MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpvmasumlem Structured version   Visualization version   GIF version

Theorem rpvmasumlem 26635
Description: Lemma for rpvmasum 26674. Calculate the "trivial case" estimate Σ𝑛𝑥( 1 (𝑛)Λ(𝑛) / 𝑛) = log𝑥 + 𝑂(1), where 1 (𝑥) is the principal Dirichlet character. Equation 9.4.7 of [Shapiro], p. 376. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
Assertion
Ref Expression
rpvmasumlem (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑛, 1   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥   𝑛,𝑍,𝑥   𝐷,𝑛,𝑥   𝑛,𝐿,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑛)

Proof of Theorem rpvmasumlem
Dummy variables 𝑘 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10962 . . . . . 6 ℝ ∈ V
2 rpssre 12737 . . . . . 6 + ⊆ ℝ
31, 2ssexi 5246 . . . . 5 + ∈ V
43a1i 11 . . . 4 (𝜑 → ℝ+ ∈ V)
5 fzfid 13693 . . . . . . 7 (𝜑 → (1...(⌊‘𝑥)) ∈ Fin)
6 elfznn 13285 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
76adantl 482 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
8 vmacl 26267 . . . . . . . . . 10 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
97, 8syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
109, 7nndivred 12027 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
1110recnd 11003 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
125, 11fsumcl 15445 . . . . . 6 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ)
1312adantr 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ)
14 relogcl 25731 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
1514adantl 482 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
1615recnd 11003 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
1713, 16subcld 11332 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) ∈ ℂ)
18 1re 10975 . . . . . . . . 9 1 ∈ ℝ
19 rpvmasum.g . . . . . . . . . . . 12 𝐺 = (DChr‘𝑁)
20 rpvmasum.z . . . . . . . . . . . 12 𝑍 = (ℤ/nℤ‘𝑁)
21 rpvmasum.1 . . . . . . . . . . . 12 1 = (0g𝐺)
22 eqid 2738 . . . . . . . . . . . 12 (Base‘𝑍) = (Base‘𝑍)
23 rpvmasum.a . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
2419, 20, 21, 22, 23dchr1re 26411 . . . . . . . . . . 11 (𝜑1 :(Base‘𝑍)⟶ℝ)
2524adantr 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → 1 :(Base‘𝑍)⟶ℝ)
2623nnnn0d 12293 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
27 rpvmasum.l . . . . . . . . . . . . 13 𝐿 = (ℤRHom‘𝑍)
2820, 22, 27znzrhfo 20755 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
29 fof 6688 . . . . . . . . . . . 12 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
3026, 28, 293syl 18 . . . . . . . . . . 11 (𝜑𝐿:ℤ⟶(Base‘𝑍))
31 elfzelz 13256 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℤ)
32 ffvelrn 6959 . . . . . . . . . . 11 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑛 ∈ ℤ) → (𝐿𝑛) ∈ (Base‘𝑍))
3330, 31, 32syl2an 596 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (𝐿𝑛) ∈ (Base‘𝑍))
3425, 33ffvelrnd 6962 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ( 1 ‘(𝐿𝑛)) ∈ ℝ)
35 resubcl 11285 . . . . . . . . 9 ((1 ∈ ℝ ∧ ( 1 ‘(𝐿𝑛)) ∈ ℝ) → (1 − ( 1 ‘(𝐿𝑛))) ∈ ℝ)
3618, 34, 35sylancr 587 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (1 − ( 1 ‘(𝐿𝑛))) ∈ ℝ)
3736, 10remulcld 11005 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℝ)
3837recnd 11003 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
395, 38fsumcl 15445 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
4039adantr 481 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
41 eqidd 2739 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))))
42 eqidd 2739 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))))
434, 17, 40, 41, 42offval2 7553 . . 3 (𝜑 → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))))
4413, 16, 40sub32d 11364 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) − (log‘𝑥)))
455, 11, 38fsumsub 15500 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))))
46 1cnd 10970 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
4736recnd 11003 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (1 − ( 1 ‘(𝐿𝑛))) ∈ ℂ)
4846, 47, 11subdird 11432 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − (1 − ( 1 ‘(𝐿𝑛)))) · ((Λ‘𝑛) / 𝑛)) = ((1 · ((Λ‘𝑛) / 𝑛)) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))))
49 ax-1cn 10929 . . . . . . . . . . . 12 1 ∈ ℂ
5034recnd 11003 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ( 1 ‘(𝐿𝑛)) ∈ ℂ)
51 nncan 11250 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ ( 1 ‘(𝐿𝑛)) ∈ ℂ) → (1 − (1 − ( 1 ‘(𝐿𝑛)))) = ( 1 ‘(𝐿𝑛)))
5249, 50, 51sylancr 587 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (1 − (1 − ( 1 ‘(𝐿𝑛)))) = ( 1 ‘(𝐿𝑛)))
5352oveq1d 7290 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − (1 − ( 1 ‘(𝐿𝑛)))) · ((Λ‘𝑛) / 𝑛)) = (( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
