))) β β) |
249 | 170 | recnd 11238 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β (Ξβ(πβπ)) β β) |
250 | 163 | nncnd 12224 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β (πβπ) β β) |
251 | 163 | nnne0d 12258 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β (πβπ) β 0) |
252 | 249, 250,
251 | divrecd 11989 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β ((Ξβ(πβπ)) / (πβπ)) = ((Ξβ(πβπ)) Β· (1 / (πβπ)))) |
253 | | simprl 769 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β π β β) |
254 | | vmappw 26609 |
. . . . . . . . . . . . . . . . 17
β’ ((π β β β§ π β β) β
(Ξβ(πβπ)) = (logβπ)) |
255 | 253, 161,
254 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β (Ξβ(πβπ)) = (logβπ)) |
256 | 159 | nncnd 12224 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β π β β) |
257 | 159 | nnne0d 12258 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β π β 0) |
258 | | elfzelz 13497 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β
(1...(ββ((logβπ₯) / (logβπ)))) β π β β€) |
259 | 258 | ad2antll 727 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β π β β€) |
260 | 256, 257,
259 | exprecd 14115 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β ((1 / π)βπ) = (1 / (πβπ))) |
261 | 260 | eqcomd 2738 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β (1 / (πβπ)) = ((1 / π)βπ)) |
262 | 255, 261 | oveq12d 7423 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β ((Ξβ(πβπ)) Β· (1 / (πβπ))) = ((logβπ) Β· ((1 / π)βπ))) |
263 | 252, 262 | eqtrd 2772 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β ((Ξβ(πβπ)) / (πβπ)) = ((logβπ) Β· ((1 / π)βπ))) |
264 | 263, 171 | eqeltrrd 2834 |
. . . . . . . . . . . . 13
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β ((logβπ) Β· ((1 / π)βπ)) β β) |
265 | 264 | anassrs 468 |
. . . . . . . . . . . 12
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β§ π β
(1...(ββ((logβπ₯) / (logβπ))))) β ((logβπ) Β· ((1 / π)βπ)) β β) |
266 | | 1red 11211 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β 1 β
β) |
267 | | vmage0 26614 |
. . . . . . . . . . . . . . . . 17
β’ ((πβπ) β β β 0 β€
(Ξβ(πβπ))) |
268 | 163, 267 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β 0 β€ (Ξβ(πβπ))) |
269 | 163 | nnred 12223 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β (πβπ) β β) |
270 | 163 | nngt0d 12257 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β 0 < (πβπ)) |
271 | | divge0 12079 |
. . . . . . . . . . . . . . . 16
β’
((((Ξβ(πβπ)) β β β§ 0 β€
(Ξβ(πβπ))) β§ ((πβπ) β β β§ 0 < (πβπ))) β 0 β€ ((Ξβ(πβπ)) / (πβπ))) |
272 | 170, 268,
269, 270, 271 | syl22anc 837 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β 0 β€ ((Ξβ(πβπ)) / (πβπ))) |
273 | 83 | leidi 11744 |
. . . . . . . . . . . . . . . . . 18
β’ 0 β€
0 |
274 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β§ ( 1 β(πΏβ(πβπ))) = 0) β ( 1 β(πΏβ(πβπ))) = 0) |
275 | 273, 274 | breqtrrid 5185 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β§ ( 1 β(πΏβ(πβπ))) = 0) β 0 β€ ( 1 β(πΏβ(πβπ)))) |
276 | 23 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β§ ( 1 β(πΏβ(πβπ))) β 0) β π β β) |
277 | 91 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β 1 β π·) |
278 | 19, 20, 87, 22, 85, 277, 165 | dchrn0 26742 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β (( 1 β(πΏβ(πβπ))) β 0 β (πΏβ(πβπ)) β (Unitβπ))) |
279 | 278 | biimpa 477 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β§ ( 1 β(πΏβ(πβπ))) β 0) β (πΏβ(πβπ)) β (Unitβπ)) |
280 | 19, 20, 21, 85, 276, 279 | dchr1 26749 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β§ ( 1 β(πΏβ(πβπ))) β 0) β ( 1 β(πΏβ(πβπ))) = 1) |
