| Step | Hyp | Ref
| Expression |
| 1 | | zq 12970 |
. . 3
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℚ) |
| 2 | | eqid 2735 |
. . . 4
⊢
sup({𝑛 ∈
ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) |
| 3 | | eqid 2735 |
. . . 4
⊢
sup({𝑛 ∈
ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) |
| 4 | 2, 3 | pcval 16864 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))))) |
| 5 | 1, 4 | sylanr1 682 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))))) |
| 6 | | simprl 770 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈
ℤ) |
| 7 | 6 | zcnd 12698 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈
ℂ) |
| 8 | 7 | div1d 12009 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑁 / 1) = 𝑁) |
| 9 | 8 | eqcomd 2741 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 = (𝑁 / 1)) |
| 10 | | prmuz2 16715 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) |
| 11 | | eqid 2735 |
. . . . . . . 8
⊢ 1 =
1 |
| 12 | | eqid 2735 |
. . . . . . . . 9
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 1} = {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 1} |
| 13 | | eqid 2735 |
. . . . . . . . 9
⊢
sup({𝑛 ∈
ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < ) = sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 1}, ℝ, <
) |
| 14 | 12, 13 | pcpre1 16862 |
. . . . . . . 8
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 1 = 1) → sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < ) =
0) |
| 15 | 10, 11, 14 | sylancl 586 |
. . . . . . 7
⊢ (𝑃 ∈ ℙ →
sup({𝑛 ∈
ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < ) =
0) |
| 16 | 15 | adantr 480 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 1}, ℝ, < ) =
0) |
| 17 | 16 | oveq2d 7421 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < )) = (𝑆 − 0)) |
| 18 | | eqid 2735 |
. . . . . . . . . 10
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑁} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} |
| 19 | | pczpre.1 |
. . . . . . . . . 10
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}, ℝ, < ) |
| 20 | 18, 19 | pcprecl 16859 |
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) |
| 21 | 10, 20 | sylan 580 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0
∧ (𝑃↑𝑆) ∥ 𝑁)) |
| 22 | 21 | simpld 494 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈
ℕ0) |
| 23 | 22 | nn0cnd 12564 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈
ℂ) |
| 24 | 23 | subid1d 11583 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 − 0) = 𝑆) |
| 25 | 17, 24 | eqtr2d 2771 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, <
))) |
| 26 | | 1nn 12251 |
. . . . 5
⊢ 1 ∈
ℕ |
| 27 | | oveq1 7412 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (𝑥 / 𝑦) = (𝑁 / 𝑦)) |
| 28 | 27 | eqeq2d 2746 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (𝑁 = (𝑥 / 𝑦) ↔ 𝑁 = (𝑁 / 𝑦))) |
| 29 | | breq2 5123 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑁 → ((𝑃↑𝑛) ∥ 𝑥 ↔ (𝑃↑𝑛) ∥ 𝑁)) |
| 30 | 29 | rabbidv 3423 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑁 → {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}) |
| 31 | 30 | supeq1d 9458 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑁 → sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}, ℝ, < )) |
| 32 | 31, 19 | eqtr4di 2788 |
. . . . . . . . 9
⊢ (𝑥 = 𝑁 → sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) = 𝑆) |
| 33 | 32 | oveq1d 7420 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )) = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))) |
| 34 | 33 | eqeq2d 2746 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )) ↔ 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )))) |
| 35 | 28, 34 | anbi12d 632 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (𝑁 = (𝑁 / 𝑦) ∧ 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))))) |
| 36 | | oveq2 7413 |
. . . . . . . 8
⊢ (𝑦 = 1 → (𝑁 / 𝑦) = (𝑁 / 1)) |
| 37 | 36 | eqeq2d 2746 |
. . . . . . 7
⊢ (𝑦 = 1 → (𝑁 = (𝑁 / 𝑦) ↔ 𝑁 = (𝑁 / 1))) |
| 38 | | breq2 5123 |
. . . . . . . . . . 11
⊢ (𝑦 = 1 → ((𝑃↑𝑛) ∥ 𝑦 ↔ (𝑃↑𝑛) ∥ 1)) |
| 39 | 38 | rabbidv 3423 |
. . . . . . . . . 10
⊢ (𝑦 = 1 → {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}) |
| 40 | 39 | supeq1d 9458 |
. . . . . . . . 9
⊢ (𝑦 = 1 → sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, <
)) |
| 41 | 40 | oveq2d 7421 |
. . . . . . . 8
⊢ (𝑦 = 1 → (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )) = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, <
))) |
| 42 | 41 | eqeq2d 2746 |
. . . . . . 7
⊢ (𝑦 = 1 → (𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )) ↔ 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, <
)))) |
| 43 | 37, 42 | anbi12d 632 |
. . . . . 6
⊢ (𝑦 = 1 → ((𝑁 = (𝑁 / 𝑦) ∧ 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (𝑁 = (𝑁 / 1) ∧ 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, <
))))) |
| 44 | 35, 43 | rspc2ev 3614 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 1 ∈
ℕ ∧ (𝑁 = (𝑁 / 1) ∧ 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < )))) →
∃𝑥 ∈ ℤ
∃𝑦 ∈ ℕ
(𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )))) |
| 45 | 26, 44 | mp3an2 1451 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ (𝑁 = (𝑁 / 1) ∧ 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < )))) →
∃𝑥 ∈ ℤ
∃𝑦 ∈ ℕ
(𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )))) |
| 46 | 6, 9, 25, 45 | syl12anc 836 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )))) |
| 47 | | ltso 11315 |
. . . . . 6
⊢ < Or
ℝ |
| 48 | 47 | supex 9476 |
. . . . 5
⊢
sup({𝑛 ∈
ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}, ℝ, < ) ∈ V |
| 49 | 19, 48 | eqeltri 2830 |
. . . 4
⊢ 𝑆 ∈ V |
| 50 | 2, 3 | pceu 16866 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃!𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )))) |
| 51 | 1, 50 | sylanr1 682 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃!𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )))) |
| 52 | | eqeq1 2739 |
. . . . . . 7
⊢ (𝑧 = 𝑆 → (𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )) ↔ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )))) |
| 53 | 52 | anbi2d 630 |
. . . . . 6
⊢ (𝑧 = 𝑆 → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))))) |
| 54 | 53 | 2rexbidv 3206 |
. . . . 5
⊢ (𝑧 = 𝑆 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))))) |
| 55 | 54 | iota2 6520 |
. . . 4
⊢ ((𝑆 ∈ V ∧ ∃!𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )))) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )))) = 𝑆)) |
| 56 | 49, 51, 55 | sylancr 587 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )))) = 𝑆)) |
| 57 | 46, 56 | mpbid 232 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < )))) = 𝑆) |
| 58 | 5, 57 | eqtrd 2770 |
1
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = 𝑆) |