5411mulid2d 10993 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (1 · ((Λ‘𝑛) / 𝑛)) = ((Λ‘𝑛) / 𝑛))
5554oveq1d 7290 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → ((1 · ((Λ‘𝑛) / 𝑛)) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = (((Λ‘𝑛) / 𝑛) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))))
5648, 53, 553eqtr3rd 2787 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = (( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
5756sumeq2dv 15415 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) − ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
5845, 57eqtr3d 2780 . . . . . . 7 (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
5958oveq1d 7290 . . . . . 6 (𝜑 → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) − (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
6059adantr 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) − (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
6144, 60eqtrd 2778 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
6261mpteq2dva 5174 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))))
6343, 62eqtrd 2778 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))))
64 vmadivsum 26630 . . 3 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)
652a1i 11 . . . 4 (𝜑 → ℝ+ ⊆ ℝ)
66 1red 10976 . . . 4 (𝜑 → 1 ∈ ℝ)
67 prmdvdsfi 26256 . . . . . 6 (𝑁 ∈ ℕ → {𝑞 ∈ ℙ ∣ 𝑞𝑁} ∈ Fin)
6823, 67syl 17 . . . . 5 (𝜑 → {𝑞 ∈ ℙ ∣ 𝑞𝑁} ∈ Fin)
69 elrabi 3618 . . . . . 6 (𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} → 𝑝 ∈ ℙ)
70 prmnn 16379 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
7170adantl 482 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℕ)
7271nnrpd 12770 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℝ+)
7372relogcld 25778 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (log‘𝑝) ∈ ℝ)
74 prmuz2 16401 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
7574adantl 482 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ (ℤ‘2))
76 uz2m1nn 12663 . . . . . . . 8 (𝑝 ∈ (ℤ‘2) → (𝑝 − 1) ∈ ℕ)
7775, 76syl 17 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (𝑝 − 1) ∈ ℕ)
7873, 77nndivred 12027 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
7969, 78sylan2 593 . . . . 5 ((𝜑𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁}) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
8068, 79fsumrecl 15446 . . . 4 (𝜑 → Σ𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
81 fzfid 13693 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
82 simpr 485 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) = 0) → ( 1 ‘(𝐿𝑛)) = 0)
83 0re 10977 . . . . . . . . . . 11 0 ∈ ℝ
8482, 83eqeltrdi 2847 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) = 0) → ( 1 ‘(𝐿𝑛)) ∈ ℝ)
85 eqid 2738 . . . . . . . . . . . 12 (Unit‘𝑍) = (Unit‘𝑍)
8623ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) ≠ 0) → 𝑁 ∈ ℕ)
87 rpvmasum.d . . . . . . . . . . . . . 14 𝐷 = (Base‘𝐺)
8819dchrabl 26402 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
89 ablgrp 19391 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
9087, 21grpidcl 18607 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → 1𝐷)
9123, 88, 89, 904syl 19 . . . . . . . . . . . . . . 15 (𝜑1𝐷)
9291ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1𝐷)
9333adantlr 712 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐿𝑛) ∈ (Base‘𝑍))
9419, 20, 87, 22, 85, 92, 93dchrn0 26398 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (( 1 ‘(𝐿𝑛)) ≠ 0 ↔ (𝐿𝑛) ∈ (Unit‘𝑍)))
9594biimpa 477 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) ≠ 0) → (𝐿𝑛) ∈ (Unit‘𝑍))
9619, 20, 21, 85, 86, 95dchr1 26405 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) ≠ 0) → ( 1 ‘(𝐿𝑛)) = 1)
9796, 18eqeltrdi 2847 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) ≠ 0) → ( 1 ‘(𝐿𝑛)) ∈ ℝ)
9884, 97pm2.61dane 3032 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ( 1 ‘(𝐿𝑛)) ∈ ℝ)
9918, 98, 35sylancr 587 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 − ( 1 ‘(𝐿𝑛))) ∈ ℝ)
10010adantlr 712 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
10199, 100remulcld 11005 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℝ)
10281, 101fsumrecl 15446 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℝ)
103 0le1 11498 . . . . . . . . . . 11 0 ≤ 1
10482, 103eqbrtrdi 5113 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) = 0) → ( 1 ‘(𝐿𝑛)) ≤ 1)
10518leidi 11509 . . . . . . . . . . 11 1 ≤ 1
10696, 105eqbrtrdi 5113 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ ( 1 ‘(𝐿𝑛)) ≠ 0) → ( 1 ‘(𝐿𝑛)) ≤ 1)
107104, 106pm2.61dane 3032 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ( 1 ‘(𝐿𝑛)) ≤ 1)
