MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpvmasumlem Structured version   Visualization version   GIF version

Theorem rpvmasumlem 26065
Description: Lemma for rpvmasum 26104. Calculate the "trivial case" estimate Σ𝑛𝑥( 1 (𝑛)Λ(𝑛) / 𝑛) = log𝑥 + 𝑂(1), where 1 (𝑥) is the principal Dirichlet character. Equation 9.4.7 of [Shapiro], p. 376. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
Assertion
Ref Expression
rpvmasumlem (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑛, 1   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥   𝑛,𝑍,𝑥   𝐷,𝑛,𝑥   𝑛,𝐿,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑛)

Proof of Theorem rpvmasumlem
Dummy variables 𝑘 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10630 . . . . . 6 ℝ ∈ V
2 rpssre 12399 . . . . . 6 + ⊆ ℝ
31, 2ssexi 5228 . . . . 5 + ∈ V
43a1i 11 . . . 4 (𝜑 → ℝ+ ∈ V)
5 fzfid 13344 . . . . . . 7 (𝜑 → (1...(⌊‘𝑥)) ∈ Fin)
6 elfznn 12939 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
76adantl 484 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
8 vmacl 25697 . . . . . . . . . 10 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
97, 8syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
109, 7nndivred 11694 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
1110recnd 10671 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
125, 11fsumcl 15092 . . . . . 6 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ)
1312adantr 483 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ)
14 relogcl 25161 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
1514adantl 484 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
1615recnd 10671 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
1713, 16subcld 10999 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) ∈ ℂ)
18 1re 10643 . . . . . . . . 9 1 ∈ ℝ
19 rpvmasum.g . . . . . . . . . . . 12 𝐺 = (DChr‘𝑁)
20 rpvmasum.z . . . . . . . . . . . 12 𝑍 = (ℤ/nℤ‘𝑁)
21 rpvmasum.1 . . . . . . . . . . . 12 1 = (0g𝐺)
22 eqid 2823 . . . . . . . . . . . 12 (Base‘𝑍) = (Base‘𝑍)
23 rpvmasum.a . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
2419, 20, 21, 22, 23dchr1re 25841 . . . . . . . . . . 11 (𝜑1 :(Base‘𝑍)⟶ℝ)
2524adantr 483 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → 1 :(Base‘𝑍)⟶ℝ)
2623nnnn0d 11958 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
27 rpvmasum.l . . . . . . . . . . . . 13 𝐿 = (ℤRHom‘𝑍)
2820, 22, 27znzrhfo 20696 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
29 fof 6592 . . . . . . . . . . . 12 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
3026, 28, 293syl 18 . . . . . . . . . . 11 (𝜑𝐿:ℤ⟶(Base‘𝑍))
31 elfzelz 12911 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℤ)
32 ffvelrn 6851 . . . . . . . . . . 11 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑛 ∈ ℤ) → (𝐿𝑛) ∈ (Base‘𝑍))
3330, 31, 32syl2an 597 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (𝐿𝑛) ∈ (Base‘𝑍))
3425, 33ffvelrnd 6854 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ( 1 ‘(𝐿𝑛)) ∈ ℝ)
35 resubcl 10952 . . . . . . . . 9 ((1 ∈ ℝ ∧ ( 1 ‘(𝐿𝑛)) ∈ ℝ) → (1 − ( 1 ‘(𝐿𝑛))) ∈ ℝ)
3618, 34, 35sylancr 589 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (1 − ( 1 ‘(𝐿𝑛))) ∈ ℝ)
3736, 10remulcld 10673 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℝ)
3837recnd 10671 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
395, 38fsumcl 15092 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
4039adantr 483 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
41 eqidd 2824 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))))
42 eqidd 2824 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))))
434, 17, 40, 41, 42offval2 7428 . . 3 (𝜑 → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))))
4413, 16, 40sub32d 11031 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) − (log‘𝑥)))
455, 11, 38fsumsub 15145 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))))
46 1cnd 10638 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
4736recnd 10671 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (1 − ( 1 ‘(𝐿𝑛))) ∈ ℂ)
4846, 47, 11subdird 11099 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − (1 − ( 1 ‘(𝐿𝑛)))) · ((Λ‘𝑛) / 𝑛)) = ((1 · ((Λ‘𝑛) / 𝑛)) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))))
49 ax-1cn 10597 . . . . . . . . . . . 12 1 ∈ ℂ
5034recnd 10671 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ( 1 ‘(𝐿𝑛)) ∈ ℂ)
51 nncan 10917 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ ( 1 ‘(𝐿𝑛)) ∈ ℂ) → (1 − (1 − ( 1 ‘(𝐿𝑛)))) = ( 1 ‘(𝐿𝑛)))
5249, 50, 51sylancr 589 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (1 − (1 − ( 1 ‘(𝐿𝑛)))) = ( 1 ‘(𝐿𝑛)))
