MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pczpre Structured version   Visualization version   GIF version

Theorem pczpre 16476
Description: Connect the prime count pre-function to the actual prime count function, when restricted to the integers. (Contributed by Mario Carneiro, 23-Feb-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
pczpre.1 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}, ℝ, < )
Assertion
Ref Expression
pczpre ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = 𝑆)
Distinct variable groups:   𝑛,𝑁   𝑃,𝑛
Allowed substitution hint:   𝑆(𝑛)

Proof of Theorem pczpre
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zq 12623 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
2 eqid 2738 . . . 4 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
3 eqid 2738 . . . 4 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
42, 3pcval 16473 . . 3 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
51, 4sylanr1 678 . 2 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
6 simprl 767 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℤ)
76zcnd 12356 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℂ)
87div1d 11673 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑁 / 1) = 𝑁)
98eqcomd 2744 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 = (𝑁 / 1))
10 prmuz2 16329 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
11 eqid 2738 . . . . . . . 8 1 = 1
12 eqid 2738 . . . . . . . . 9 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}
13 eqid 2738 . . . . . . . . 9 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < )
1412, 13pcpre1 16471 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 1 = 1) → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < ) = 0)
1510, 11, 14sylancl 585 . . . . . . 7 (𝑃 ∈ ℙ → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < ) = 0)
1615adantr 480 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < ) = 0)
1716oveq2d 7271 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < )) = (𝑆 − 0))
18 eqid 2738 . . . . . . . . . 10 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
19 pczpre.1 . . . . . . . . . 10 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}, ℝ, < )
2018, 19pcprecl 16468 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑁))
2110, 20sylan 579 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑁))
2221simpld 494 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0)
2322nn0cnd 12225 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℂ)
2423subid1d 11251 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 − 0) = 𝑆)
2517, 24eqtr2d 2779 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < )))
26 1nn 11914 . . . . 5 1 ∈ ℕ
27 oveq1 7262 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥 / 𝑦) = (𝑁 / 𝑦))
2827eqeq2d 2749 . . . . . . 7 (𝑥 = 𝑁 → (𝑁 = (𝑥 / 𝑦) ↔ 𝑁 = (𝑁 / 𝑦)))
29 breq2 5074 . . . . . . . . . . . 12 (𝑥 = 𝑁 → ((𝑃𝑛) ∥ 𝑥 ↔ (𝑃𝑛) ∥ 𝑁))
3029rabbidv 3404 . . . . . . . . . . 11 (𝑥 = 𝑁 → {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁})
3130supeq1d 9135 . . . . . . . . . 10 (𝑥 = 𝑁 → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}, ℝ, < ))
3231, 19eqtr4di 2797 . . . . . . . . 9 (𝑥 = 𝑁 → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) = 𝑆)
3332oveq1d 7270 . . . . . . . 8 (𝑥 = 𝑁 → (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))
3433eqeq2d 2749 . . . . . . 7 (𝑥 = 𝑁 → (𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) ↔ 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
3528, 34anbi12d 630 . . . . . 6 (𝑥 = 𝑁 → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (𝑁 = (𝑁 / 𝑦) ∧ 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
36 oveq2 7263 . . . . . . . 8 (𝑦 = 1 → (𝑁 / 𝑦) = (𝑁 / 1))
3736eqeq2d 2749 . . . . . . 7 (𝑦 = 1 → (𝑁 = (𝑁 / 𝑦) ↔ 𝑁 = (𝑁 / 1)))
38 breq2 5074 . . . . . . . . . . 11 (𝑦 = 1 → ((𝑃𝑛) ∥ 𝑦 ↔ (𝑃𝑛) ∥ 1))
3938rabbidv 3404 . . . . . . . . . 10 (𝑦 = 1 → {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1})
4039supeq1d 9135 . . . . . . . . 9 (𝑦 = 1 → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < ))
4140oveq2d 7271 . . . . . . . 8 (𝑦 = 1 → (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < )))
4241eqeq2d 2749 . . . . . . 7 (𝑦 = 1 → (𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) ↔ 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < ))))
4337, 42anbi12d 630 . . . . . 6 (𝑦 = 1 → ((𝑁 = (𝑁 / 𝑦) ∧ 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (𝑁 = (𝑁 / 1) ∧ 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < )))))
4435, 43rspc2ev 3564 . . . . 5 ((𝑁 ∈ ℤ ∧ 1 ∈ ℕ ∧ (𝑁 = (𝑁 / 1) ∧ 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < )))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
4526, 44mp3an2 1447 . . . 4 ((𝑁 ∈ ℤ ∧ (𝑁 = (𝑁 / 1) ∧ 𝑆 = (𝑆 − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < )))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
466, 9, 25, 45syl12anc 833 . . 3 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
47 ltso 10986 . . . . . 6 < Or ℝ
4847supex 9152 . . . . 5 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}, ℝ, < ) ∈ V
4919, 48eqeltri 2835 . . . 4 𝑆 ∈ V
502, 3pceu 16475 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
511, 50sylanr1 678 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
52 eqeq1 2742 . . . . . . 7 (𝑧 = 𝑆 → (𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) ↔ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
5352anbi2d 628 . . . . . 6 (𝑧 = 𝑆 → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
54532rexbidv 3228 . . . . 5 (𝑧 = 𝑆 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
5554iota2 6407 . . . 4 ((𝑆 ∈ V ∧ ∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) = 𝑆))
5649, 51, 55sylancr 586 . . 3 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑆 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) = 𝑆))
5746, 56mpbid 231 . 2 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) = 𝑆)
585, 57eqtrd 2778 1 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  ∃!weu 2568  wne 2942  wrex 3064  {crab 3067  Vcvv 3422   class class class wbr 5070  cio 6374  cfv 6418  (class class class)co 7255  supcsup 9129  cr 10801  0cc0 10802  1c1 10803   < clt 10940  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  cq 12617  cexp 13710  cdvds 15891  cprime 16304   pCnt cpc 16465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466
This theorem is referenced by:  pczcl  16477  pcmul  16480  pcdiv  16481  pc1  16484  pczdvds  16492  pczndvds  16494  pczndvds2  16496  pcneg  16503
  Copyright terms: Public domain W3C validator