Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  leopmuli Structured version   Visualization version   GIF version

Theorem leopmuli 29564
 Description: The scalar product of a nonnegative real and a positive operator is a positive operator. Exercise 1(ii) of [Retherford] p. 49. (Contributed by NM, 25-Jul-2006.) (New usage is discouraged.)
Assertion
Ref Expression
leopmuli (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (0 ≤ 𝐴 ∧ 0hopop 𝑇)) → 0hopop (𝐴 ·op 𝑇))

Proof of Theorem leopmuli
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hmopre 29354 . . . . . . . . . 10 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ∈ ℝ)
2 mulge0 10893 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (((𝑇𝑥) ·ih 𝑥) ∈ ℝ ∧ 0 ≤ ((𝑇𝑥) ·ih 𝑥))) → 0 ≤ (𝐴 · ((𝑇𝑥) ·ih 𝑥)))
31, 2sylanr1 672 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) ∧ 0 ≤ ((𝑇𝑥) ·ih 𝑥))) → 0 ≤ (𝐴 · ((𝑇𝑥) ·ih 𝑥)))
43expr 450 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ)) → (0 ≤ ((𝑇𝑥) ·ih 𝑥) → 0 ≤ (𝐴 · ((𝑇𝑥) ·ih 𝑥))))
54an4s 650 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (0 ≤ 𝐴𝑥 ∈ ℋ)) → (0 ≤ ((𝑇𝑥) ·ih 𝑥) → 0 ≤ (𝐴 · ((𝑇𝑥) ·ih 𝑥))))
65anassrs 461 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℋ) → (0 ≤ ((𝑇𝑥) ·ih 𝑥) → 0 ≤ (𝐴 · ((𝑇𝑥) ·ih 𝑥))))
7 recn 10362 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
8 hmopf 29305 . . . . . . . . . 10 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
97, 8anim12i 606 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ))
10 homval 29172 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
11103expa 1108 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
1211oveq1d 6937 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑥) = ((𝐴 · (𝑇𝑥)) ·ih 𝑥))
13 simpll 757 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℂ)
14 ffvelrn 6621 . . . . . . . . . . . 12 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
1514adantll 704 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
16 simpr 479 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
17 ax-his3 28513 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 · (𝑇𝑥)) ·ih 𝑥) = (𝐴 · ((𝑇𝑥) ·ih 𝑥)))
1813, 15, 16, 17syl3anc 1439 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 · (𝑇𝑥)) ·ih 𝑥) = (𝐴 · ((𝑇𝑥) ·ih 𝑥)))
1912, 18eqtrd 2813 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑥) = (𝐴 · ((𝑇𝑥) ·ih 𝑥)))
209, 19sylan 575 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑥) = (𝐴 · ((𝑇𝑥) ·ih 𝑥)))
2120breq2d 4898 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ 𝑥 ∈ ℋ) → (0 ≤ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (𝐴 · ((𝑇𝑥) ·ih 𝑥))))
2221adantlr 705 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℋ) → (0 ≤ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (𝐴 · ((𝑇𝑥) ·ih 𝑥))))
236, 22sylibrd 251 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ 0 ≤ 𝐴) ∧ 𝑥 ∈ ℋ) → (0 ≤ ((𝑇𝑥) ·ih 𝑥) → 0 ≤ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑥)))
2423ralimdva 3143 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ 0 ≤ 𝐴) → (∀𝑥 ∈ ℋ 0 ≤ ((𝑇𝑥) ·ih 𝑥) → ∀𝑥 ∈ ℋ 0 ≤ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑥)))
2524expimpd 447 . . 3 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → ((0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℋ 0 ≤ ((𝑇𝑥) ·ih 𝑥)) → ∀𝑥 ∈ ℋ 0 ≤ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑥)))
26 leoppos 29557 . . . . 5 (𝑇 ∈ HrmOp → ( 0hopop 𝑇 ↔ ∀𝑥 ∈ ℋ 0 ≤ ((𝑇𝑥) ·ih 𝑥)))
2726adantl 475 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → ( 0hopop 𝑇 ↔ ∀𝑥 ∈ ℋ 0 ≤ ((𝑇𝑥) ·ih 𝑥)))
2827anbi2d 622 . . 3 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → ((0 ≤ 𝐴 ∧ 0hopop 𝑇) ↔ (0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℋ 0 ≤ ((𝑇𝑥) ·ih 𝑥))))
29 hmopm 29452 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ·op 𝑇) ∈ HrmOp)
30 leoppos 29557 . . . 4 ((𝐴 ·op 𝑇) ∈ HrmOp → ( 0hopop (𝐴 ·op 𝑇) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑥)))
3129, 30syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → ( 0hopop (𝐴 ·op 𝑇) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑥)))
3225, 28, 313imtr4d 286 . 2 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → ((0 ≤ 𝐴 ∧ 0hopop 𝑇) → 0hopop (𝐴 ·op 𝑇)))
3332imp 397 1 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (0 ≤ 𝐴 ∧ 0hopop 𝑇)) → 0hopop (𝐴 ·op 𝑇))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1601   ∈ wcel 2106  ∀wral 3089   class class class wbr 4886  ⟶wf 6131  ‘cfv 6135  (class class class)co 6922  ℂcc 10270  ℝcr 10271  0cc0 10272   · cmul 10277   ≤ cle 10412   ℋchba 28348   ·ℎ csm 28350   ·ih csp 28351   ·op chot 28368   0hop ch0o 28372  HrmOpcho 28379   ≤op cleo 28387 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cc 9592  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352  ax-hilex 28428  ax-hfvadd 28429  ax-hvcom 28430  ax-hvass 28431  ax-hv0cl 28432  ax-hvaddid 28433  ax-hfvmul 28434  ax-hvmulid 28435  ax-hvmulass 28436  ax-hvdistr1 28437  ax-hvdistr2 28438  ax-hvmul0 28439  ax-hfi 28508  ax-his1 28511  ax-his2 28512  ax-his3 28513  ax-his4 28514  ax-hcompl 28631 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-omul 7848  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-acn 9101  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-rlim 14628  df-sum 14825  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-cn 21439  df-cnp 21440  df-lm 21441  df-haus 21527  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-xms 22533  df-ms 22534  df-tms 22535  df-cfil 23461  df-cau 23462  df-cmet 23463  df-grpo 27920  df-gid 27921  df-ginv 27922  df-gdiv 27923  df-ablo 27972  df-vc 27986  df-nv 28019  df-va 28022  df-ba 28023  df-sm 28024  df-0v 28025  df-vs 28026  df-nmcv 28027  df-ims 28028  df-dip 28128  df-ssp 28149  df-ph 28240  df-cbn 28291  df-hnorm 28397  df-hba 28398  df-hvsub 28400  df-hlim 28401  df-hcau 28402  df-sh 28636  df-ch 28650  df-oc 28681  df-ch0 28682  df-shs 28739  df-pjh 28826  df-hosum 29161  df-homul 29162  df-hodif 29163  df-h0op 29179  df-hmop 29275  df-leop 29283 This theorem is referenced by:  leopmul  29565  leopmul2i  29566  opsqrlem1  29571
 Copyright terms: Public domain W3C validator