281 | 103, 280 | breqtrrid 5185 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β§ ( 1 β(πΏβ(πβπ))) β 0) β 0 β€ ( 1 β(πΏβ(πβπ)))) |
282 | 275, 281 | pm2.61dane 3029 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β 0 β€ ( 1 β(πΏβ(πβπ)))) |
283 | | subge02 11726 |
. . . . . . . . . . . . . . . . 17
β’ ((1
β β β§ ( 1 β(πΏβ(πβπ))) β β) β (0 β€ ( 1 β(πΏβ(πβπ))) β (1 β ( 1 β(πΏβ(πβπ)))) β€ 1)) |
284 | 18, 166, 283 | sylancr 587 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β (0 β€ ( 1 β(πΏβ(πβπ))) β (1 β ( 1 β(πΏβ(πβπ)))) β€ 1)) |
285 | 282, 284 | mpbid 231 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β (1 β ( 1 β(πΏβ(πβπ)))) β€ 1) |
286 | 168, 266,
171, 272, 285 | lemul1ad 12149 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β ((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ))) β€ (1 Β· ((Ξβ(πβπ)) / (πβπ)))) |
287 | 207 | mullidd 11228 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β (1 Β·
((Ξβ(πβπ)) / (πβπ))) = ((Ξβ(πβπ)) / (πβπ))) |
288 | 287, 263 | eqtrd 2772 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β (1 Β·
((Ξβ(πβπ)) / (πβπ))) = ((logβπ) Β· ((1 / π)βπ))) |
289 | 286, 288 | breqtrd 5173 |
. . . . . . . . . . . . 13
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β ((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ))) β€ ((logβπ) Β· ((1 / π)βπ))) |
290 | 289 | anassrs 468 |
. . . . . . . . . . . 12
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β§ π β
(1...(ββ((logβπ₯) / (logβπ))))) β ((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ))) β€ ((logβπ) Β· ((1 / π)βπ))) |
291 | 156, 173,
265, 290 | fsumle 15741 |
. . . . . . . . . . 11
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
Ξ£π β
(1...(ββ((logβπ₯) / (logβπ))))((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ))) β€ Ξ£π β (1...(ββ((logβπ₯) / (logβπ))))((logβπ) Β· ((1 / π)βπ))) |
292 | 226 | recnd 11238 |
. . . . . . . . . . . . 13
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
(logβπ) β
β) |
293 | 159 | nnrecred 12259 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β (1 / π) β β) |
294 | 293, 162 | reexpcld 14124 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β ((1 / π)βπ) β β) |
295 | 294 | recnd 11238 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ (π β β β§ π β
(1...(ββ((logβπ₯) / (logβπ)))))) β ((1 / π)βπ) β β) |
296 | 295 | anassrs 468 |
. . . . . . . . . . . . 13
β’ ((((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β§ π β
(1...(ββ((logβπ₯) / (logβπ))))) β ((1 / π)βπ) β β) |
297 | 156, 292,
296 | fsummulc2 15726 |
. . . . . . . . . . . 12
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
((logβπ) Β·
Ξ£π β
(1...(ββ((logβπ₯) / (logβπ))))((1 / π)βπ)) = Ξ£π β (1...(ββ((logβπ₯) / (logβπ))))((logβπ) Β· ((1 / π)βπ))) |
298 | | fzval3 13697 |
. . . . . . . . . . . . . . . 16
β’
((ββ((logβπ₯) / (logβπ))) β β€ β
(1...(ββ((logβπ₯) / (logβπ)))) = (1..^((ββ((logβπ₯) / (logβπ))) + 1))) |
299 | 239, 298 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
(1...(ββ((logβπ₯) / (logβπ)))) = (1..^((ββ((logβπ₯) / (logβπ))) + 1))) |
300 | 299 | sumeq1d 15643 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
Ξ£π β
(1...(ββ((logβπ₯) / (logβπ))))((1 / π)βπ) = Ξ£π β
(1..^((ββ((logβπ₯) / (logβπ))) + 1))((1 / π)βπ)) |
301 | 228 | recnd 11238 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β (1 /
π) β
β) |
302 | 227 | nngt0d 12257 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β 0 <
π) |
303 | | recgt1 12106 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β β β§ 0 <
π) β (1 < π β (1 / π) < 1)) |
304 | 233, 302,
303 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β (1 <