108 subge0 11488 . . . . . . . . . 10 ((1 ∈ ℝ ∧ ( 1 ‘(𝐿𝑛)) ∈ ℝ) → (0 ≤ (1 − ( 1 ‘(𝐿𝑛))) ↔ ( 1 ‘(𝐿𝑛)) ≤ 1))
10918, 98, 108sylancr 587 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (0 ≤ (1 − ( 1 ‘(𝐿𝑛))) ↔ ( 1 ‘(𝐿𝑛)) ≤ 1))
110107, 109mpbird 256 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (1 − ( 1 ‘(𝐿𝑛))))
1119adantlr 712 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
1126adantl 482 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
113 vmage0 26270 . . . . . . . . . 10 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
114112, 113syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑛))
115112nnred 11988 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
116112nngt0d 12022 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 < 𝑛)
117 divge0 11844 . . . . . . . . 9 ((((Λ‘𝑛) ∈ ℝ ∧ 0 ≤ (Λ‘𝑛)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → 0 ≤ ((Λ‘𝑛) / 𝑛))
118111, 114, 115, 116, 117syl22anc 836 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((Λ‘𝑛) / 𝑛))
11999, 100, 110, 118mulge0d 11552 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))
12081, 101, 119fsumge0 15507 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))
121102, 120absidd 15134 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))
12268adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → {𝑞 ∈ ℙ ∣ 𝑞𝑁} ∈ Fin)
123 inss2 4163 . . . . . . . . 9 ((0[,]𝑥) ∩ ℙ) ⊆ ℙ
124 rabss2 4011 . . . . . . . . 9 (((0[,]𝑥) ∩ ℙ) ⊆ ℙ → {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ⊆ {𝑞 ∈ ℙ ∣ 𝑞𝑁})
125123, 124mp1i 13 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ⊆ {𝑞 ∈ ℙ ∣ 𝑞𝑁})
126122, 125ssfid 9042 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ∈ Fin)
127 ssrab2 4013 . . . . . . . . . 10 {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ⊆ ((0[,]𝑥) ∩ ℙ)
128127, 123sstri 3930 . . . . . . . . 9 {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ⊆ ℙ
129128sseli 3917 . . . . . . . 8 (𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} → 𝑝 ∈ ℙ)
13078adantlr 712 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
131129, 130sylan2 593 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
132126, 131fsumrecl 15446 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
13380adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
134 2fveq3 6779 . . . . . . . . . . 11 (𝑛 = (𝑝𝑘) → ( 1 ‘(𝐿𝑛)) = ( 1 ‘(𝐿‘(𝑝𝑘))))
135134oveq2d 7291 . . . . . . . . . 10 (𝑛 = (𝑝𝑘) → (1 − ( 1 ‘(𝐿𝑛))) = (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))))
136 fveq2 6774 . . . . . . . . . . 11 (𝑛 = (𝑝𝑘) → (Λ‘𝑛) = (Λ‘(𝑝𝑘)))
137 id 22 . . . . . . . . . . 11 (𝑛 = (𝑝𝑘) → 𝑛 = (𝑝𝑘))
138136, 137oveq12d 7293 . . . . . . . . . 10 (𝑛 = (𝑝𝑘) → ((Λ‘𝑛) / 𝑛) = ((Λ‘(𝑝𝑘)) / (𝑝𝑘)))
139135, 138oveq12d 7293 . . . . . . . . 9 (𝑛 = (𝑝𝑘) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) = ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
140 rpre 12738 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
141140ad2antrl 725 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
14238adantlr 712 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
143 simprr 770 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → (Λ‘𝑛) = 0)
144143oveq1d 7290 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → ((Λ‘𝑛) / 𝑛) = (0 / 𝑛))
1456ad2antrl 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → 𝑛 ∈ ℕ)
146145nncnd 11989 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → 𝑛 ∈ ℂ)
147145nnne0d 12023 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → 𝑛 ≠ 0)
148146, 147div0d 11750 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → (0 / 𝑛) = 0)
149144, 148eqtrd 2778 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → ((Λ‘𝑛) / 𝑛) = 0)
150149oveq2d 7291 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) = ((1 − ( 1 ‘(𝐿𝑛))) · 0))
15147ad2ant2r 744 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → (1 − ( 1 ‘(𝐿𝑛))) ∈ ℂ)
152151mul01d 11174 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → ((1 − ( 1 ‘(𝐿𝑛))) · 0) = 0)
153150, 152eqtrd 2778 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ (Λ‘𝑛) = 0)) → ((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) = 0)
154139, 141, 142, 153fsumvma2 26362 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) = Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
155127a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ⊆ ((0[,]𝑥) ∩ ℙ))
156 fzfid 13693 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ∈ Fin)
15724ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 1 :(Base‘𝑍)⟶ℝ)
15830ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝐿:ℤ⟶(Base‘𝑍))
15970ad2antrl 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑝 ∈ ℕ)
160 elfznn 13285 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) → 𝑘 ∈ ℕ)