5352oveq1d 7173 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − (1 − ( 1 ‘(𝐿𝑛)))) · ((Λ‘𝑛) / 𝑛)) = (( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
5411mulid2d 10661 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (1 · ((Λ‘𝑛) / 𝑛)) = ((Λ‘𝑛) / 𝑛))
5554oveq1d 7173 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((1 · ((Λ‘𝑛) / 𝑛)) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = (((Λ‘𝑛) / 𝑛) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))))
5648, 53, 553eqtr3rd 2867 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = (( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
5756sumeq2dv 15062 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
5845, 57eqtr3d 2860 . . . . . . 7 (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
5958oveq1d 7173 . . . . . 6 (𝜑 → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) − (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
6059adantr 483 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) − (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
6144, 60eqtrd 2858 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
6261mpteq2dva 5163 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))))
6343, 62eqtrd 2858 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))))
64 vmadivsum 26060 . . 3 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)
652a1i 11 . . . 4 (𝜑 → ℝ+ ⊆ ℝ)
66 1red 10644 . . . 4 (𝜑 → 1 ∈ ℝ)
67 prmdvdsfi 25686 . . . . . 6 (𝑁 ∈ ℕ → {𝑞 ∈ ℙ ∣ 𝑞𝑁} ∈ Fin)
6823, 67syl 17 . . . . 5 (𝜑 → {𝑞 ∈ ℙ ∣ 𝑞𝑁} ∈ Fin)
69 elrabi 3677 . . . . . 6 (𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} → 𝑝 ∈ ℙ)
70 prmnn 16020 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
7170adantl 484 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℕ)
7271nnrpd 12432 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℝ+)
7372relogcld 25208 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (log‘𝑝) ∈ ℝ)
74 prmuz2 16042 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
7574adantl 484 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ (ℤ‘2))
76 uz2m1nn 12326 . . . . . . . 8 (𝑝 ∈ (ℤ‘2) → (𝑝 − 1) ∈ ℕ)
7775, 76syl 17 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (𝑝 − 1) ∈ ℕ)
7873, 77nndivred 11694 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
7969, 78sylan2 594 . . . . 5 ((𝜑𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁}) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
8068, 79fsumrecl 15093 . . . 4 (𝜑 → Σ𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
81 fzfid 13344 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
82 simpr 487 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) = 0) → ( 1 ‘(𝐿𝑛)) = 0)
83 0re 10645 . . . . . . . . . . 11 0 ∈ ℝ
8482, 83eqeltrdi 2923 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) = 0) → ( 1 ‘(𝐿𝑛)) ∈ ℝ)
85 eqid 2823 . . . . . . . . . . . 12 (Unit‘𝑍) = (Unit‘𝑍)
8623ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) ≠ 0) → 𝑁 ∈ ℕ)
87 rpvmasum.d . . . . . . . . . . . . . 14 𝐷 = (Base‘𝐺)
8819dchrabl 25832 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
89 ablgrp 18913 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
9087, 21grpidcl 18133 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → 1𝐷)
9123, 88, 89, 904syl 19 . . . . . . . . . . . . . . 15 (𝜑1𝐷)
9291ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1𝐷)
9333adantlr 713 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐿𝑛) ∈ (Base‘𝑍))
9419, 20, 87, 22, 85, 92, 93dchrn0 25828 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (( 1 ‘(𝐿𝑛)) ≠ 0 ↔ (𝐿𝑛) ∈ (Unit‘𝑍)))
9594biimpa 479 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) ≠ 0) → (𝐿𝑛) ∈ (Unit‘𝑍))
9619, 20, 21, 85, 86, 95dchr1 25835 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) ≠ 0) → ( 1 ‘(𝐿𝑛)) = 1)
9796, 18eqeltrdi 2923 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) ≠ 0) → ( 1 ‘(𝐿𝑛)) ∈ ℝ)
9884, 97pm2.61dane 3106 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ( 1 ‘(𝐿𝑛)) ∈ ℝ)
9918, 98, 35sylancr 589 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 − ( 1 ‘(𝐿𝑛))) ∈ ℝ)
10010adantlr 713 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
10199, 100remulcld 10673 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℝ)
10281, 101fsumrecl 15093 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℝ)
103 0le1 11165 . . . . . . . . . . 11 0 ≤ 1
10482, 103eqbrtrdi 5107 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) = 0) → ( 1 ‘(𝐿𝑛)) ≤ 1)
10518leidi 11176 . . . . . . . . . . 11 1 ≤ 1
10696, 105eqbrtrdi 5107 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) ≠ 0) → ( 1 ‘(𝐿𝑛)) ≤ 1)
107104, 106pm2.61dane 3106 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ( 1 ‘(𝐿𝑛)) ≤ 1)