π β (1 / π) < 1)) |
305 | 236, 304 | mpbid 231 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β (1 /
π) < 1) |
306 | 228, 305 | ltned 11346 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β (1 /
π) β 1) |
307 | | 1nn0 12484 |
. . . . . . . . . . . . . . . 16
β’ 1 β
β0 |
308 | 307 | a1i 11 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β 1 β
β0) |
309 | | log1 26085 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(logβ1) = 0 |
310 | | simprr 771 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β 1 β€ π₯) |
311 | | 1rp 12974 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ 1 β
β+ |
312 | | simprl 769 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β π₯ β
β+) |
313 | | logleb 26102 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((1
β β+ β§ π₯ β β+) β (1 β€
π₯ β (logβ1) β€
(logβπ₯))) |
314 | 311, 312,
313 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β (1 β€ π₯ β (logβ1) β€
(logβπ₯))) |
315 | 310, 314 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β (logβ1)
β€ (logβπ₯)) |
316 | 309, 315 | eqbrtrrid 5183 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β 0 β€
(logβπ₯)) |
317 | 316 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β 0 β€
(logβπ₯)) |
318 | 232, 237,
317 | divge0d 13052 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β 0 β€
((logβπ₯) /
(logβπ))) |
319 | | flge0nn0 13781 |
. . . . . . . . . . . . . . . . . 18
β’
((((logβπ₯) /
(logβπ)) β
β β§ 0 β€ ((logβπ₯) / (logβπ))) β (ββ((logβπ₯) / (logβπ))) β
β0) |
320 | 238, 318,
319 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
(ββ((logβπ₯) / (logβπ))) β
β0) |
321 | | nn0p1nn 12507 |
. . . . . . . . . . . . . . . . 17
β’
((ββ((logβπ₯) / (logβπ))) β β0 β
((ββ((logβπ₯) / (logβπ))) + 1) β β) |
322 | 320, 321 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
((ββ((logβπ₯) / (logβπ))) + 1) β β) |
323 | | nnuz 12861 |
. . . . . . . . . . . . . . . 16
β’ β =
(β€β₯β1) |
324 | 322, 323 | eleqtrdi 2843 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
((ββ((logβπ₯) / (logβπ))) + 1) β
(β€β₯β1)) |
325 | 301, 306,
308, 324 | geoserg 15808 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
Ξ£π β
(1..^((ββ((logβπ₯) / (logβπ))) + 1))((1 / π)βπ) = ((((1 / π)β1) β ((1 / π)β((ββ((logβπ₯) / (logβπ))) + 1))) / (1 β (1 /
π)))) |
326 | 301 | exp1d 14102 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β ((1 /
π)β1) = (1 / π)) |
327 | 326 | oveq1d 7420 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β (((1 /
π)β1) β ((1 /
π)β((ββ((logβπ₯) / (logβπ))) + 1))) = ((1 / π) β ((1 / π)β((ββ((logβπ₯) / (logβπ))) + 1)))) |
328 | 227 | nncnd 12224 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β π β
β) |
329 | | 1cnd 11205 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β 1 β
β) |
330 | 229 | rpcnne0d 13021 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β (π β β β§ π β 0)) |
331 | | divsubdir 11904 |
. . . . . . . . . . . . . . . . 17
β’ ((π β β β§ 1 β
β β§ (π β
β β§ π β 0))
β ((π β 1) /
π) = ((π / π) β (1 / π))) |
332 | 328, 329,
330, 331 | syl3anc 1371 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β ((π β 1) / π) = ((π / π) β (1 / π))) |
333 | | divid 11897 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β β β§ π β 0) β (π / π) = 1) |
334 | 330, 333 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β (π / π) = 1) |
335 | 334 | oveq1d 7420 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β ((π / π) β (1 / π)) = (1 β (1 / π))) |
336 | 332, 335 | eqtr2d 2773 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β (1
β (1 / π)) = ((π β 1) / π)) |
337 | 327, 336 | oveq12d 7423 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β ((((1 /