161160ad2antll 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑘 ∈ ℕ)
162161nnnn0d 12293 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑘 ∈ ℕ0)
163159, 162nnexpcld 13960 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝑝𝑘) ∈ ℕ)
164163nnzd 12425 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝑝𝑘) ∈ ℤ)
165158, 164ffvelrnd 6962 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝐿‘(𝑝𝑘)) ∈ (Base‘𝑍))
166157, 165ffvelrnd 6962 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ( 1 ‘(𝐿‘(𝑝𝑘))) ∈ ℝ)
167 resubcl 11285 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ∈ ℝ) → (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) ∈ ℝ)
16818, 166, 167sylancr 587 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) ∈ ℝ)
169 vmacl 26267 . . . . . . . . . . . . . . . 16 ((𝑝𝑘) ∈ ℕ → (Λ‘(𝑝𝑘)) ∈ ℝ)
170163, 169syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (Λ‘(𝑝𝑘)) ∈ ℝ)
171170, 163nndivred 12027 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) ∈ ℝ)
172168, 171remulcld 11005 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℝ)
173172anassrs 468 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℝ)
174173recnd 11003 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℂ)
175156, 174fsumcl 15445 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℂ)
176129, 175sylan2 593 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℂ)
177 breq1 5077 . . . . . . . . . . . 12 (𝑞 = 𝑝 → (𝑞𝑁𝑝𝑁))
178177notbid 318 . . . . . . . . . . 11 (𝑞 = 𝑝 → (¬ 𝑞𝑁 ↔ ¬ 𝑝𝑁))
179 notrab 4245 . . . . . . . . . . 11 (((0[,]𝑥) ∩ ℙ) ∖ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) = {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ ¬ 𝑞𝑁}
180178, 179elrab2 3627 . . . . . . . . . 10 (𝑝 ∈ (((0[,]𝑥) ∩ ℙ) ∖ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) ↔ (𝑝 ∈ ((0[,]𝑥) ∩ ℙ) ∧ ¬ 𝑝𝑁))
181123sseli 3917 . . . . . . . . . . 11 (𝑝 ∈ ((0[,]𝑥) ∩ ℙ) → 𝑝 ∈ ℙ)
18223ad3antrrr 727 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑁 ∈ ℕ)
183 simplrr 775 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ¬ 𝑝𝑁)
184 simplrl 774 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑝 ∈ ℙ)
185182nnzd 12425 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑁 ∈ ℤ)
186 coprm 16416 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑝𝑁 ↔ (𝑝 gcd 𝑁) = 1))
187184, 185, 186syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (¬ 𝑝𝑁 ↔ (𝑝 gcd 𝑁) = 1))
188183, 187mpbid 231 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (𝑝 gcd 𝑁) = 1)
189 prmz 16380 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
190184, 189syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑝 ∈ ℤ)
191160adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑘 ∈ ℕ)
192191nnnn0d 12293 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑘 ∈ ℕ0)
193 rpexp1i 16428 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → ((𝑝 gcd 𝑁) = 1 → ((𝑝𝑘) gcd 𝑁) = 1))
194190, 185, 192, 193syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((𝑝 gcd 𝑁) = 1 → ((𝑝𝑘) gcd 𝑁) = 1))
195188, 194mpd 15 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((𝑝𝑘) gcd 𝑁) = 1)
196182nnnn0d 12293 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → 𝑁 ∈ ℕ0)
197164anassrs 468 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (𝑝𝑘) ∈ ℤ)
198197adantlrr 718 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (𝑝𝑘) ∈ ℤ)
19920, 85, 27znunit 20771 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0 ∧ (𝑝𝑘) ∈ ℤ) → ((𝐿‘(𝑝𝑘)) ∈ (Unit‘𝑍) ↔ ((𝑝𝑘) gcd 𝑁) = 1))
200196, 198, 199syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((𝐿‘(𝑝𝑘)) ∈ (Unit‘𝑍) ↔ ((𝑝𝑘) gcd 𝑁) = 1))
201195, 200mpbird 256 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (𝐿‘(𝑝𝑘)) ∈ (Unit‘𝑍))
20219, 20, 21, 85, 182, 201dchr1 26405 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ( 1 ‘(𝐿‘(𝑝𝑘))) = 1)
203202oveq2d 7291 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) = (1 − 1))
204 1m1e0 12045 . . . . . . . . . . . . . . . 16 (1 − 1) = 0
205203, 204eqtrdi 2794 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) = 0)
206205oveq1d 7290 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = (0 · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
207171recnd 11003 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) ∈ ℂ)
208207anassrs 468 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) ∈ ℂ)
209208adantlrr 718 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) ∈ ℂ)
210209mul02d 11173 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → (0 · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = 0)
211206, 210eqtrd 2778 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = 0)
212211sumeq2dv 15415 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))0)