108 subge0 11155 . . . . . . . . . 10 ((1 ∈ ℝ ∧ ( 1 ‘(𝐿𝑛)) ∈ ℝ) → (0 ≤ (1 − ( 1 ‘(𝐿𝑛))) ↔ ( 1 ‘(𝐿𝑛)) ≤ 1))
10918, 98, 108sylancr 589 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (0 ≤ (1 − ( 1 ‘(𝐿𝑛))) ↔ ( 1 ‘(𝐿𝑛)) ≤ 1))
110107, 109mpbird 259 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (1 − ( 1 ‘(𝐿𝑛))))
1119adantlr 713 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
1126adantl 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
113 vmage0 25700 . . . . . . . . . 10 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
114112, 113syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑛))
115112nnred 11655 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
116112nngt0d 11689 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 < 𝑛)
117 divge0 11511 . . . . . . . . 9 ((((Λ‘𝑛) ∈ ℝ ∧ 0 ≤ (Λ‘𝑛)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → 0 ≤ ((Λ‘𝑛) / 𝑛))
118111, 114, 115, 116, 117syl22anc 836 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((Λ‘𝑛) / 𝑛))
11999, 100, 110, 118mulge0d 11219 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))
12081, 101, 119fsumge0 15152 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))
121102, 120absidd 14784 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))
12268adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → {𝑞 ∈ ℙ ∣ 𝑞𝑁} ∈ Fin)
123 inss2 4208 . . . . . . . . 9 ((0[,]𝑥) ∩ ℙ) ⊆ ℙ
124 rabss2 4056 . . . . . . . . 9 (((0[,]𝑥) ∩ ℙ) ⊆ ℙ → {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ⊆ {𝑞 ∈ ℙ ∣ 𝑞𝑁})
125123, 124mp1i 13 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ⊆ {𝑞 ∈ ℙ ∣ 𝑞𝑁})
126122, 125ssfid 8743 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ∈ Fin)
127 ssrab2 4058 . . . . . . . . . 10 {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ⊆ ((0[,]𝑥) ∩ ℙ)
128127, 123sstri 3978 . . . . . . . . 9 {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ⊆ ℙ
129128sseli 3965 . . . . . . . 8 (𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} → 𝑝 ∈ ℙ)
13078adantlr 713 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
131129, 130sylan2 594 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
132126, 131fsumrecl 15093 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
13380adantr 483 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
134 2fveq3 6677 . . . . . . . . . . 11 (𝑛 = (𝑝𝑘) → ( 1 ‘(𝐿𝑛)) = ( 1 ‘(𝐿‘(𝑝𝑘))))
135134oveq2d 7174 . . . . . . . . . 10 (𝑛 = (𝑝𝑘) → (1 − ( 1 ‘(𝐿𝑛))) = (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))))
136 fveq2 6672 . . . . . . . . . . 11 (𝑛 = (𝑝𝑘) → (Λ‘𝑛) = (Λ‘(𝑝𝑘)))
137 id 22 . . . . . . . . . . 11 (𝑛 = (𝑝𝑘) → 𝑛 = (𝑝𝑘))
138136, 137oveq12d 7176 . . . . . . . . . 10 (𝑛 = (𝑝𝑘) → ((Λ‘𝑛) / 𝑛) = ((Λ‘(𝑝𝑘)) / (𝑝𝑘)))
139135, 138oveq12d 7176 . . . . . . . . 9 (𝑛 = (𝑝𝑘) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) = ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
140 rpre 12400 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
141140ad2antrl 726 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
14238adantlr 713 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
143 simprr 771 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → (Λ‘𝑛) = 0)
144143oveq1d 7173 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → ((Λ‘𝑛) / 𝑛) = (0 / 𝑛))
1456ad2antrl 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → 𝑛 ∈ ℕ)
146145nncnd 11656 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → 𝑛 ∈ ℂ)
147145nnne0d 11690 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → 𝑛 ≠ 0)
148146, 147div0d 11417 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → (0 / 𝑛) = 0)
149144, 148eqtrd 2858 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → ((Λ‘𝑛) / 𝑛) = 0)
150149oveq2d 7174 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) = ((1 − ( 1 ‘(𝐿𝑛))) · 0))
15147ad2ant2r 745 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → (1 − ( 1 ‘(𝐿𝑛))) ∈ ℂ)
152151mul01d 10841 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → ((1 − ( 1 ‘(𝐿𝑛))) · 0) = 0)
153150, 152eqtrd 2858 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) = 0)
154139, 141, 142, 153fsumvma2 25792 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) = Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
155127a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ⊆ ((0[,]𝑥) ∩ ℙ))
156 fzfid 13344 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ∈ Fin)
15724ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 1 :(Base‘𝑍)⟶ℝ)
15830ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝐿:ℤ⟶(Base‘𝑍))
15970ad2antrl 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑝 ∈ ℕ)
160 elfznn 12939 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) → 𝑘 ∈ ℕ)