π)β1) β ((1 /
π)β((ββ((logβπ₯) / (logβπ))) + 1))) / (1 β (1 /
π))) = (((1 / π) β ((1 / π)β((ββ((logβπ₯) / (logβπ))) + 1))) / ((π β 1) / π))) |
338 | 300, 325,
337 | 3eqtrd 2776 |
. . . . . . . . . . . . 13
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
Ξ£π β
(1...(ββ((logβπ₯) / (logβπ))))((1 / π)βπ) = (((1 / π) β ((1 / π)β((ββ((logβπ₯) / (logβπ))) + 1))) / ((π β 1) / π))) |
339 | 338 | oveq2d 7421 |
. . . . . . . . . . . 12
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
((logβπ) Β·
Ξ£π β
(1...(ββ((logβπ₯) / (logβπ))))((1 / π)βπ)) = ((logβπ) Β· (((1 / π) β ((1 / π)β((ββ((logβπ₯) / (logβπ))) + 1))) / ((π β 1) / π)))) |
340 | 297, 339 | eqtr3d 2774 |
. . . . . . . . . . 11
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
Ξ£π β
(1...(ββ((logβπ₯) / (logβπ))))((logβπ) Β· ((1 / π)βπ)) = ((logβπ) Β· (((1 / π) β ((1 / π)β((ββ((logβπ₯) / (logβπ))) + 1))) / ((π β 1) / π)))) |
341 | 291, 340 | breqtrd 5173 |
. . . . . . . . . 10
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
Ξ£π β
(1...(ββ((logβπ₯) / (logβπ))))((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ))) β€ ((logβπ) Β· (((1 / π) β ((1 / π)β((ββ((logβπ₯) / (logβπ))) + 1))) / ((π β 1) / π)))) |
342 | 241 | rpge0d 13016 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β 0 β€
((1 / π)β((ββ((logβπ₯) / (logβπ))) + 1))) |
343 | 228, 242 | subge02d 11802 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β (0 β€
((1 / π)β((ββ((logβπ₯) / (logβπ))) + 1)) β ((1 / π) β ((1 / π)β((ββ((logβπ₯) / (logβπ))) + 1))) β€ (1 / π))) |
344 | 342, 343 | mpbid 231 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β ((1 /
π) β ((1 / π)β((ββ((logβπ₯) / (logβπ))) + 1))) β€ (1 / π)) |
345 | 245 | rpcnne0d 13021 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β ((π β 1) β β β§
(π β 1) β
0)) |
346 | | dmdcan 11920 |
. . . . . . . . . . . . . . 15
β’ ((((π β 1) β β β§
(π β 1) β 0) β§
(π β β β§
π β 0) β§ 1 β
β) β (((π
β 1) / π) Β· (1
/ (π β 1))) = (1 /
π)) |
347 | 345, 330,
329, 346 | syl3anc 1371 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β (((π β 1) / π) Β· (1 / (π β 1))) = (1 / π)) |
348 | 344, 347 | breqtrrd 5175 |
. . . . . . . . . . . . 13
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β ((1 /
π) β ((1 / π)β((ββ((logβπ₯) / (logβπ))) + 1))) β€ (((π β 1) / π) Β· (1 / (π β 1)))) |
349 | 244 | nnrecred 12259 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β (1 /
(π β 1)) β
β) |
350 | 243, 349,
246 | ledivmuld 13065 |
. . . . . . . . . . . . 13
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β ((((1 /
π) β ((1 / π)β((ββ((logβπ₯) / (logβπ))) + 1))) / ((π β 1) / π)) β€ (1 / (π β 1)) β ((1 / π) β ((1 / π)β((ββ((logβπ₯) / (logβπ))) + 1))) β€ (((π β 1) / π) Β· (1 / (π β 1))))) |
351 | 348, 350 | mpbird 256 |
. . . . . . . . . . . 12
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β (((1 /
π) β ((1 / π)β((ββ((logβπ₯) / (logβπ))) + 1))) / ((π β 1) / π)) β€ (1 / (π β 1))) |
352 | 247, 349,
237 | lemul2d 13056 |
. . . . . . . . . . . 12
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β ((((1 /
π) β ((1 / π)β((ββ((logβπ₯) / (logβπ))) + 1))) / ((π β 1) / π)) β€ (1 / (π β 1)) β ((logβπ) Β· (((1 / π) β ((1 / π)β((ββ((logβπ₯) / (logβπ))) + 1))) / ((π β 1) / π))) β€ ((logβπ) Β· (1 / (π β 1))))) |
353 | 351, 352 | mpbid 231 |
. . . . . . . . . . 11
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
((logβπ) Β·
(((1 / π) β ((1 /
π)β((ββ((logβπ₯) / (logβπ))) + 1))) / ((π β 1) / π))) β€ ((logβπ) Β· (1 / (π β 1)))) |
354 | 244 | nncnd 12224 |
. . . . . . . . . . . 12
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β (π β 1) β