213 fzfid 13693 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) → (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ∈ Fin)
214213olcd 871 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) → ((1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ⊆ (ℤ‘1) ∨ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ∈ Fin))
215 sumz 15434 . . . . . . . . . . . . 13 (((1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ⊆ (ℤ‘1) ∨ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) ∈ Fin) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))0 = 0)
216214, 215syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))0 = 0)
217212, 216eqtrd 2778 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ ¬ 𝑝𝑁)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = 0)
218181, 217sylanr1 679 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ((0[,]𝑥) ∩ ℙ) ∧ ¬ 𝑝𝑁)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = 0)
219180, 218sylan2b 594 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ (((0[,]𝑥) ∩ ℙ) ∖ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁})) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = 0)
220 ppifi 26255 . . . . . . . . . 10 (𝑥 ∈ ℝ → ((0[,]𝑥) ∩ ℙ) ∈ Fin)
221141, 220syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((0[,]𝑥) ∩ ℙ) ∈ Fin)
222155, 176, 219, 221fsumss 15437 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
223154, 222eqtr4d 2781 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) = Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
224156, 173fsumrecl 15446 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℝ)
225129, 224sylan2 593 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ∈ ℝ)
22673adantlr 712 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (log‘𝑝) ∈ ℝ)
22770adantl 482 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℕ)
228227nnrecred 12024 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / 𝑝) ∈ ℝ)
229227nnrpd 12770 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℝ+)
230229rpreccld 12782 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / 𝑝) ∈ ℝ+)
231 simplrl 774 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑥 ∈ ℝ+)
232231relogcld 25778 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (log‘𝑥) ∈ ℝ)
233227nnred 11988 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℝ)
23474adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ (ℤ‘2))
235 eluz2gt1 12660 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
236234, 235syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 1 < 𝑝)
237233, 236rplogcld 25784 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (log‘𝑝) ∈ ℝ+)
238232, 237rerpdivcld 12803 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑥) / (log‘𝑝)) ∈ ℝ)
239238flcld 13518 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (⌊‘((log‘𝑥) / (log‘𝑝))) ∈ ℤ)
240239peano2zd 12429 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((⌊‘((log‘𝑥) / (log‘𝑝))) + 1) ∈ ℤ)
241230, 240rpexpcld 13962 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)) ∈ ℝ+)
242241rpred 12772 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)) ∈ ℝ)
243228, 242resubcld 11403 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) ∈ ℝ)
244234, 76syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 − 1) ∈ ℕ)
245244nnrpd 12770 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 − 1) ∈ ℝ+)
246245, 229rpdivcld 12789 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((𝑝 − 1) / 𝑝) ∈ ℝ+)
247243, 246rerpdivcld 12803 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)) ∈ ℝ)
248226, 247remulcld 11005 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))) ∈ ℝ)
249170recnd 11003 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (Λ‘(𝑝𝑘)) ∈ ℂ)
250163nncnd 11989 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝑝𝑘) ∈ ℂ)
251163nnne0d 12023 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝑝𝑘) ≠ 0)
252249, 250, 251divrecd 11754 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) = ((Λ‘(𝑝𝑘)) · (1 / (𝑝𝑘))))
253 simprl 768 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑝 ∈ ℙ)
254 vmappw 26265 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
255253, 161, 254syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
256159nncnd 11989 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑝 ∈ ℂ)
257159nnne0d 12023 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑝 ≠ 0)
258 elfzelz 13256 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) → 𝑘 ∈ ℤ)
259258ad2antll 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 𝑘 ∈ ℤ)
260256, 257, 259exprecd 13872 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 / 𝑝)↑𝑘) = (1 / (𝑝𝑘)))
261260eqcomd 2744 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 / (𝑝𝑘)) = ((1 / 𝑝)↑𝑘))