161160ad2antll 727 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑘 ∈ ℕ)
162161nnnn0d 11958 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑘 ∈ ℕ0)
163159, 162nnexpcld 13609 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝑝𝑘) ∈ ℕ)
164163nnzd 12089 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝑝𝑘) ∈ ℤ)
165158, 164ffvelrnd 6854 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝐿‘(𝑝𝑘)) ∈ (Base‘𝑍))
166157, 165ffvelrnd 6854 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ( 1 ‘(𝐿‘(𝑝𝑘))) ∈ ℝ)
167 resubcl 10952 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ∈ ℝ) → (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) ∈ ℝ)
16818, 166, 167sylancr 589 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) ∈ ℝ)
169 vmacl 25697 . . . . . . . . . . . . . . . 16 ((𝑝𝑘) ∈ ℕ → (Λ‘(𝑝𝑘)) ∈ ℝ)
170163, 169syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (Λ‘(𝑝𝑘)) ∈ ℝ)
171170, 163nndivred 11694 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) ∈ ℝ)
172168, 171remulcld 10673 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℝ)
173172anassrs 470 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℝ)
174173recnd 10671 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℂ)
175156, 174fsumcl 15092 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℂ)
176129, 175sylan2 594 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℂ)
177 breq1 5071 . . . . . . . . . . . 12 (𝑞 = 𝑝 → (𝑞𝑁𝑝𝑁))
178177notbid 320 . . . . . . . . . . 11 (𝑞 = 𝑝 → (¬ 𝑞𝑁 ↔ ¬ 𝑝𝑁))
179 notrab 4282 . . . . . . . . . . 11 (((0[,]𝑥) ∩ ℙ) ∖ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) = {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ ¬ 𝑞𝑁}
180178, 179elrab2 3685 . . . . . . . . . 10 (𝑝 ∈ (((0[,]𝑥) ∩ ℙ) ∖ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) ↔ (𝑝 ∈ ((0[,]𝑥) ∩ ℙ) ∧ ¬ 𝑝𝑁))
181123sseli 3965 . . . . . . . . . . 11 (𝑝 ∈ ((0[,]𝑥) ∩ ℙ) → 𝑝 ∈ ℙ)
18223ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑁 ∈ ℕ)
183 simplrr 776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ¬ 𝑝𝑁)
184 simplrl 775 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑝 ∈ ℙ)
185182nnzd 12089 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑁 ∈ ℤ)
186 coprm 16057 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑝𝑁 ↔ (𝑝 gcd 𝑁) = 1))
187184, 185, 186syl2anc 586 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (¬ 𝑝𝑁 ↔ (𝑝 gcd 𝑁) = 1))
188183, 187mpbid 234 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (𝑝 gcd 𝑁) = 1)
189 prmz 16021 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
190184, 189syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑝 ∈ ℤ)
191160adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑘 ∈ ℕ)
192191nnnn0d 11958 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑘 ∈ ℕ0)
193 rpexp1i 16067 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → ((𝑝 gcd 𝑁) = 1 → ((𝑝𝑘) gcd 𝑁) = 1))
194190, 185, 192, 193syl3anc 1367 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((𝑝 gcd 𝑁) = 1 → ((𝑝𝑘) gcd 𝑁) = 1))
195188, 194mpd 15 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((𝑝𝑘) gcd 𝑁) = 1)
196182nnnn0d 11958 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑁 ∈ ℕ0)
197164anassrs 470 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (𝑝𝑘) ∈ ℤ)
198197adantlrr 719 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (𝑝𝑘) ∈ ℤ)
19920, 85, 27znunit 20712 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0 ∧ (𝑝𝑘) ∈ ℤ) → ((𝐿‘(𝑝𝑘)) ∈ (Unit‘𝑍) ↔ ((𝑝𝑘) gcd 𝑁) = 1))
200196, 198, 199syl2anc 586 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((𝐿‘(𝑝𝑘)) ∈ (Unit‘𝑍) ↔ ((𝑝𝑘) gcd 𝑁) = 1))
201195, 200mpbird 259 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (𝐿‘(𝑝𝑘)) ∈ (Unit‘𝑍))
20219, 20, 21, 85, 182, 201dchr1 25835 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ( 1 ‘(𝐿‘(𝑝𝑘))) = 1)
203202oveq2d 7174 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) = (1 − 1))
204 1m1e0 11712 . . . . . . . . . . . . . . . 16 (1 − 1) = 0
205203, 204syl6eq 2874 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) = 0)
206205oveq1d 7173 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = (0 · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
207171recnd 10671 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) ∈ ℂ)
208207anassrs 470 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) ∈ ℂ)
209208adantlrr 719 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) ∈ ℂ)
210209mul02d 10840 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (0 · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = 0)
211206, 210eqtrd 2858 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = 0)