β) |
355 | 244 | nnne0d 12258 |
. . . . . . . . . . . 12
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β (π β 1) β
0) |
356 | 292, 354,
355 | divrecd 11989 |
. . . . . . . . . . 11
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
((logβπ) / (π β 1)) = ((logβπ) Β· (1 / (π β 1)))) |
357 | 353, 356 | breqtrrd 5175 |
. . . . . . . . . 10
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
((logβπ) Β·
(((1 / π) β ((1 /
π)β((ββ((logβπ₯) / (logβπ))) + 1))) / ((π β 1) / π))) β€ ((logβπ) / (π β 1))) |
358 | 224, 248,
130, 341, 357 | letrd 11367 |
. . . . . . . . 9
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
Ξ£π β
(1...(ββ((logβπ₯) / (logβπ))))((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ))) β€ ((logβπ) / (π β 1))) |
359 | 129, 358 | sylan2 593 |
. . . . . . . 8
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β {π β ((0[,]π₯) β© β) β£ π β₯ π}) β Ξ£π β (1...(ββ((logβπ₯) / (logβπ))))((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ))) β€ ((logβπ) / (π β 1))) |
360 | 126, 225,
131, 359 | fsumle 15741 |
. . . . . . 7
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β Ξ£π β {π β ((0[,]π₯) β© β) β£ π β₯ π}Ξ£π β (1...(ββ((logβπ₯) / (logβπ))))((1 β ( 1 β(πΏβ(πβπ)))) Β· ((Ξβ(πβπ)) / (πβπ))) β€ Ξ£π β {π β ((0[,]π₯) β© β) β£ π β₯ π} ((logβπ) / (π β 1))) |
361 | 223, 360 | eqbrtrd 5169 |
. . . . . 6
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β Ξ£π β
(1...(ββπ₯))((1
β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)) β€ Ξ£π β {π β ((0[,]π₯) β© β) β£ π β₯ π} ((logβπ) / (π β 1))) |
362 | 79 | adantlr 713 |
. . . . . . 7
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β {π β β β£ π β₯ π}) β ((logβπ) / (π β 1)) β β) |
363 | 237, 245 | rpdivcld 13029 |
. . . . . . . . 9
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β
((logβπ) / (π β 1)) β
β+) |
364 | 363 | rpge0d 13016 |
. . . . . . . 8
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β β) β 0 β€
((logβπ) / (π β 1))) |
365 | 69, 364 | sylan2 593 |
. . . . . . 7
β’ (((π β§ (π₯ β β+ β§ 1 β€
π₯)) β§ π β {π β β β£ π β₯ π}) β 0 β€ ((logβπ) / (π β 1))) |
366 | 122, 362,
365, 125 | fsumless 15738 |
. . . . . 6
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β Ξ£π β {π β ((0[,]π₯) β© β) β£ π β₯ π} ((logβπ) / (π β 1)) β€ Ξ£π β {π β β β£ π β₯ π} ((logβπ) / (π β 1))) |
367 | 102, 132,
133, 361, 366 | letrd 11367 |
. . . . 5
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β Ξ£π β
(1...(ββπ₯))((1
β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)) β€ Ξ£π β {π β β β£ π β₯ π} ((logβπ) / (π β 1))) |
368 | 121, 367 | eqbrtrd 5169 |
. . . 4
β’ ((π β§ (π₯ β β+ β§ 1 β€
π₯)) β
(absβΞ£π β
(1...(ββπ₯))((1
β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π))) β€ Ξ£π β {π β β β£ π β₯ π} ((logβπ) / (π β 1))) |
369 | 65, 40, 66, 80, 368 | elo1d 15476 |
. . 3
β’ (π β (π₯ β β+ β¦
Ξ£π β
(1...(ββπ₯))((1
β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π))) β π(1)) |
370 | | o1sub 15556 |
. . 3
β’ (((π₯ β β+
β¦ (Ξ£π β
(1...(ββπ₯))((Ξβπ) / π) β (logβπ₯))) β π(1) β§ (π₯ β β+
β¦ Ξ£π β
(1...(ββπ₯))((1
β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π))) β π(1)) β ((π₯ β β+
β¦ (Ξ£π β
(1...(ββπ₯))((Ξβπ) / π) β (logβπ₯))) βf β (π₯ β β+
β¦ Ξ£π β
(1...(ββπ₯))((1
β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)))) β π(1)) |
371 | 64, 369, 370 | sylancr 587 |
. 2
β’ (π β ((π₯ β β+ β¦
(Ξ£π β
(1...(ββπ₯))((Ξβπ) / π) β (logβπ₯))) βf β (π₯ β β+
β¦ Ξ£π β
(1...(ββπ₯))((1
β ( 1 β(πΏβπ))) Β· ((Ξβπ) / π)))) β π(1)) |
372 | 63, 371 | eqeltrrd 2834 |
1
β’ (π β (π₯ β β+ β¦
(Ξ£π β
(1...(ββπ₯))((
1
β(πΏβπ)) Β·
((Ξβπ) / π)) β (logβπ₯))) β
π(1)) |