262255, 261oveq12d 7293 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((Λ‘(𝑝𝑘)) · (1 / (𝑝𝑘))) = ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
263252, 262eqtrd 2778 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((Λ‘(𝑝𝑘)) / (𝑝𝑘)) = ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
264263, 171eqeltrrd 2840 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((log‘𝑝) · ((1 / 𝑝)↑𝑘)) ∈ ℝ)
265264anassrs 468 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((log‘𝑝) · ((1 / 𝑝)↑𝑘)) ∈ ℝ)
266 1red 10976 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 1 ∈ ℝ)
267 vmage0 26270 . . . . . . . . . . . . . . . . 17 ((𝑝𝑘) ∈ ℕ → 0 ≤ (Λ‘(𝑝𝑘)))
268163, 267syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 0 ≤ (Λ‘(𝑝𝑘)))
269163nnred 11988 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (𝑝𝑘) ∈ ℝ)
270163nngt0d 12022 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 0 < (𝑝𝑘))
271 divge0 11844 . . . . . . . . . . . . . . . 16 ((((Λ‘(𝑝𝑘)) ∈ ℝ ∧ 0 ≤ (Λ‘(𝑝𝑘))) ∧ ((𝑝𝑘) ∈ ℝ ∧ 0 < (𝑝𝑘))) → 0 ≤ ((Λ‘(𝑝𝑘)) / (𝑝𝑘)))
272170, 268, 269, 270, 271syl22anc 836 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 0 ≤ ((Λ‘(𝑝𝑘)) / (𝑝𝑘)))
27383leidi 11509 . . . . . . . . . . . . . . . . . 18 0 ≤ 0
274 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) = 0) → ( 1 ‘(𝐿‘(𝑝𝑘))) = 0)
275273, 274breqtrrid 5112 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) = 0) → 0 ≤ ( 1 ‘(𝐿‘(𝑝𝑘))))
27623ad3antrrr 727 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ≠ 0) → 𝑁 ∈ ℕ)
27791ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 1𝐷)
27819, 20, 87, 22, 85, 277, 165dchrn0 26398 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (( 1 ‘(𝐿‘(𝑝𝑘))) ≠ 0 ↔ (𝐿‘(𝑝𝑘)) ∈ (Unit‘𝑍)))
279278biimpa 477 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ≠ 0) → (𝐿‘(𝑝𝑘)) ∈ (Unit‘𝑍))
28019, 20, 21, 85, 276, 279dchr1 26405 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ≠ 0) → ( 1 ‘(𝐿‘(𝑝𝑘))) = 1)
281103, 280breqtrrid 5112 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ≠ 0) → 0 ≤ ( 1 ‘(𝐿‘(𝑝𝑘))))
282275, 281pm2.61dane 3032 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → 0 ≤ ( 1 ‘(𝐿‘(𝑝𝑘))))
283 subge02 11491 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ ( 1 ‘(𝐿‘(𝑝𝑘))) ∈ ℝ) → (0 ≤ ( 1 ‘(𝐿‘(𝑝𝑘))) ↔ (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) ≤ 1))
28418, 166, 283sylancr 587 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (0 ≤ ( 1 ‘(𝐿‘(𝑝𝑘))) ↔ (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) ≤ 1))
285282, 284mpbid 231 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) ≤ 1)
286168, 266, 171, 272, 285lemul1ad 11914 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ (1 · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))))
287207mulid2d 10993 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = ((Λ‘(𝑝𝑘)) / (𝑝𝑘)))
288287, 263eqtrd 2778 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) = ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
289286, 288breqtrd 5100 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
290289anassrs 468 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ ((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
291156, 173, 265, 290fsumle 15511 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
292226recnd 11003 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (log‘𝑝) ∈ ℂ)
293159nnrecred 12024 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → (1 / 𝑝) ∈ ℝ)
294293, 162reexpcld 13881 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 / 𝑝)↑𝑘) ∈ ℝ)
295294recnd 11003 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝)))))) → ((1 / 𝑝)↑𝑘) ∈ ℂ)
296295anassrs 468 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))) → ((1 / 𝑝)↑𝑘) ∈ ℂ)
297156, 292, 296fsummulc2 15496 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) · Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 / 𝑝)↑𝑘)) = Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((log‘𝑝) · ((1 / 𝑝)↑𝑘)))
298 fzval3 13456 . . . . . . . . . . . . . . . 16 ((⌊‘((log‘𝑥) / (log‘𝑝))) ∈ ℤ → (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) = (1..^((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)))
299239, 298syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1...(⌊‘((log‘𝑥) / (log‘𝑝)))) = (1..^((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)))
300299sumeq1d 15413 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 / 𝑝)↑𝑘) = Σ𝑘 ∈ (1..^((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))((1 / 𝑝)↑𝑘))
301228recnd 11003 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / 𝑝) ∈ ℂ)
302227nngt0d 12022 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 0 < 𝑝)
303 recgt1 11871 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℝ ∧ 0 < 𝑝) → (1 < 𝑝 ↔ (1 / 𝑝) < 1))