212211sumeq2dv 15062 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))0)
213 fzfid 13344 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) → (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ∈ Fin)
214213olcd 870 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) → ((1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ⊆ (ℤ‘1) ∨ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ∈ Fin))
215 sumz 15081 . . . . . . . . . . . . 13 (((1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ⊆ (ℤ‘1) ∨ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ∈ Fin) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))0 = 0)
216214, 215syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))0 = 0)
217212, 216eqtrd 2858 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = 0)
218181, 217sylanr1 680 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ((0[,]𝑥) ∩ ℙ) ∧ ¬ 𝑝𝑁)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = 0)
219180, 218sylan2b 595 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ (((0[,]𝑥) ∩ ℙ) ∖ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁})) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = 0)
220 ppifi 25685 . . . . . . . . . 10 (𝑥 ∈ ℝ → ((0[,]𝑥) ∩ ℙ) ∈ Fin)
221141, 220syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((0[,]𝑥) ∩ ℙ) ∈ Fin)
222155, 176, 219, 221fsumss 15084 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
223154, 222eqtr4d 2861 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) = Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
224156, 173fsumrecl 15093 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℝ)
225129, 224sylan2 594 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℝ)
22673adantlr 713 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (log‘𝑝) ∈ ℝ)
22770adantl 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℕ)
228227nnrecred 11691 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / 𝑝) ∈ ℝ)
229227nnrpd 12432 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℝ+)
230229rpreccld 12444 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / 𝑝) ∈ ℝ+)
231 simplrl 775 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑥 ∈ ℝ+)
232231relogcld 25208 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (log‘𝑥) ∈ ℝ)
233227nnred 11655 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℝ)
23474adantl 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ (ℤ‘2))
235 eluz2gt1 12323 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
236234, 235syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 1 < 𝑝)
237233, 236rplogcld 25214 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (log‘𝑝) ∈ ℝ+)
238232, 237rerpdivcld 12465 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑥) / (log‘𝑝)) ∈ ℝ)
239238flcld 13171 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (⌊‘((log‘𝑥) / (log‘𝑝))) ∈ ℤ)
240239peano2zd 12093 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((⌊‘((log‘𝑥) / (log‘𝑝))) + 1) ∈ ℤ)
241230, 240rpexpcld 13611 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)) ∈ ℝ+)
242241rpred 12434 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)) ∈ ℝ)
243228, 242resubcld 11070 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) ∈ ℝ)
244234, 76syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 − 1) ∈ ℕ)
245244nnrpd 12432 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 − 1) ∈ ℝ+)
246245, 229rpdivcld 12451 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((𝑝 − 1) / 𝑝) ∈ ℝ+)
247243, 246rerpdivcld 12465 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)) ∈ ℝ)
248226, 247remulcld 10673 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))) ∈ ℝ)
249170recnd 10671 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (Λ‘(𝑝𝑘)) ∈ ℂ)
250163nncnd 11656 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝑝𝑘) ∈ ℂ)
251163nnne0d 11690 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝑝𝑘) ≠ 0)
252249, 250, 251divrecd 11421 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) = ((Λ‘(𝑝𝑘)) · (1 / (𝑝𝑘))))
253 simprl 769 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑝 ∈ ℙ)
254 vmappw 25695 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
255253, 161, 254syl2anc 586 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
256159nncnd 11656 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑝 ∈ ℂ)
257159nnne0d 11690 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑝 ≠ 0)
258 elfzelz 12911 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) → 𝑘 ∈ ℤ)
259258ad2antll 727 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑘 ∈ ℤ)
260256, 257, 259exprecd 13521 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 / 𝑝)↑𝑘) = (1 / (𝑝𝑘)))