304233, 302, 303syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 < 𝑝 ↔ (1 / 𝑝) < 1))
305236, 304mpbid 231 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / 𝑝) < 1)
306228, 305ltned 11111 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / 𝑝) ≠ 1)
307 1nn0 12249 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
308307a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 1 ∈ ℕ0)
309 log1 25741 . . . . . . . . . . . . . . . . . . . . 21 (log‘1) = 0
310 simprr 770 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
311 1rp 12734 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ+
312 simprl 768 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
313 logleb 25758 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
314311, 312, 313sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
315310, 314mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
316309, 315eqbrtrrid 5110 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
317316adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 0 ≤ (log‘𝑥))
318232, 237, 317divge0d 12812 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 0 ≤ ((log‘𝑥) / (log‘𝑝)))
319 flge0nn0 13540 . . . . . . . . . . . . . . . . . 18 ((((log‘𝑥) / (log‘𝑝)) ∈ ℝ ∧ 0 ≤ ((log‘𝑥) / (log‘𝑝))) → (⌊‘((log‘𝑥) / (log‘𝑝))) ∈ ℕ0)
320238, 318, 319syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (⌊‘((log‘𝑥) / (log‘𝑝))) ∈ ℕ0)
321 nn0p1nn 12272 . . . . . . . . . . . . . . . . 17 ((⌊‘((log‘𝑥) / (log‘𝑝))) ∈ ℕ0 → ((⌊‘((log‘𝑥) / (log‘𝑝))) + 1) ∈ ℕ)
322320, 321syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((⌊‘((log‘𝑥) / (log‘𝑝))) + 1) ∈ ℕ)
323 nnuz 12621 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
324322, 323eleqtrdi 2849 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((⌊‘((log‘𝑥) / (log‘𝑝))) + 1) ∈ (ℤ‘1))
325301, 306, 308, 324geoserg 15578 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1..^((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))((1 / 𝑝)↑𝑘) = ((((1 / 𝑝)↑1) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝))))
326301exp1d 13859 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝)↑1) = (1 / 𝑝))
327326oveq1d 7290 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (((1 / 𝑝)↑1) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) = ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))))
328227nncnd 11989 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℂ)
329 1cnd 10970 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 1 ∈ ℂ)
330229rpcnne0d 12781 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0))
331 divsubdir 11669 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0)) → ((𝑝 − 1) / 𝑝) = ((𝑝 / 𝑝) − (1 / 𝑝)))
332328, 329, 330, 331syl3anc 1370 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((𝑝 − 1) / 𝑝) = ((𝑝 / 𝑝) − (1 / 𝑝)))
333 divid 11662 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) → (𝑝 / 𝑝) = 1)
334330, 333syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 / 𝑝) = 1)
335334oveq1d 7290 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((𝑝 / 𝑝) − (1 / 𝑝)) = (1 − (1 / 𝑝)))
336332, 335eqtr2d 2779 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 − (1 / 𝑝)) = ((𝑝 − 1) / 𝑝))
337327, 336oveq12d 7293 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((((1 / 𝑝)↑1) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / (1 − (1 / 𝑝))) = (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)))
338300, 325, 3373eqtrd 2782 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 / 𝑝)↑𝑘) = (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)))
339338oveq2d 7291 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) · Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 / 𝑝)↑𝑘)) = ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))))
340297, 339eqtr3d 2780 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((log‘𝑝) · ((1 / 𝑝)↑𝑘)) = ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))))
341291, 340breqtrd 5100 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))))
342241rpge0d 12776 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 0 ≤ ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)))
343228, 242subge02d 11567 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (0 ≤ ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1)) ↔ ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) ≤ (1 / 𝑝)))
344342, 343mpbid 231 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) ≤ (1 / 𝑝))
345245rpcnne0d 12781 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((𝑝 − 1) ∈ ℂ ∧ (𝑝 − 1) ≠ 0))
346 dmdcan 11685 . . . . . . . . . . . . . . 15 ((((𝑝 − 1) ∈ ℂ ∧ (𝑝 − 1) ≠ 0) ∧ (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) ∧ 1 ∈ ℂ) → (((𝑝 − 1) / 𝑝) · (1 / (𝑝 − 1))) = (1 / 𝑝))