261260eqcomd 2829 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 / (𝑝𝑘)) = ((1 / 𝑝)↑𝑘))
262255, 261oveq12d 7176 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((Λ‘(𝑝𝑘)) · (1 / (𝑝𝑘))) = ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
263252, 262eqtrd 2858 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) = ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
264263, 171eqeltrrd 2916 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((log‘𝑝) · ((1 / 𝑝)↑𝑘)) ∈ ℝ)
265264anassrs 470 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((log‘𝑝) · ((1 / 𝑝)↑𝑘)) ∈ ℝ)
266 1red 10644 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 1 ∈ ℝ)
267 vmage0 25700 . . . . . . . . . . . . . . . . 17 ((𝑝𝑘) ∈ ℕ → 0 ≤ (Λ‘(𝑝𝑘)))
268163, 267syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 0 ≤ (Λ‘(𝑝𝑘)))
269163nnred 11655 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝑝𝑘) ∈ ℝ)
270163nngt0d 11689 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 0 < (𝑝𝑘))
271 divge0 11511 . . . . . . . . . . . . . . . 16 ((((Λ‘(𝑝𝑘)) ∈ ℝ ∧ 0 ≤ (Λ‘(𝑝𝑘))) ∧ ((𝑝𝑘) ∈ ℝ ∧ 0 < (𝑝𝑘))) → 0 ≤ ((Λ‘(𝑝𝑘)) / (𝑝𝑘)))
272170, 268, 269, 270, 271syl22anc 836 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 0 ≤ ((Λ‘(𝑝𝑘)) / (𝑝𝑘)))
27383leidi 11176 . . . . . . . . . . . . . . . . . 18 0 ≤ 0
274 simpr 487 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) = 0) → ( 1 ‘(𝐿‘(𝑝𝑘))) = 0)
275273, 274breqtrrid 5106 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) = 0) → 0 ≤ ( 1 ‘(𝐿‘(𝑝𝑘))))
27623ad3antrrr 728 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ≠ 0) → 𝑁 ∈ ℕ)
27791ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 1𝐷)
27819, 20, 87, 22, 85, 277, 165dchrn0 25828 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (( 1 ‘(𝐿‘(𝑝𝑘))) ≠ 0 ↔ (𝐿‘(𝑝𝑘)) ∈ (Unit‘𝑍)))
279278biimpa 479 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ≠ 0) → (𝐿‘(𝑝𝑘)) ∈ (Unit‘𝑍))
28019, 20, 21, 85, 276, 279dchr1 25835 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ≠ 0) → ( 1 ‘(𝐿‘(𝑝𝑘))) = 1)
281103, 280breqtrrid 5106 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ≠ 0) → 0 ≤ ( 1 ‘(𝐿‘(𝑝𝑘))))
282275, 281pm2.61dane 3106 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 0 ≤ ( 1 ‘(𝐿‘(𝑝𝑘))))
283 subge02 11158 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ∈ ℝ) → (0 ≤ ( 1 ‘(𝐿‘(𝑝𝑘))) ↔ (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) ≤ 1))
28418, 166, 283sylancr 589 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (0 ≤ ( 1 ‘(𝐿‘(𝑝𝑘))) ↔ (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) ≤ 1))
285282, 284mpbid 234 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) ≤ 1)
286168, 266, 171, 272, 285lemul1ad 11581 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ (1 · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
287207mulid2d 10661 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = ((Λ‘(𝑝𝑘)) / (𝑝𝑘)))
288287, 263eqtrd 2858 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
289286, 288breqtrd 5094 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
290289anassrs 470 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
291156, 173, 265, 290fsumle 15156 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
292226recnd 10671 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (log‘𝑝) ∈ ℂ)
293159nnrecred 11691 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 / 𝑝) ∈ ℝ)
294293, 162reexpcld 13530 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 / 𝑝)↑𝑘) ∈ ℝ)
295294recnd 10671 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 / 𝑝)↑𝑘) ∈ ℂ)
296295anassrs 470 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 / 𝑝)↑𝑘) ∈ ℂ)
297156, 292, 296fsummulc2 15141 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) · Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 / 𝑝)↑𝑘)) = Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
298 fzval3 13109 . . . . . . . . . . . . . . . 16 ((⌊‘((log‘𝑥) / (log‘𝑝))) ∈ ℤ → (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) = (1..^((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)))
299239, 298syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) = (1..^((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)))
300299sumeq1d 15060 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 / 𝑝)↑𝑘) = Σ𝑘 ∈ (1..^((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))((1 / 𝑝)↑𝑘))
301228recnd 10671 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / 𝑝) ∈ ℂ)
302227nngt0d 11689 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 0 < 𝑝)
303 recgt1 11538 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℝ ∧ 0 < 𝑝) → (1 < 𝑝 ↔ (1 / 𝑝) < 1))
304233, 302, 303syl2anc 586 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 < 𝑝 ↔ (1 / 𝑝) < 1))
305236, 304mpbid 234 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / 𝑝) < 1)
306228, 305ltned 10778 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / 𝑝) ≠ 1)
307 1nn0 11916 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
308307a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 1 ∈ ℕ0)
309 log1 25171 . . . . . . . . . . . . . . . . . . . . 21 (log‘1) = 0
310 simprr 771 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
311 1rp 12396 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ+
312 simprl 769 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
313 logleb 25188 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
314311, 312, 313sylancr 589 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
315310, 314mpbid 234 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
316309, 315eqbrtrrid 5104 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
317316adantr 483 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 0 ≤ (log‘𝑥))
318232, 237, 317divge0d 12474 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 0 ≤ ((log‘𝑥) / (log‘𝑝)))
319 flge0nn0 13193 . . . . . . . . . . . . . . . . . 18 ((((log‘𝑥) / (log‘𝑝)) ∈ ℝ ∧ 0 ≤ ((log‘𝑥) / (log‘𝑝))) → (⌊‘((log‘𝑥) / (log‘𝑝))) ∈ ℕ0)
320238, 318, 319syl2anc 586 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (⌊‘((log‘𝑥) / (log‘𝑝))) ∈ ℕ0)
321 nn0p1nn 11939 . . . . . . . . . . . . . . . . 17 ((⌊‘((log‘𝑥) / (log‘𝑝))) ∈ ℕ0 → ((⌊‘((log‘𝑥) / (log‘𝑝))) + 1) ∈ ℕ)
322320, 321syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((⌊‘((log‘𝑥) / (log‘𝑝))) + 1) ∈ ℕ)
323 nnuz 12284 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
324322, 323eleqtrdi 2925 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((⌊‘((log‘𝑥) / (log‘𝑝))) + 1) ∈ (ℤ‘1))
325301, 306, 308, 324geoserg 15223 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1..^((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))((1 / 𝑝)↑𝑘) = ((((1 / 𝑝)↑1) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝))))
326301exp1d 13508 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝)↑1) = (1 / 𝑝))
327326oveq1d 7173 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (((1 / 𝑝)↑1) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) = ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))))
328227nncnd 11656 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℂ)
329 1cnd 10638 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 1 ∈ ℂ)
330229rpcnne0d 12443 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0))
331 divsubdir 11336 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0)) → ((𝑝 − 1) / 𝑝) = ((𝑝 / 𝑝) − (1 / 𝑝)))
332328, 329, 330, 331syl3anc 1367 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((𝑝 − 1) / 𝑝) = ((𝑝 / 𝑝) − (1 / 𝑝)))
333 divid 11329 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) → (𝑝 / 𝑝) = 1)
334330, 333syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 / 𝑝) = 1)
335334oveq1d 7173 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((𝑝 / 𝑝) − (1 / 𝑝)) = (1 − (1 / 𝑝)))
336332, 335eqtr2d 2859 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 − (1 / 𝑝)) = ((𝑝 − 1) / 𝑝))
337327, 336oveq12d 7176 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((((1 / 𝑝)↑1) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝))) = (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)))
338300, 325, 3373eqtrd 2862 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 / 𝑝)↑𝑘) = (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)))
339338oveq2d 7174 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) · Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 / 𝑝)↑𝑘)) = ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))))
340297, 339eqtr3d 2860 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((log‘𝑝) · ((1 / 𝑝)↑𝑘)) = ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))))
341291, 340breqtrd 5094 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))))
342241rpge0d 12438 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 0 ≤ ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)))
343228, 242subge02d 11234 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (0 ≤ ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)) ↔ ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) ≤ (1 / 𝑝)))
344342, 343mpbid 234 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) ≤ (1 / 𝑝))
345245rpcnne0d 12443 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((𝑝 − 1) ∈ ℂ ∧ (𝑝 − 1) ≠ 0))
346 dmdcan 11352 . . . . . . . . . . . . . . 15 ((((𝑝 − 1) ∈ ℂ ∧ (𝑝 − 1) ≠ 0) ∧ (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) ∧ 1 ∈ ℂ) → (((𝑝 − 1) / 𝑝) · (1 / (𝑝 − 1))) = (1 / 𝑝))