347345, 330, 329, 346syl3anc 1370 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (((𝑝 − 1) / 𝑝) · (1 / (𝑝 − 1))) = (1 / 𝑝))
348344, 347breqtrrd 5102 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) ≤ (((𝑝 − 1) / 𝑝) · (1 / (𝑝 − 1))))
349244nnrecred 12024 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (1 / (𝑝 − 1)) ∈ ℝ)
350243, 349, 246ledivmuld 12825 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)) ≤ (1 / (𝑝 − 1)) ↔ ((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) ≤ (((𝑝 − 1) / 𝑝) · (1 / (𝑝 − 1)))))
351348, 350mpbird 256 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)) ≤ (1 / (𝑝 − 1)))
352247, 349, 237lemul2d 12816 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝)) ≤ (1 / (𝑝 − 1)) ↔ ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))) ≤ ((log‘𝑝) · (1 / (𝑝 − 1)))))
353351, 352mpbid 231 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))) ≤ ((log‘𝑝) · (1 / (𝑝 − 1))))
354244nncnd 11989 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 − 1) ∈ ℂ)
355244nnne0d 12023 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → (𝑝 − 1) ≠ 0)
356292, 354, 355divrecd 11754 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) / (𝑝 − 1)) = ((log‘𝑝) · (1 / (𝑝 − 1))))
357353, 356breqtrrd 5102 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) · (((1 / 𝑝) − ((1 / 𝑝)↑((⌊‘((log‘𝑥) / (log‘𝑝))) + 1))) / ((𝑝 − 1) / 𝑝))) ≤ ((log‘𝑝) / (𝑝 − 1)))
358224, 248, 130, 341, 357letrd 11132 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ ((log‘𝑝) / (𝑝 − 1)))
359129, 358sylan2 593 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁}) → Σ𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ ((log‘𝑝) / (𝑝 − 1)))
360126, 225, 131, 359fsumle 15511 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁𝑘 ∈ (1...(⌊‘((log‘𝑥) / (log‘𝑝))))((1 − ( 1 ‘(𝐿‘(𝑝𝑘)))) · ((Λ‘(𝑝𝑘)) / (𝑝𝑘))) ≤ Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)))
361223, 360eqbrtrd 5096 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ≤ Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)))
36279adantlr 712 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁}) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ)
363237, 245rpdivcld 12789 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → ((log‘𝑝) / (𝑝 − 1)) ∈ ℝ+)
364363rpge0d 12776 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ ℙ) → 0 ≤ ((log‘𝑝) / (𝑝 − 1)))
36569, 364sylan2 593 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁}) → 0 ≤ ((log‘𝑝) / (𝑝 − 1)))
366122, 362, 365, 125fsumless 15508 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑝 ∈ {𝑞 ∈ ((0[,]𝑥) ∩ ℙ) ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)) ≤ Σ𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)))
367102, 132, 133, 361, 366letrd 11132 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)) ≤ Σ𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)))
368121, 367eqbrtrd 5096 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) ≤ Σ𝑝 ∈ {𝑞 ∈ ℙ ∣ 𝑞𝑁} ((log‘𝑝) / (𝑝 − 1)))
36965, 40, 66, 80, 368elo1d 15245 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) ∈ 𝑂(1))
370 o1sub 15325 . . 3 (((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))) ∈ 𝑂(1))
37164, 369, 370sylancr 587 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∘f − (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((1 − ( 1 ‘(𝐿𝑛))) · ((Λ‘𝑛) / 𝑛)))) ∈ 𝑂(1))
37263, 371eqeltrrd 2840 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  {crab 3068  Vcvv 3432  cdif 3884  cin 3886  wss 3887   class class class wbr 5074  cmpt 5157  wf 6429  ontowfo 6431  cfv 6433  (class class class)co 7275  f cof 7531  Fincfn 8733  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  +crp 12730  [,]cicc 13082  ...cfz 13239  ..^cfzo 13382  cfl 13510  cexp 13782  abscabs 14945  𝑂(1)co1 15195  Σcsu 15397  cdvds 15963   gcd cgcd 16201  cprime 16376  Basecbs 16912  0gc0g 17150  Grpcgrp 18577  Abelcabl 19387  Unitcui 19881  ℤRHomczrh 20701  ℤ/nczn 20704  logclog 25710  Λcvma 26241  DChrcdchr 26380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-o1 15199  df-lo1 15200  df-sum 15398  df-ef 15777  df-e 15778  df-sin 15779  df-cos 15780  df-pi 15782  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-qus 17220  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-nsg 18753  df-eqg 18754  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-rnghom 19959  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-rsp 20437  df-2idl 20503  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-zn 20708  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-cxp 25713  df-cht 26246  df-vma 26247  df-chp 26248  df-ppi 26249  df-dchr 26381
This theorem is referenced by:  rpvmasum2  26660
  Copyright terms: Public domain W3C validator