347345, 330, 329, 346syl3anc 1367 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (((𝑝 − 1) / 𝑝) · (1 / (𝑝 − 1))) = (1 / 𝑝))
348344, 347breqtrrd 5096 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) ≤ (((𝑝 − 1) / 𝑝) · (1 / (𝑝 − 1))))
349244nnrecred 11691 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / (𝑝 − 1)) ∈ ℝ)
350243, 349, 246ledivmuld 12487 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)) ≤ (1 / (𝑝 − 1)) ↔ ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) ≤ (((𝑝 − 1) / 𝑝) · (1 / (𝑝 − 1)))))
351348, 350mpbird 259 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)) ≤ (1 / (𝑝 − 1)))
352247, 349, 237lemul2d 12478 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)) ≤ (1 / (𝑝 − 1)) ↔ ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))) ≤ ((log‘𝑝) · (1 / (𝑝 − 1)))))
353351, 352mpbid 234 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))) ≤ ((log‘𝑝) · (1 / (𝑝 − 1))))
354244nncnd 11656 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 − 1) ∈ ℂ)
355244nnne0d 11690 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 − 1) ≠ 0)
356292, 354, 355divrecd 11421 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) / (𝑝 − 1)) = ((log‘𝑝) · (1 / (𝑝 − 1))))
357353, 356breqtrrd 5096 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))) ≤ ((log‘𝑝) / (𝑝 − 1)))
358224, 248, 130, 341, 357letrd 10799 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ ((log‘𝑝) / (𝑝 − 1)))
359129, 358sylan2 594 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ ((log‘𝑝) / (𝑝 − 1)))
360126, 225, 131, 359fsumle 15156 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)))
361223, 360eqbrtrd 5090 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ≤ Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)))
36279adantlr 713 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁}) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
363237, 245rpdivcld 12451 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ+)
364363rpge0d 12438 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 0 ≤ ((log‘𝑝) / (𝑝 − 1)))
36569, 364sylan2 594 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁}) → 0 ≤ ((log‘𝑝) / (𝑝 − 1)))
366122, 362, 365, 125fsumless 15153 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)) ≤ Σ𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)))
367102, 132, 133, 361, 366letrd 10799 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ≤ Σ𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)))
368121, 367eqbrtrd 5090 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) ≤ Σ𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)))
36965, 40, 66, 80, 368elo1d 14895 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) ∈ 𝑂(1))
370 o1sub 14974 . . 3 (((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))) ∈ 𝑂(1))
37164, 369, 370sylancr 589 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))) ∈ 𝑂(1))
37263, 371eqeltrrd 2916 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3018  {crab 3144  Vcvv 3496  cdif 3935  cin 3937  wss 3938   class class class wbr 5068  cmpt 5148  wf 6353  ontowfo 6355  cfv 6357  (class class class)co 7158  f cof 7409  Fincfn 8511  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  0cn0 11900  cz 11984  cuz 12246  +crp 12392  [,]cicc 12744  ...cfz 12895  ..^cfzo 13036  cfl 13163  cexp 13432  abscabs 14595  𝑂(1)co1 14845  Σcsu 15044  cdvds 15609   gcd cgcd 15845  cprime 16017  Basecbs 16485  0gc0g 16715  Grpcgrp 18105  Abelcabl 18909  Unitcui 19391  ℤRHomczrh 20649  ℤ/nczn 20652  logclog 25140  Λcvma 25671  DChrcdchr 25810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-ec 8293  df-qs 8297  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-xnn0 11971  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-o1 14849  df-lo1 14850  df-sum 15045  df-ef 15423  df-e 15424  df-sin 15425  df-cos 15426  df-pi 15428  df-dvds 15610  df-gcd 15846  df-prm 16018  df-pc 16176  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-qus 16784  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-nsg 18279  df-eqg 18280  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-rnghom 19469  df-subrg 19535  df-lmod 19638  df-lss 19706  df-lsp 19746  df-sra 19946  df-rgmod 19947  df-lidl 19948  df-rsp 19949  df-2idl 20007  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-zring 20620  df-zrh 20653  df-zn 20656  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-log 25142  df-cxp 25143  df-cht 25676  df-vma 25677  df-chp 25678  df-ppi 25679  df-dchr 25811
This theorem is referenced by:  rpvmasum2  26090
  Copyright terms: Public domain W3C validator